1. A Systematic Review of the Relationship Between Traumatic Brain Injury and Disruptions in Heart Rate Variability.
- Author
-
Talbert LD, Kaelberer Z, Gleave E, Driggs A, Driggs AS, Baldwin SA, Steffen PR, and Larson MJ
- Subjects
- Humans, Autonomic Nervous System physiopathology, Autonomic Nervous System Diseases physiopathology, Autonomic Nervous System Diseases etiology, Brain Injuries, Traumatic physiopathology, Brain Injuries, Traumatic complications, Heart Rate physiology
- Abstract
Autonomic nervous system dysfunction is increasingly recognized as a common sequela of traumatic brain injury (TBI). Heart rate variability (HRV) is a specific measure of autonomic nervous system functioning that can be used to measure beat-to-beat changes in heart rate following TBI. The objective of this systematic review was to determine the state of the literature on HRV dysfunction following TBI, assess the level of support for HRV dysfunction following TBI, and determine if HRV dysfunction predicts mortality and the severity and subsequent recovery of TBI symptoms. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two raters coded each article and provided quality ratings with discrepancies resolved by consensus. Eighty-nine papers met the inclusion criteria. Findings indicated that TBI of any severity is associated with decreased (i.e., worse) HRV; the severity of TBI appears to moderate the relationship between HRV and recovery; decreased HRV following TBI predicts mortality beyond age; HRV disturbances may persist beyond return-to-play and symptom resolution following mild TBI. Overall, current literature suggests HRV is decreased following TBI and may be a good indicator of physiological change and predictor of important outcomes including mortality and symptom improvement following TBI., Competing Interests: Declarations. Conflict of interest: The authors declare that they have no conflict of interest., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF