1. A VHetNet-Enabled Asynchronous Federated Learning-Based Anomaly Detection Framework for Ubiquitous IoT
- Author
-
Wang, Weili, Abbasi, Omid, Yanikomeroglu, Halim, Liang, Chengchao, Tang, Lun, and Chen, Qianbin
- Subjects
Computer Science - Networking and Internet Architecture ,Electrical Engineering and Systems Science - Signal Processing - Abstract
Anomaly detection for the Internet of Things (IoT) is a major intelligent service required by many fields, including intrusion detection, device-activity analysis, and security supervision. However, the heterogeneous distribution of data and resource-constrained end nodes present challenges for existing anomaly detection models. Due to the advantages of flexible deployment and multi-dimensional resources, high altitude platform stations (HAPSs) and unmanned aerial vehicles (UAVs), which are important components of vertical heterogeneous networks (VHetNets), have significant potential for sensing, computing, storage, and communication applications in ubiquitous IoT systems. In this paper, we propose a novel VHetNet-enabled asynchronous federated learning (AFL) framework to enable decentralized UAVs to collaboratively train a global anomaly detection model. In the VHetNet-enabled AFL framework, a HAPS operates as a central aerial server, and the local models trained in UAVs are uploaded to the HAPS for global aggregation due to its wide coverage and strong storage and computation capabilities. We introduce a UAV selection strategy into the AFL framework to prevent UAVs with low local model quality and large energy consumption from affecting the learning efficiency and detection accuracy of the global model. To ensure the security of transmissions between UAVs and the HAPS, we add designed noise to local model parameters in UAVs to achieve differential privacy. Moreover, we propose a compound-action actor-critic (CA2C)-based joint device association, UAV selection, and UAV trajectory planning algorithm to further enhance the overall federated execution efficiency and detection model accuracy. Extensive experimental evaluation on a real-world dataset demonstrates that the proposed algorithm can achieve high detection accuracy with short federated execution time and low energy consumption.
- Published
- 2023