1. Enantioselectivity of discretized helical supramolecule consisting of achiral cobalt phthalocyanines via chiral-induced spin selectivity effect
- Author
-
Hiroki Aizawa, Takuro Sato, Saori Maki-Yonekura, Koji Yonekura, Kiyofumi Takaba, Tasuku Hamaguchi, Taketoshi Minato, and Hiroshi M. Yamamoto
- Subjects
Science - Abstract
Abstract Enantioselectivity of helical aggregation is conventionally directed either by its homochiral ingredients or by introduction of chiral catalysis. The fundamental question, then, is whether helical aggregation that consists only of achiral components can obtain enantioselectivity in the absence of chiral catalysis. Here, by exploiting enantiospecific interaction due to chiral-induced spin selectivity (CISS) that has been known to work to enantio-separate a racemic mixture of chiral molecules, we demonstrate the enantioselectivity in the assembly of mesoscale helical supramolecules consisting of achiral cobalt phthalocyanines. The helical nature in our supramolecules is revealed to be mesoscopically incorporated by dislocation-induced discretized twists, unlike the case of chiral molecules whose chirality are determined microscopically by chemical bond. The relevance of CISS effect in the discretized helical supramolecules is further confirmed by the appearance of spin-polarized current through the system. These observations mean that the application of CISS-based enantioselectivity is no longer limited to systems with microscopic chirality but is expanded to the one with mesoscopic chirality.
- Published
- 2023
- Full Text
- View/download PDF