1. Long-distance Liquid Transport Along Fibers Arising From Plateau-Rayleigh Instability
- Author
-
Huang, Yunqiao, Li, Xianguo, and Tan, Zhongchao
- Subjects
Physics - Fluid Dynamics ,Physics - Applied Physics - Abstract
Liquid mobility on fibers is critical to the effectiveness of fiber matrices in face masks, water harvesting and aerosol filtration, but is typically affected by Plateau-Rayleigh instability. However, the spontaneous flow within precursor films arising from this instability has been largely overlooked, particularly regarding its fundamental flow pattern and the potential for liquid mobilization. This study reveals the pivotal role of spontaneous flow on ribbon-like fibers in enhancing liquid transport. The non-axisymmetric curvature of these fibers induces long-wave instabilities, generating a sustained flow that enables film-wise transport over centimeter-scale distances at velocities of several millimeters per second. Using particle-image velocimetry, we uncover intricate hydrodynamics, including opposing flows within the film and organized vortices in the shear layer, driven by capillary effects at the liquid-vapor interfaces. Building on these insights, we demonstrate a network structure capable of achieving planar liquid transport over a 10 cm2 area. The ribbon-like fibers investigated exhibit the longest transport distances relative to biomimetic structures and aerodynamic propulsion. The unique transport dynamics and planar configuration of the fiber matrix offer substantial potential for advanced fiber-based liquid transport systems, with enhanced mass/heat transfer, laminar mixing and aerodynamic characteristics.
- Published
- 2024