1. PanoLlama: Generating Endless and Coherent Panoramas with Next-Token-Prediction LLMs
- Author
-
Zhou, Teng, Zhang, Xiaoyu, and Tang, Yongchuan
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Panoramic Image Generation has emerged as an important task in image generation, driven by growing demands for large-scale visuals in creative and technical applications. While diffusion models have dominated this field, they face inherent limitations, including the multilevel-coherence challenge and implementation complexity, leading to suboptimal outcomes. In this paper, we introduce PanoLlama, a novel framework that redefines panoramic image generation as a next-token prediction task. Building on the pre-trained LlamaGen architecture, we generate images in an autoregressive manner and develop an expansion strategy to handle size limitations. This method aligns with the image token structure in a crop-wise and training-free manner, resulting in high-quality panoramas with minimal seams and maximum scalability. PanoLlama demonstrates its effectiveness and versatility in our experiments, achieving the best overall performance while offering flexibility for multi-scale, multi-layout, and multi-guidance generation. It overcomes the challenges that diffusion-based methods fail to address, setting a new paradigm for panoramic image generation tasks. Code is available at https://github.com/0606zt/PanoLlama.
- Published
- 2024