1. Multi-site exchange enhanced barocaloric response in Mn3NiN
- Author
-
Boldrin, D, Mendive-Tapia, E, Zemen, J, Staunton, JB, Hansen, T, Aznar, A, Tamarit, JL, Barrio, M, Lloveras, P, Kim, J, Moya Raposo, Xavier, Cohen, LF, Engineering & Physical Science Research Council (E, Moya Raposo, Xavier [0000-0003-0276-1981], Apollo - University of Cambridge Repository, Apollo-University Of Cambridge Repository, Universitat Politècnica de Catalunya. Departament de Física, and Universitat Politècnica de Catalunya. GCM - Grup de Caracterització de Materials
- Subjects
Condensed Matter - Materials Science ,Science & Technology ,Strongly Correlated Electrons (cond-mat.str-el) ,Física [Àrees temàtiques de la UPC] ,QC1-999 ,Physics ,education ,Physics, Multidisciplinary ,Condensed matter ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Matèria condensada ,5103 Classical Physics ,Solid state physics ,Condensed Matter - Strongly Correlated Electrons ,Physical Sciences ,Física de l'estat sòlid ,51 Physical Sciences ,TRANSITION - Abstract
We study the barocaloric effect (BCE) in the geometrically frustrated antiferromagnet \ud Mn\ud 3\ud NiN\ud across the Néel transition temperature. Experimentally, we find a larger barocaloric entropy change by a factor of 1.6 than that recently discovered in the isostructural antiperovskite \ud Mn\ud 3\ud GaN\ud despite significantly greater magnetovolume coupling in \ud Mn\ud 3\ud GaN\ud . By fitting experimental data to theory, we show that the larger BCE of \ud Mn\ud 3\ud NiN\ud originates from multisite exchange interactions amongst the local Mn magnetic moments and their coupling with itinerant electron spins. Using this framework, we discuss the route to maximize the BCE in the wider \ud Mn\ud 3\ud A\ud N\ud family.
- Published
- 2018