9 results on '"Tamburri M.N."'
Search Results
2. Performance Verification Statement for the Xylem YSI Ballast Water Discharge Monitor
- Author
-
First, M.R., Riley, S.C., Robbins-Wamsley, S.H., Molina, V., Johengen, T., Purcell, H., Smith, G.J., Reavie, E., Carney, K., Moser, C.S., Buckley, E.N., Tamburri, M.N., and Drake, L.A.
- Subjects
Biological Oceanography - Abstract
In an effort to mitigate the risk of transporting aquatic nuisance species, the United States Coast Guard (USCG) has finalized a rule limiting the concentrations of organisms in ships’ ballast water discharged into US ports (US Coast Guard 2012). The specified concentrations are nearly identical (with the exception of not including limits for Vibrio cholerae in zooplankton samples) to those in the International Maritime Organization’s (IMO) convention (IMO 2004). Further, the limits are consistent with those in the US Environmental Protection Agency’s Vessel General Permit (VGP)—regulations on a suite of vessel operations, including the discharge of ballast water (US EPA 2013). In order to meet these limits, most ships will use a ballast water management system (BWMS). These systems incorporate a variety of technologies (including filtration, UV radiation, electrolytic chlorination, and deoxygenation) to ensure that the discharge water meets the specifications. Determining concentrations of living organisms can require extensive effort and sensitive equipment, especially for sparse populations. For example, direct counts of living organisms ≥10 and
- Published
- 2017
3. Performance Verification Statement for the BW680 Fluorometer (Hach)
- Author
-
First, M.R., Riley, S.C., Robbins-Wamsley, S.H., Molina, V., Johengen, T., Purcell, H., Smith, G.J., Reavie, E., Carney, K., Moser, C.S., Buckley, E.N., Tamburri, M.N., and Drake, L.A.
- Subjects
Biogeochemistry - Abstract
In an effort to mitigate the risk of transporting aquatic nuisance species, the United States Coast Guard (USCG) has finalized a rule limiting the concentrations of organisms in ships’ ballast water discharged into US ports (US Coast Guard 2012). The specified concentrations are nearly identical (with the exception of not including limits for Vibrio cholerae in zooplankton samples) to those in the International Maritime Organization’s (IMO) convention (IMO 2004). Further, the limits are consistent with those in the US Environmental Protection Agency’s Vessel General Permit (VGP)—regulations on a suite of vessel operations, including the discharge of ballast water (US EPA 2013). In order to meet these limits, most ships will use a ballast water management system (BWMS). These systems incorporate a variety of technologies (including filtration, UV radiation, electrolytic chlorination, and deoxygenation) to ensure that the discharge water meets the specifications. Determining concentrations of living organisms can require extensive effort and sensitive equipment, especially for sparse populations. For example, direct counts of living organisms ≥10 and
- Published
- 2017
4. Performance Verification Statement for the 10Cells (BBE Moldaenke)
- Author
-
First, M.R., Riley, S.C., Robbins-Wamsley, S.H., Molina, V., Johengen, T., Purcell, H., Smith, G.J., Reavie, E., Carney, K., Moser, C.S., Buckley, E.N., Tamburri, M.N., and Drake, L.A.
- Subjects
Physical Oceanography - Abstract
In an effort to mitigate the risk of transporting aquatic nuisance species, the United States Coast Guard (USCG) has finalized a rule limiting the concentrations of organisms in ships’ ballast water discharged into US ports (US Coast Guard 2012). The specified concentrations are nearly identical (with the exception of not including limits for Vibrio cholerae in zooplankton samples) to those in the International Maritime Organization’s (IMO) convention (IMO 2004). Further, the limits are consistent with those in the US Environmental Protection Agency’s Vessel General Permit (VGP)—regulations on a suite of vessel operations, including the discharge of ballast water (US EPA 2013). In order to meet these limits, most ships will use a ballast water management system (BWMS). These systems incorporate a variety of technologies (including filtration, UV radiation, electrolytic chlorination, and deoxygenation) to ensure that the discharge water meets the specifications. Determining concentrations of living organisms can require extensive effort and sensitive equipment, especially for sparse populations. For example, direct counts of living organisms ≥10 and
- Published
- 2017
5. Performance Verification Statement for the Ballast-Check 2. Version: 2015 (Turner Designs)
- Author
-
First, M.R., Riley, S.C., Robbins-Wamsley, S.H., Molina, V., Johengen, T., Purcell, H., Smith, G.J., Reavie, E., Carney, K., Moser, C.S., Buckley, E.N., Tamburri, M.N., and Drake, L.A.
- Subjects
Biological Oceanography - Abstract
In an effort to mitigate the risk of transporting aquatic nuisance species, the United States Coast Guard (USCG) has finalized a rule limiting the concentrations of organisms in ships’ ballast water discharged into US ports (US Coast Guard 2012). The specified concentrations are nearly identical (with the exception of not including limits for Vibrio cholerae in zooplankton samples) to those in the International Maritime Organization’s (IMO) convention (IMO 2004). Further, the limits are consistent with those in the US Environmental Protection Agency’s Vessel General Permit (VGP)—regulations on a suite of vessel operations, including the discharge of ballast water (US EPA 2013). In order to meet these limits, most ships will use a ballast water management system (BWMS). These systems incorporate a variety of technologies (including filtration, UV radiation, electrolytic chlorination, and deoxygenation) to ensure that the discharge water meets the specifications. Determining concentrations of living organisms can require extensive effort and sensitive equipment, especially for sparse populations. For example, direct counts of living organisms ≥10 and
- Published
- 2015
6. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration
- Author
-
Barry, J.P., primary, Buck, K.R., additional, Lovera, C., additional, Brewer, P.G., additional, Seibel, B.A., additional, Drazen, J.C., additional, Tamburri, M.N., additional, Whaling, P.J., additional, Kuhnz, L., additional, and Pane, E.F., additional
- Published
- 2013
- Full Text
- View/download PDF
7. Tools required for ocean observing.
- Author
-
Tamburri, M.N.
- Published
- 2009
8. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration.
- Author
-
Barry, J.P., Buck, K.R., Lovera, C., Brewer, P.G., Seibel, B.A., Drazen, J.C., Tamburri, M.N., Whaling, P.J., Kuhnz, L., and Pane, E.F.
- Subjects
- *
CARBON dioxide in water , *DEEP-sea ecology , *HYDROGEN-ion concentration , *CARBON sequestration , *DEEP-sea biology , *MARINE microbiology , *EFFECT of environment on animals - Abstract
Abstract: The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30–42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached −0.3pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. −0.3pH units during 30–42 day-long experiments. [Copyright &y& Elsevier]
- Published
- 2013
- Full Text
- View/download PDF
9. Evolving and Sustaining Ocean Best Practices and Standards for the Next Decade
- Author
-
Peter Pissierssens, Rene Garello, Mark Bushnell, Pier Luigi Buttigieg, Nadia Pinardi, Reyna Jenkyns, Eric P. Achterberg, Roberto Bozzano, Miguel Charcos Llorens, Ana Lara-Lopez, George Petihakis, Eric Moussat, Andres Cianca, Adam Leadbetter, Fred Whoriskey, Pierre Testor, Manuel Bensi, Julie Bosch, Sylvie Pouliquen, Francoise Pearlman, Emma Heslop, Bernard Bourlès, Christoph Waldmann, E. Delory, Simon Jirka, Mario N. Tamburri, Jay Pearlman, Manolis Ntoumas, Giuseppe Manzella, Rachel Przeslawski, Caroline Cusack, Henry C. Bittig, Vanessa Cardin, Eugene Burger, Laurent Coppola, Juliet Hermes, Toste Tanhua, Joan Masó, Valerie Harscoat, Julie Thomas, Cristian Munoz-Mas, Jerome Blandin, Gabriele Giovanetti, Maciej Telszewski, Justin J. H. Buck, Daniel Cano, Hua Chen, C. L. Chandler, Johannes Karstensen, Robert Heitsenrether, Hairong Tang, Nicholas P. Roden, Andrea McCurdy, Joe Silke, Sara Pensieri, Pauline Simpson, Frank E. Muller-Karger, Susan E. Hartman, Nadine Lanteri, Michele Barbier, IEEE, Observatoire océanologique de Villefranche-sur-mer (OOVM), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Helmholtz Centre for Ocean Research [Kiel] (GEOMAR), Mediterranean Science Commission, University of South Florida [Tampa] (USF), Institut Mediterrani d'Estudis Avancats (IMEDEA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de las Islas Baleares (UIB), Laboratoire d'océanographie de Villefranche (LOV), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut de la Mer de Villefranche (IMEV), Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études en Géophysique et océanographie spatiales (LEGOS BREST), Institut de recherche pour le développement [IRD] : UR065, Centre de Télédétection et d'Analyse des Milieux Naturels (CTAMN), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Wuhan Technology and Business University, Lab-STICC_TB_CID_TOMS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), 52North Initiative for Geospatial Open Source Software GmbH (52°N), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Marine Institute [Oranmore], ETT, Universitat Autònoma de Barcelona (UAB), Consortium for Ocean Leadership, Alma Mater Studiorum Università di Bologna [Bologna] (UNIBO), Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Helmholtz Zentrum für Umweltforschung = Helmholtz Centre for Environmental Research (UFZ), Variabilité de l'Océan et de la Glace de mer (VOG), Laboratoire d'Océanographie et du Climat : Expérimentations et Approches Numériques (LOCEAN), Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Center for Marine Environmental Sciences [Bremen] (MARM), University of Bremen, European Project: 633211,H2020,H2020-BG-2014-2,AtlantOS(2015), European Project: 654310,H2020,H2020-INFRASUPP-2014-2,ODIP 2(2015), European Project: 730960, SeaDataCloud(2016), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), MINES ParisTech - École nationale supérieure des mines de Paris, École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Télécom Bretagne-Institut Brestois du Numérique et des Mathématiques (IBNM), Université de Brest (UBO)-Université européenne de Bretagne - European University of Brittany (UEB)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Institut Français de Recherche pour l'Exploitation de la Mer - Brest (IFREMER Centre de Bretagne), Institut Pierre-Simon-Laplace (IPSL (FR_636)), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Institut Pierre-Simon-Laplace (IPSL (FR_636)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut de Recherche pour le Développement (IRD)-Muséum national d'Histoire naturelle (MNHN)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Pearlman J., Bushnell M., Coppola L., Karstensen J., Buttigieg P.L., Pearlman F., Simpson P., Barbier M., Muller-Karger F.E., Munoz-Mas C., Pissierssens P., Chandler C., Hermes J., Heslop E., Jenkyns R., Achterberg E.P., Bensi M., Bittig H.C., Blandin J., Bosch J., Bourles B., Bozzano R., Buck J.J., Burger E.F., Cano D., Cardin V., Llorens M.C., Cianca A., Chen H., Cusack C., Delory E., Garello R., Giovanetti G., Harscoat V., Hartman S., Heitsenrether R., Jirka S., Lara-Lopez A., Lanteri N., Leadbetter A., Manzella G., Maso J., McCurdy A., Moussat E., Ntoumas M., Pensieri S., Petihakis G., Pinardi N., Pouliquen S., Przeslawski R., Roden N.P., Silke J., Tamburri M.N., Tang H., Tanhua T., Telszewski M., Testor P., Thomas J., Waldmann C., and Whoriskey F.
- Subjects
0106 biological sciences ,lcsh:QH1-199.5 ,010504 meteorology & atmospheric sciences ,Computer science ,Best practice ,Interoperability ,Ontologie ,interoperability ,Ocean Engineering ,lcsh:General. Including nature conservation, geographical distribution ,Aquatic Science ,Oceanography ,01 natural sciences ,Market fragmentation ,Documentation ,Ontologies ,best practices ,ontologies ,14. Life underwater ,lcsh:Science ,digital repository ,0105 earth and related environmental sciences ,Water Science and Technology ,[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,ocean observing ,Global and Planetary Change ,010604 marine biology & hydrobiology ,Scale (chemistry) ,Methodologie ,sustainability ,Ocean observing ,Data science ,Digital repository ,Sustainability ,13. Climate action ,Software deployment ,Semantic technology ,lcsh:Q ,Methodologies ,methodologies - Abstract
The oceans play a key role in global issues such as climate change, food security, and human health. Given their vast dimensions and internal complexity, efficient monitoring and predicting of the planet’s ocean must be a collaborative effort of both regional and global scale. A first and foremost requirement for such collaborative ocean observing is the need to follow well-defined and reproducible methods across activities: from strategies for structuring observing systems, sensor deployment and usage, and the generation of data and information products, to ethical and governance aspects when executing ocean observing. To meet the urgent, planet-wide challenges we face, methods across all aspects of ocean observing should be broadly adopted by the ocean community and, where appropriate, should evolve into “Ocean Best Practices.” While many groups have created best practices, they are scattered across the Web or buried in local repositories and many have yet to be digitized. To reduce this fragmentation, we introduce a new open access, permanent, digital repository of best practices documentation (oceanbestpractices.org) that is part of the Ocean Best Practices System (OBPS). The new OBPS provides an opportunity space for the centralized and coordinated improvement of ocean observing methods. The OBPS repository employs user-friendly software to significantly improve discovery and access to methods. The software includes advanced semantic technologies for search capabilities to enhance repository operations. In addition to the repository, the OBPS also includes a peer reviewed journal research topic, a forum for community discussion and a training activity for use of best practices. Together, these components serve to realize a core objective of the OBPS, which is to enable the ocean community to create superior methods for every activity in ocean observing from research to operations to applications that are agreed upon and broadly adopted across communities. Using selected ocean observing examples, we show how the OBPS supports this objective. This paper lays out a future vision of ocean best practices and how OBPS will contribute to improving ocean observing in the decade to come.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.