386 results on '"Takema Fukatsu"'
Search Results
2. Host range of naturally and artificially evolved symbiotic bacteria for a specific host insect
- Author
-
Ryuga Sugiyama, Minoru Moriyama, Ryuichi Koga, and Takema Fukatsu
- Subjects
Plautia stali ,Escherichia coli ,Pantoea ,stinkbug ,gut symbiosis ,host specificity ,Microbiology ,QR1-502 - Abstract
ABSTRACT Diverse insects are intimately associated with specific symbiotic bacteria, where host and symbiont are integrated into an almost inseparable biological entity. These symbiotic bacteria usually exhibit host specificity, uncultivability, reduced genome size, and other peculiar traits relevant to their symbiotic lifestyle. How host-symbiont specificity is established at the very beginning of symbiosis is of interest but poorly understood. To gain insight into the evolutionary issue, we adopted an experimental approach using the recently developed evolutionary model of symbiosis between the stinkbug Plautia stali and Escherichia coli. Based on the laboratory evolution of P. stali-E. coli mutualism, we selected ΔcyaA mutant of E. coli as an artificial symbiont of P. stali that has established mutualism by a single mutation. In addition, we selected a natural cultivable symbiont of P. stali of relatively recent evolutionary origin. These artificial and natural symbiotic bacteria of P. stali were experimentally inoculated to symbiont-deprived newborn nymphs of diverse stinkbug species. Strikingly, the mutualistic E. coli was unable to establish infection and support growth and survival of all the stinkbug species except for P. stali, uncovering that host specificity can be established at a very early stage of symbiotic evolution. Meanwhile, the natural symbiont was able to establish infection and support growth and survival of several stinkbug species in addition to P. stali, unveiling that a broader host range of the symbiont has evolved in nature. Based on these findings, we discuss what factors are relevant to the establishment of host specificity in the evolution of symbiosis.IMPORTANCEHow does host-symbiont specificity emerge at the very beginning of symbiosis? This question is difficult to address because it is generally difficult to directly observe the onset of symbiosis. However, recent development of experimental evolutionary approaches to symbiosis has brought about a breakthrough. Here we tackled this evolutionary issue using a symbiotic Escherichia coli created in laboratory and a natural Pantoea symbiont, which are both mutualistic to the stinkbug Plautia stali. We experimentally replaced essential symbiotic bacteria of diverse stinkbugs with the artificial and natural symbionts of P. stali and evaluated whether the symbiotic bacteria, which evolved for a specific host, can establish infection and support the growth and survival of heterospecific hosts. Strikingly, the artificial symbiont showed strict host specificity to P. stali, whereas the natural symbiont was capable of symbiosis with diverse stinkbugs, which provide insight into how host-symbiont specificity can be established at early evolutionary stages of symbiosis.
- Published
- 2024
- Full Text
- View/download PDF
3. Editorial: Spiroplasma, Mycoplasma, Phytoplasma, and other genome-reduced and wall-less mollicutes: their genetics, genomics, mechanics, interactions and symbiosis with insects, other animals and plants
- Author
-
Takema Fukatsu, Shigeyuki Kakizawa, Toshiyuki Harumoto, Akiko Sugio, and Chih-Horng Kuo
- Subjects
Spiroplasma ,Mycoplasma ,Phytoplasma ,symbiont ,pathogen ,genome ,Microbiology ,QR1-502 - Published
- 2024
- Full Text
- View/download PDF
4. Cloning and sequencing analysis of whole Spiroplasma genome in yeast
- Author
-
Masaki Mizutani, Sawako Omori, Noriko Yamane, Yo Suzuki, John I. Glass, Ray-Yuan Chuang, Takema Fukatsu, and Shigeyuki Kakizawa
- Subjects
Spiroplasma ,whole genome cloning ,synthetic biology ,yeast artificial chromosome vector ,transformation-associated recombination (TAR) cloning ,Microbiology ,QR1-502 - Abstract
Cloning and transfer of long-stranded DNA in the size of a bacterial whole genome has become possible by recent advancements in synthetic biology. For the whole genome cloning and whole genome transplantation, bacteria with small genomes have been mainly used, such as mycoplasmas and related species. The key benefits of whole genome cloning include the effective maintenance and preservation of an organism's complete genome within a yeast host, the capability to modify these genome sequences through yeast-based genetic engineering systems, and the subsequent use of these cloned genomes for further experiments. This approach provides a versatile platform for in-depth genomic studies and applications in synthetic biology. Here, we cloned an entire genome of an insect-associated bacterium, Spiroplasma chrysopicola, in yeast. The 1.12 Mbp whole genome was successfully cloned in yeast, and sequences of several clones were confirmed by Illumina sequencing. The cloning efficiency was high, and the clones contained only a few mutations, averaging 1.2 nucleotides per clone with a mutation rate of 4 × 10−6. The cloned genomes could be distributed and used for further research. This study serves as an initial step in the synthetic biology approach to Spiroplasma.
- Published
- 2024
- Full Text
- View/download PDF
5. Intracellularity, extracellularity, and squeezing in the symbiotic organ underpin nurturing and functioning of bacterial symbiont in leaf beetles
- Author
-
Kohei Oguchi, Toshiyuki Harumoto, Tatsuya Katsuno, Yu Matsuura, Soma Chiyoda, and Takema Fukatsu
- Subjects
Microbiology ,Microbial cell structure ,Science - Abstract
Summary: Cassidine leaf beetles are associated with genome-reduced symbiotic bacteria Stammera involved in pectin digestion. Stammera cells appear to be harbored in paired symbiotic organs located at the foregut-midgut junction either intracellularly or extracellularly, whereas the symbiont is extracellular in the ovary-accessory glands of adult females and during caplet transmission in eggs. However, using fluorescence and electron microscopy, an intracellular symbiotic configuration of Stammera was observed in Notosacantha species. Detailed inspection of other cassidine species revealed fragmented cell membrane and cytoplasm of the symbiotic organs, wherein Stammera cells are in an intermediate status between intracellularity and extracellularity. We also identified a mitochondria-rich region adjacent to the symbiont-filled region and well-developed muscle fibers surrounding the whole symbiotic organ. Based on these observations, we discuss why the Stammera genome has been reduced so drastically and how symbiont-derived pectinases are produced and supplied to the host’s alimentary tract for plant cell wall digestion.
- Published
- 2024
- Full Text
- View/download PDF
6. Genome analysis of 'Candidatus Aschnera chinzeii,' the bacterial endosymbiont of the blood-sucking bat fly Penicillidia jenynsii (Insecta: Diptera: Nycteribiidae)
- Author
-
Ryuichi Koga, Minoru Moriyama, Tomonari Nozaki, and Takema Fukatsu
- Subjects
Aschnera chinzeii ,nycteribiid bat fly ,Penicillidia jenynsii ,symbiotic bacteria ,genome reduction ,B vitamin provisioning ,Microbiology ,QR1-502 - Abstract
Insect–microbe endosymbiotic associations are omnipresent in nature, wherein the symbiotic microbes often play pivotal biological roles for their host insects. In particular, insects utilizing nutritionally imbalanced food sources are dependent on specific microbial symbionts to compensate for the nutritional deficiency via provisioning of B vitamins in blood-feeding insects, such as tsetse flies, lice, and bedbugs. Bat flies of the family Nycteribiidae (Diptera) are blood-sucking ectoparasites of bats and shown to be associated with co-speciating bacterial endosymbiont “Candidatus Aschnera chinzeii,” although functional aspects of the microbial symbiosis have been totally unknown. In this study, we report the first complete genome sequence of Aschnera from the bristled bat fly Penicillidia jenynsii. The Aschnera genome consisted of a 748,020 bp circular chromosome and a 18,747 bp circular plasmid. The chromosome encoded 603 protein coding genes (including 3 pseudogenes), 33 transfer RNAs, and 1 copy of 16S/23S/5S ribosomal RNA operon. The plasmid contained 10 protein coding genes, whose biological function was elusive. The genome size, 0.77 Mbp, was drastically reduced in comparison with 4–6 Mbp genomes of free-living γ-proteobacteria. Accordingly, the Aschnera genome was devoid of many important functional genes, such as synthetic pathway genes for purines, pyrimidines, and essential amino acids. On the other hand, the Aschnera genome retained complete or near-complete synthetic pathway genes for biotin (vitamin B7), tetrahydrofolate (vitamin B9), riboflavin (vitamin B2), and pyridoxal 5'-phosphate (vitamin B6), suggesting that Aschnera provides these vitamins and cofactors that are deficient in the blood meal of the host bat fly. Similar retention patterns of the synthetic pathway genes for vitamins and cofactors were also observed in the endosymbiont genomes of other blood-sucking insects, such as Riesia of human lice, Arsenophonus of louse flies, and Wigglesworthia of tsetse flies, which may be either due to convergent evolution in the blood-sucking host insects or reflecting the genomic architecture of Arsenophonus-allied bacteria.
- Published
- 2024
- Full Text
- View/download PDF
7. A new antimicrobial peptide, Pentatomicin, from the stinkbug Plautia stali
- Author
-
Yudai Nishide, Keisuke Nagamine, Daisuke Kageyama, Minoru Moriyama, Ryo Futahashi, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Abstract Antimicrobial peptides (AMPs) play crucial roles in the innate immunity of diverse organisms, which exhibit remarkable diversity in size, structural property and antimicrobial spectrum. Here, we describe a new AMP, named Pentatomicin, from the stinkbug Plautia stali (Hemiptera: Pentatomidae). Orthologous nucleotide sequences of Pentatomicin were present in stinkbugs and beetles but not in other insect groups. Notably, orthologous sequences were also detected from a horseshoe crab, cyanobacteria and proteobacteria, suggesting the possibility of inter-domain horizontal gene transfers of Pentatomicin and allied protein genes. The recombinant protein of Pentatomicin was effective against an array of Gram-positive bacteria but not against Gram-negative bacteria. Upon septic shock, the expression of Pentatomicin drastically increased in a manner similar to other AMPs. On the other hand, unlike other AMPs, mock and saline injections increased the expression of Pentatomicin. RNAi-mediated downregulation of Imd pathway genes (Imd and Relish) and Toll pathway genes (MyD88 and Dorsal) revealed that the expression of Pentatomicin is under the control of Toll pathway. Being consistent with in vitro effectiveness of the recombinant protein, adult insects injected with dsRNA of Pentatomicin exhibited higher vulnerability to Gram-positive Staphylococcus aureus than to Gram-negative Escherichia coli. We discovered high levels of Pentatomicin expression in eggs, which is atypical of other AMPs and suggestive of its biological functioning in eggs. Contrary to the expectation, however, RNAi-mediated downregulation of Pentatomicin did not affect normal embryonic development of P. stali. Moreover, the downregulation of Pentatomicin in eggs did not affect vertical symbiont transmission to the offspring even under heavily contaminated conditions, which refuted our expectation that the antimicrobial activity of Pentatomicin may contribute to egg surface-mediated symbiont transmission by suppressing microbial contaminants.
- Published
- 2022
- Full Text
- View/download PDF
8. Editorial: Microbial associates of blood-sucking arthropods and other animals: relevance to their physiology, ecology and evolution
- Author
-
Takema Fukatsu, Yuval Gottlieb, Olivier Duron, and Joerg Graf
- Subjects
blood-feeding ,insect ,tick ,mite ,crustacean ,leech ,Microbiology ,QR1-502 - Published
- 2023
- Full Text
- View/download PDF
9. Editorial: Diversity of beetles and associated microorganisms
- Author
-
Hassan Salem, Peter H. W. Biedermann, and Takema Fukatsu
- Subjects
Coleoptera ,insects ,beetles ,endosymbionts ,gut symbionts ,ectosymbionts ,Microbiology ,QR1-502 - Published
- 2023
- Full Text
- View/download PDF
10. Mechanisms Underpinning Morphogenesis of a Symbiotic Organ Specialized for Hosting an Indispensable Microbial Symbiont in Stinkbugs
- Author
-
Sayumi Oishi, Toshiyuki Harumoto, Keiko Okamoto-Furuta, Minoru Moriyama, and Takema Fukatsu
- Subjects
Plautia stali ,stinkbug ,Pantoea symbiont ,midgut symbiotic organ ,visceral muscle fiber ,morphogenesis ,Microbiology ,QR1-502 - Abstract
ABSTRACT Microbial mutualists are pivotal for insect adaptation, which often entails the evolution of elaborate organs for symbiosis. Addressing what mechanisms underpin the development of such organs is of evolutionary interest. Here, we investigated the stinkbug Plautia stali, whose posterior midgut is transformed into a specialized symbiotic organ. Despite being a simple tube in newborns, it developed numerous crypts in four rows, whose inner cavity hosts a specific bacterial symbiont, during the 1st to 2nd nymphal instar stages. Visualization of dividing cells revealed that active cell proliferation was coincident with the crypt formation, although spatial patterns of the proliferating cells did not reflect the crypt arrangement. Visualization of visceral muscles in the midgut, consisting of circular muscles and longitudinal muscles, uncovered that, strikingly, circular muscles exhibited a characteristic arrangement running between the crypts specifically in the symbiotic organ. Even in the early 1st instar stage, when no crypts were seen, two rows of epithelial areas delineated by bifurcated circular muscles were identified. In the 2nd instar stage, crossing muscle fibers appeared and connected the adjacent circular muscles, whereby the midgut epithelium was divided into four rows of crypt-to-be areas. The crypt formation proceeded even in aposymbiotic nymphs, revealing the autonomous nature of the crypt development. We propose a mechanistic model of crypt formation wherein the spatial arrangement of muscle fibers and the proliferation of epithelial cells underpin the formation of crypts as midgut evaginations. IMPORTANCE Diverse organisms are associated with microbial mutualists, in which specialized host organs often develop for retaining the microbial partners. In light of the origin of evolutionary novelties, it is important to understand what mechanisms underpin the elaborate morphogenesis of such symbiotic organs, which must have been shaped through interactions with the microbial symbionts. Using the stinkbug Plautia stali as a model, we demonstrated that visceral muscular patterning and proliferation of intestinal epithelial cells during the early nymphal stages are involved in the formation of numerous symbiont-harboring crypts arranged in four rows in the posterior midgut to constitute the symbiotic organ. Strikingly, the crypt formation occurred normally even in symbiont-free nymphs, revealing that the crypt development proceeds autonomously. These findings suggest that the crypt formation is deeply implemented into the normal development of P. stali, which must reflect the considerably ancient evolutionary origin of the midgut symbiotic organ in stinkbugs.
- Published
- 2023
- Full Text
- View/download PDF
11. A mucin protein predominantly expressed in the female-specific symbiotic organ of the stinkbug Plautia stali
- Author
-
Minoru Moriyama, Toshinari Hayashi, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Abstract Diverse insects are obligatorily associated with microbial symbionts, wherein the host often develops special symbiotic organs and vertically transmits the symbiont to the next generation. What molecular factors underpin the host-symbiont relationship is of great interest but poorly understood. Here we report a novel protein preferentially produced in a female-specific symbiotic organ of the stinkbug Plautia stali, whose posterior midgut develops numerous crypts to host a Pantoea-allied bacterial mutualist. In adult females, several posteriormost crypts are conspicuously enlarged, presumably specialized for vertical symbiont transmission. We detected conspicuous protein bands specific to the female’s swollen crypts by gel electrophoresis, and identified them as representing a novel mucin-like glycoprotein. Histological inspections confirmed that the mucin protein is localized to the female’s swollen crypts, coexisting with a substantial population of the symbiotic bacteria, and excreted from the swollen crypts to the midgut main tract together with the symbiotic bacteria. Using RNA interference, we successfully suppressed production of the mucin protein in adult females of P. stali. However, although the mucin protein was depleted, the symbiont population persisted in the swollen crypts, and vertical symbiont transmission to the next generation occurred. Possible biological roles and evolutionary trajectory of the symbiosis-related mucin protein are discussed.
- Published
- 2022
- Full Text
- View/download PDF
12. Linoleic acid as corpse recognition signal in a social aphid
- Author
-
Harunobu Shibao, Mayako Kutsukake, Shigeru Matsuyama, and Takema Fukatsu
- Subjects
Social aphid ,Soldier caste ,Tuberaphis styraci ,Corpse recognition signal ,Death pheromone ,Fatty acid ,Zoology ,QL1-991 - Abstract
Abstract Social insect colonies constantly produce dead insects, which cause sanitary problems and potentially foster deadly pathogens and parasites. Hence, many social insects have evolved a variety of hygienic behaviors to remove cadavers from the colonies. To that end, they have to discriminate dead insects from live ones, where chemical cues should play important roles. In ants, bees and termites, such corpse recognition signals, also referred to as “death pheromones” or “necromones”, have been identified as fatty acids, specifically oleic acid and/or linoleic acid. Meanwhile, there has been no such report on social aphids. Here we attempted to identify the “death pheromone” of a gall-forming social aphid with second instar soldiers, Tuberaphis styraci, by making use of an artificial diet rearing system developed for this species. On the artificial diet plates, soldiers exhibited the typical cleaning behavior, pushing colony wastes with their heads continuously, against dead aphids but not against live aphids. GC-MS and GC-FID analyses revealed a remarkable increase of linoleic acid on the body surface of the dead aphids in comparison with the live aphids. When glass beads coated with either linoleic acid or body surface extract of the dead aphids were placed on the artificial diet plates, soldiers exhibited the cleaning behavior against the glass beads. A series of behavioral assays showed that (i) soldiers exhibit the cleaning behavior more frequently than non-soldiers, (ii) young soldiers perform the cleaning behavior more frequently than old soldiers, and (iii) the higher the concentration of linoleic acid is, the more active cleaning behavior is induced. Analysis of the lipids extracted from the aphids revealed that linoleic acid is mainly derived from phospholipids that constitute the cell membranes. In conclusion, we identified linoleic acid as the corpse recognition factor of the social aphid T. styraci. The commonality of the death pheromones across the divergent social insect groups (Hymenoptera, Blattodea and Hemiptera) highlights that these unsaturated fatty acids are generally produced by enzymatic autolysis of cell membranes after death and therefore amenable to utilization as a reliable signal of dead insects.
- Published
- 2022
- Full Text
- View/download PDF
13. Spiroplasma as facultative bacterial symbionts of stinkbugs
- Author
-
Shigeyuki Kakizawa, Takahiro Hosokawa, Kohei Oguchi, Kaori Miyakoshi, and Takema Fukatsu
- Subjects
Spiroplasma ,symbiosis ,bacteria ,stinkbug ,Hemiptera ,Pentatomidae ,Microbiology ,QR1-502 - Abstract
Many insects are associated with facultative symbiotic bacteria, and their infection prevalence provides an important clue to understand the biological impact of such microbial associates. Here we surveyed diverse stinkbugs representing 13 families, 69 genera, 97 species and 468 individuals for Spiroplasma infection. Diagnostic PCR detection revealed that 4 families (30.8%), 7 genera (10.1%), 11 species (11.3%) and 21 individuals (4.5%) were Spiroplasma positive. All the 21 stinkbug samples with Spiroplasma infection were subjected to PCR amplification and sequencing of Spiroplasma’s 16S rRNA gene. Molecular phylogenetic analysis uncovered that the stinkbug-associated Spiroplasma symbionts were placed in three distinct clades in the Spiroplasmataceae, highlighting multiple evolutionary origins of the stinkbug-Spiroplasma associations. The Spiroplasma phylogeny did not reflect the host stinkbug phylogeny, indicating the absence of host-symbiont co-speciation. On the other hand, the Spiroplasma symbionts associated with the same stinkbug family tended to be related to each other, suggesting the possibility of certain levels of host-symbiont specificity and/or ecological symbiont sharing. Amplicon sequencing analysis targeting bacterial 16S rRNA gene, FISH visualization of the symbiotic bacteria, and rearing experiments of the host stinkbugs uncovered that the Spiroplasma symbionts are generally much less abundant in comparison with the primary gut symbiotic bacteria, localized to various tissues and organs at relatively low densities, and vertically transmitted to the offspring. On the basis of these results, we conclude that the Spiroplasma symbionts are, in general, facultative bacterial associates of low infection prevalence that are not essential but rather commensalistic for the host stinkbugs, like the Spiroplasma symbionts of fruit flies and aphids, although their impact on the host phenotypes should be evaluated in future studies.
- Published
- 2022
- Full Text
- View/download PDF
14. Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model
- Author
-
Minoru Moriyama and Takema Fukatsu
- Subjects
essential amino acids ,extracellular symbiosis ,gut bacterial symbiont ,nutritional mutualism ,phloem sap ,Physiology ,QP1-981 - Abstract
Plant sap is a nutritionally unbalanced diet that constitutes a challenge for insects that feed exclusively on it. Sap-sucking hemipteran insects generally overcome this challenge by harboring beneficial microorganisms in their specialized symbiotic organ, either intracellularly or extracellularly. Genomic information of these bacterial symbionts suggests that their primary role is to supply essential amino acids, but empirical evidence has been virtually limited to the intracellular symbiosis between aphids and Buchnera. Here we investigated the amino acid complementation by the extracellular symbiotic bacterium Ishikawaella harbored in the midgut symbiotic organ of the stinkbug Megacopta punctatissima. We evaluated amino acid compositions of the phloem sap of plants on which the insect feeds, as well as those of its hemolymph, whole body hydrolysate, and excreta. The results highlighted that the essential amino acids in the diet are apparently insufficient for the stinkbug development. Experimental symbiont removal caused severe shortfalls of some essential amino acids, including branched-chain and aromatic amino acids. In vitro culturing of the isolated symbiotic organ demonstrated that hemolymph-circulating metabolites, glutamine and trehalose, efficiently fuel the production of essential amino acids. Branched-chain amino acids and aromatic amino acids are the ones preferentially synthesized despite the symbiont’s synthetic capability of all essential amino acids. These results indicate that the symbiont-mediated amino acid compensation is quantitatively optimized in the stinkbug-Ishikawaella gut symbiotic association as in the aphid-Buchnera intracellular symbiotic association. The convergence of symbiont functions across distinct nutritional symbiotic systems provides insight into how host-symbiont interactions have been shaped over evolutionary time.
- Published
- 2022
- Full Text
- View/download PDF
15. Endosymbiotic bacteria of the boar louse Haematopinus apri (Insecta: Phthiraptera: Anoplura)
- Author
-
Yudai Nishide, Kohei Oguchi, Maria Murakami, Minoru Moriyama, Ryuichi Koga, and Takema Fukatsu
- Subjects
Haematopinus apri ,boar louse ,Haematopinus suis ,hog louse ,symbiont ,evolution ,Microbiology ,QR1-502 - Abstract
Insects exclusively feeding on vertebrate blood are usually dependent on symbiotic bacteria for provisioning of B vitamins. Among them, sucking lice are prominent in that their symbiotic bacteria as well as their symbiotic organs exhibit striking diversity. Here we investigated the bacterial diversity associated with the boar louse Haematopinus apri in comparison with the hog louse Haematopinus suis. Amplicon sequencing analysis identified the primary endosymbiont predominantly detected from all populations of H. apri with some minor secondary bacterial associates. Sequencing and phylogenetic analysis of bacterial 16S rRNA gene confirmed that the endosymbionts of the boar louse H. apri, the hog louse H. suis and the cattle louse Haematopinus eurysternus form a distinct clade in the Gammaproteobacteria. The endosymbiont clade of Haematopinus spp. was phylogenetically distinct from the primary endosymbionts of other louse lineages. Fluorescence in situ hybridization visualized the endosymbiont localization within midgut epithelium, ovarial ampulla and posterior oocyte of H. apri, which were substantially the same as the endosymbiont localization previously described in H. suis and H. eurysternus. Mitochondrial haplotype analysis revealed that, although the domestic pig was derived from the wild boar over the past 8,000 years of human history, the populations of H. apri constituted a distinct sister clade to the populations of H. suis. Based on these results, we discussed possible evolutionary trajectories of the boar louse, the hog louse and their endosymbionts in the context of swine domestication. We proposed ‘Candidatus Haematopinicola symbiotica’ for the distinct clade of the endosymbionts of Haematopinus spp.
- Published
- 2022
- Full Text
- View/download PDF
16. Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis
- Author
-
Julian Simon Thilo Kiefer, Suvdanselengee Batsukh, Eugen Bauer, Bin Hirota, Benjamin Weiss, Jürgen C. Wierz, Takema Fukatsu, Martin Kaltenpoth, and Tobias Engl
- Subjects
Biology (General) ,QH301-705.5 - Abstract
Kiefer et al. sequence the metagenome of the sawtoothed grain beetle and demonstrate how its symbiont mechanistically helps the host by providing tyrosine. Providing this amino acid in the pupal stage and early adulthood supports cuticle biosynthesis and highlights implications regarding the use of glyphosate for insect populations harboring bacterial endosymbionts.
- Published
- 2021
- Full Text
- View/download PDF
17. Comprehensive comparative morphology and developmental staging of final instar larvae toward metamorphosis in the insect order Odonata
- Author
-
Genta Okude, Takema Fukatsu, and Ryo Futahashi
- Subjects
Medicine ,Science - Abstract
Abstract The order Odonata (dragonflies and damselflies) is among the most ancestral groups of winged insects with drastic morphological changes upon metamorphosis, and thus important for understanding evo-devo aspects of insects. However, basic developmental descriptions of Odonata have been scarce. In an attempt to establish the foundation of developmental and experimental biology of Odonata, we present an unprecedentedly comprehensive survey of dragonflies and damselflies, in total 158 larvae representing 49 species and 14 families, wherein morphological changes of all the final and/or penultimate instar larvae were photographed and monitored everyday. Although their morphology and development were diverse, we consistently identified two visually recognizable morphogenetic events in the final larval instar, namely start of wing expansion and onset of melanization on the wing sheaths, thereby categorizing the final instar into three stages. While the duration of the first stage ranged 4–66 days across diverse Odonata species, the second or third stages exhibited relatively small variation ranging 3–22 days or 1–8 days, respectively, probably reflecting the steady and irreversible metamorphosis process after stage 2. We also described other characteristic morphological changes during the larval development, although they were observed only in some Odonata species and lineages.
- Published
- 2021
- Full Text
- View/download PDF
18. Temporal division of labor in an aphid social system
- Author
-
Harunobu Shibao, Mayako Kutsukake, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Abstract Temporal division of labor, or age polyethism, in which altruistic caste individuals change their tasks with aging, is widely found in bees and ants (Hymenoptera) and also in other social insects. Here we report the discovery of elaborate age polyethism in a social aphid (Hemiptera). Tuberaphis styraci is a gall-forming aphid in which monomorphic first instar nymphs differentiate into normal nymphs and soldiers upon second instar molt. Soldiers neither grow nor reproduce but perform gall cleaning and colony defense. Using an artificial diet rearing system, we collected age-defined groups of soldiers and monitored their social behaviors. We observed that young soldiers tend to clean whereas old soldiers preferentially attack, thereby verifying age-dependent task switching from housekeeping to defense. Strategic sampling, age estimation and behavioral observation of soldiers from natural galls revealed that (1) young cleaning soldiers tend to inhabit upper gall regions with adult insects, (2) old attacking soldiers tend to be distributed in lower gall regions, particularly around the gall openings, and (3) the gall structure is linked to intra-nest movement, aging and task switching of soldiers in an adaptive manner. These results highlight an evolutionary parallelism comparable to the sophisticated temporal division of labor observed in honeybee colonies.
- Published
- 2021
- Full Text
- View/download PDF
19. Perplexing dynamics of Wolbachia proteins for cytoplasmic incompatibility
- Author
-
Toshiyuki Harumoto and Takema Fukatsu
- Subjects
Biology (General) ,QH301-705.5 - Abstract
The mechanism of symbiont-induced cytoplasmic incompatibility (CI) has been a long-standing mystery. A new study on Wolbachia’s Cif proteins in PLOS Biology provides supportive evidence for the “Host modification model,” although the alternative “Toxin–antidote model” is still in the running. The mechanism of symbiont-induced cytoplasmic incompatibility has been a long-lasting mystery. This Primer explores a new study on Wolbachia’s Cif proteins in PLOS Biology that provides supportive evidence for the “Host-Modification Model,” although the alternative “Toxin-Antidote Model” is still in the running.
- Published
- 2022
20. Bacterial symbionts support larval sap feeding and adult folivory in (semi-)aquatic reed beetles
- Author
-
Frank Reis, Roy Kirsch, Yannick Pauchet, Eugen Bauer, Lisa Carolin Bilz, Kayoko Fukumori, Takema Fukatsu, Gregor Kölsch, and Martin Kaltenpoth
- Subjects
Science - Abstract
Symbiotic microbes in insects can enable their hosts to access untapped nutritional resources. Here, the authors show that symbiotic bacteria in reed beetles can provide essential amino acids to sap-feeding larvae and help leaf-feeding adults to degrade pectin, respectively.
- Published
- 2020
- Full Text
- View/download PDF
21. Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae)
- Author
-
Kayoko Fukumori, Kohei Oguchi, Hiroshi Ikeda, Tadashi Shinohara, Masahiko Tanahashi, Minoru Moriyama, Ryuichi Koga, and Takema Fukatsu
- Subjects
tortoise leaf beetle ,Cassidinae ,symbiotic bacteria ,Stammera capleta ,symbiotic organ ,symbiont loss ,Microbiology ,QR1-502 - Abstract
ABSTRACT Diverse insects host specific microbial symbionts that play important roles for their growth, survival, and reproduction. They often develop specialized symbiotic organs for harboring the microbial partners. While such intimate associations tend to be stably maintained over evolutionary time, the microbial symbionts may have been lost or replaced occasionally. How symbiont acquisitions, replacements, and losses are linked to the development of the host’s symbiotic organs is an important but poorly understood aspect of microbial symbioses. Cassidine leaf beetles are associated with a specific gammaproteobacterial lineage, Stammera, whose reduced genome is streamlined for producing pectin-degrading enzymes to assist the host’s digestion of food plants. We investigated the symbiotic system of 24 Japanese cassidine species and found that (i) most species harbored Stammera within paired symbiotic organs located at the foregut-midgut junction, (ii) the host phylogeny was largely congruent with the symbiont phylogeny, indicating stable host-symbiont association over evolutionary time, (iii) meanwhile, the symbiont was not detected in three distinct host lineages, uncovering recurrent losses of the ancient microbial mutualist, (iv) the symbiotic organs were vestigial but present in the symbiont-free lineages, indicating evolutionary persistence of the symbiotic organs even in the absence of the symbiont, and (v) the number of the symbiotic organs was polymorphic among the cassidine species, either two or four, unveiling a dynamic evolution of the host organs for symbiosis. These findings are discussed as to what molecular mechanisms and evolutionary trajectories underpin the recurrent symbiont losses and the morphogenesis of the symbiotic organs in the herbivorous insect group. IMPORTANCE Insects represent the biodiversity of the terrestrial ecosystem, and their prosperity is attributable to their association with symbiotic microorganisms. By sequestering microbial functionality into their bodies, organs, tissues, or cells, diverse insects have successfully exploited otherwise inaccessible ecological niches and resources, including herbivory enabled by utilization of indigestible plant cell wall components. In leaf beetles of the subfamily Cassininae, an ancient symbiont lineage, Stammera, whose genome is extremely reduced and specialized for encoding pectin-degrading enzymes, is hosted in gut-associated symbiotic organs and contributes to the host’s food plant digestion. Here, we demonstrate that multiple symbiont losses and recurrent structural switching of the symbiotic organs have occurred in the evolutionary course of cassidine leaf beetles, which sheds light on the evolutionary and developmental dynamics of the insect’s symbiotic organs and provides a model system to investigate how microbial symbionts affect the host’s development and morphogenesis and vice versa.
- Published
- 2022
- Full Text
- View/download PDF
22. Morphogenesis and development of midgut symbiotic organ of the stinkbug Plautia stali (Hemiptera: Pentatomidae)
- Author
-
Sayumi Oishi, Minoru Moriyama, Ryuichi Koga, and Takema Fukatsu
- Subjects
Stinkbug ,Plautia stali ,Gut ,Symbiotic bacteria ,Pantoea ,Symbiotic organ ,Zoology ,QL1-991 - Abstract
Abstract Diverse insects are intimately associated with microbial symbionts, which play a variety of biological roles in their adaptation to and survival in the natural environment. Such insects often possess specialized organs for hosting the microbial symbionts. What developmental processes and mechanisms underlie the formation of the host organs for microbial symbiosis is of fundamental biological interest but poorly understood. Here we investigate the morphogenesis of the midgut symbiotic organ and the process of symbiont colonization therein during the developmental course of the stinkbug Plautia stali. Upon hatching, the midgut is a simple and smooth tube. Subsequently, symbiont colonization to the posterior midgut occurs, and thickening and folding of the midgut epithelium proceed during the first instar period. By the second instar, rudimentary crypts have formed, and their inner cavities are colonized by the symbiotic bacteria. From the second instar to the fourth instar, while the alimentary tract grows and the posterior midgut is established as the symbiotic organ with numerous crypts, the anterior midgut and the posterior midgut are structurally and functionally isolated by a strong constriction in the middle. By the early fifth instar, the midgut symbiotic organ attains the maximal length, but toward the mid fifth instar, the basal region of each crypt starts to constrict and narrow, which deforms the midgut symbiotic organ as a whole into a shorter, thicker and twisted shape. By the late fifth instar to adulthood, the crypts are constricted off, by which the symbiotic bacteria are confined in the crypt cavities and isolated from the midgut main tract, and concurrently, the strong midgut constriction in the middle becomes loose and open, by which the food flow from the anterior midgut to the posterior midgut recovers. This study provides the most detailed and comprehensive descriptions ever reported on the morphogenesis of the symbiotic organ and the process of symbiont colonization in an obligatory insect-bacterium gut symbiotic system. Considering that P. stali is recently emerging as a useful model system for experimentally studying the intimate insect-microbe gut symbiosis, the knowledge obtained in this study establishes the foundation for the further development of this research field.
- Published
- 2019
- Full Text
- View/download PDF
23. The Long and Winding Road for Symbiont and Yolk Protein to Host Oocyte
- Author
-
Takema Fukatsu
- Subjects
Microbiology ,QR1-502 - Abstract
Many insects are intimately associated with microbial symbionts, which are passed to developing oocytes in the maternal body for ensuring vertical transmission to the next generation. Previous studies uncovered that some symbionts utilize preexisting host’s molecular and cellular machineries for targeting oocytes.
- Published
- 2021
- Full Text
- View/download PDF
24. Effectiveness of orally-delivered double-stranded RNA on gene silencing in the stinkbug Plautia stali.
- Author
-
Yudai Nishide, Daisuke Kageyama, Yoshiaki Tanaka, Kakeru Yokoi, Akiya Jouraku, Ryo Futahashi, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Development of a reliable method for RNA interference (RNAi) by orally-delivered double-stranded RNA (dsRNA) is potentially promising for crop protection. Considering that RNAi efficiency considerably varies among different insect species, it is important to seek for the practical conditions under which dsRNA-mediated RNAi effectively works against each pest insect. Here we investigated RNAi efficiency in the brown-winged green stinkbug Plautia stali, which is notorious for infesting various fruits and crop plants. Microinjection of dsRNA into P. stali revealed high RNAi efficiency-injection of only 30 ng dsRNA into last-instar nymphs was sufficient to knockdown target genes as manifested by their phenotypes, and injection of 300 ng dsRNA suppressed the gene expression levels by 80% to 99.9%. Knockdown experiments by dsRNA injection showed that multicopper oxidase 2 (MCO2), vacuolar ATPase (vATPase), inhibitor of apoptosis (IAP), and vacuolar-sorting protein Snf7 are essential for survival of P. stali, as has been demonstrated in other insects. By contrast, P. stali exhibited very low RNAi efficiency when dsRNA was orally administered. When 1000 ng/μL of dsRNA solution was orally provided to first-instar nymphs, no obvious phenotypes were observed. Consistent with this, RT-qPCR showed that the gene expression levels were not affected. A higher concentration of dsRNA (5000 ng/μL) induced mortality in some cohorts, and the gene expression levels were reduced to nearly 50%. Simultaneous oral administration of dsRNA against potential RNAi blocker genes did not improve the RNAi efficiency of the target genes. In conclusion, P. stali shows high sensitivity to RNAi with injected dsRNA but, unlike the allied pest stinkbugs Halyomorpha halys and Nezara viridula, very low sensitivity to RNAi with orally-delivered dsRNA, which highlights the varied sensitivity to RNAi across different species and limits the applicability of the molecular tool for controlling this specific insect pest.
- Published
- 2021
- Full Text
- View/download PDF
25. Bacteriome-Associated Endosymbiotic Bacteria of Nosodendron Tree Sap Beetles (Coleoptera: Nosodendridae)
- Author
-
Bin Hirota, Xian-Ying Meng, and Takema Fukatsu
- Subjects
symbiosis ,bacteria ,bacteriocyte ,bacteriome ,beetle ,tree sap ,Microbiology ,QR1-502 - Abstract
The family Nosodendridae is a small group of tree sap beetles with only 91 described species representing three genera from the world. In 1930s, bacteria-harboring symbiotic organs, called bacteriomes, were briefly described in a European species Nosodendron fasciculare. Since then, however, no studies have been conducted on the nosodendrid endosymbiosis for decades. Here we investigated the bacteriomes and the endosymbiotic bacteria of Nosodendron coenosum and Nosodendron asiaticum using molecular phylogenetic and histological approaches. In adults and larvae, a pair of slender bacteriomes were found along both sides of the midgut. The bacteriomes consisted of large bacteriocytes at the center and flat sheath cells on the surface. Fluorescence in situ hybridization detected preferential localization of the endosymbiotic bacteria in the cytoplasm of the bacteriocytes. In reproductive adult females, the endosymbiotic bacteria were also detected at the infection zone in the ovarioles and on the surface of growing oocytes, indicating vertical symbiont transmission via ovarial passage. Transmission electron microscopy unveiled bizarre structural features of the bacteriocytes, whose cytoplasm exhibited degenerate cytology with deformed endosymbiont cells. Molecular phylogenetic analysis revealed that the nosodendrid endosymbionts formed a distinct clade in the Bacteroidetes. The nosodendrid endosymbionts were the most closely related to the bacteriome endosymbionts of bostrichid powderpost beetles and also allied to the bacteriome endosymbionts of silvanid grain beetles, uncovering an unexpected endosymbiont relationship across the unrelated beetle families Nosodendridae, Bostrichidae and Silvanidae. Host-symbiont co-evolution and presumable biological roles of the endosymbiotic bacteria are discussed.
- Published
- 2020
- Full Text
- View/download PDF
26. Evolutionary Relationship Between Platycerus Stag Beetles and Their Mycangium-Associated Yeast Symbionts
- Author
-
Kôhei Kubota, Kana Watanabe, Xue-Jiao Zhu, Kako Kawakami, Masahiko Tanahashi, and Takema Fukatsu
- Subjects
co-evolutionary association ,Scheffersomyces ,mycangium ,ITS ,IGS ,Japan ,Microbiology ,QR1-502 - Abstract
Adult females of stag beetles (Coleoptera: Lucanidae) possess an ovipositor-associated mycangium for conveying symbiotic microorganisms. In most lucanid species, their mycangium contains yeast symbionts of the genus Scheffersomyces Kurtzman and Suzuki that are known for their xylose-fermenting capability. The lucanid genus Platycerus Geoffroy, 1762 is a group of small blue stag beetles, in which ten Japanese species constitute a monophyletic clade. Here we examined the evolutionary relationships of these Japanese Platycerus species and their yeast symbionts, together with a Korean Platycerus species and other lucanid species as outgroup taxa. Based on the internal transcribed spacer (ITS) and the intergenic spacer (IGS) sequences, the yeast symbionts of all Platycerus species were closely related to each other and formed a monophyletic clade. There is no variation in ITS sequences of the yeast symbionts of the Japanese Platycerus species. Based on IGS sequences, the yeast symbionts formed clusters that largely reflected the geographic distribution of the host insects, being shared by sympatric Platycerus species except for P. delicatulus Lewis, 1883 and P. viridicuprus Kubota & Otobe, The symbiont phylogeny was globally not congruent with the host COI-based phylogeny, although some local congruences were observed. Statistically significant correlations were detected between the genetic distances of COI sequences of the host insects and those of IGS sequences of the yeast symbionts in Japan. These results suggest that, at least to some extent, the host insects and the yeast symbionts may have experienced co-evolutionary associations. While the Japanese Platycerus species formed a monophyletic clade in the COI phylogeny, the yeast symbionts of Japanese P. viridicuprus were very closely related to those of Korean P. hongwonpyoi Imura & Choe, 1989, suggesting the possibility that a recent secondary contact of the two beetle species during a marine withdrawal, e.g., in the last glacial period, might have resulted in an inter-specific horizontal transmission of the yeast symbiont.
- Published
- 2020
- Full Text
- View/download PDF
27. Opportunities and Challenges to Microbial Symbiosis Research in the Microbiome Era
- Author
-
Suhelen Egan, Takema Fukatsu, and M. Pilar Francino
- Subjects
microbiome ,symbiosis ,microbial interactions ,microbiota (microorganism) ,host-microbe association ,Microbiology ,QR1-502 - Published
- 2020
- Full Text
- View/download PDF
28. Reduced Genome of the Gut Symbiotic Bacterium 'Candidatus Benitsuchiphilus tojoi' Provides Insight Into Its Possible Roles in Ecology and Adaptation of the Host Insect
- Author
-
Shakhinur Islam Mondal, Arzuba Akter, Ryuichi Koga, Takahiro Hosokawa, Mehmet Dayi, Kazunori Murase, Ryusei Tanaka, Shuji Shigenobu, Takema Fukatsu, and Taisei Kikuchi
- Subjects
stinkbug symbiont ,diapause ,Parastrachia japonensis ,Gammaproteobacteria ,carotenoid synthesis ,uric acid ,Microbiology ,QR1-502 - Abstract
Diverse animals, including insects, harbor microbial symbionts within their gut, body cavity, or cells. The subsocial parastrachiid stinkbug Parastrachia japonensis is well-known for its peculiar ecological and behavioral traits, including its prolonged non-feeding diapause period and maternal care of eggs/nymphs in an underground nest. P. japonensis harbors a specific bacterial symbiont within the gut cavity extracellularly, which is vertically inherited through maternal excretion of symbiont-containing white mucus. Thus far, biological roles of the symbiont in the host lifecycle has been little understood. Here we sequenced the genome of the uncultivable gut symbiont “Candidatus Benitsuchiphilus tojoi.” The symbiont has an 804 kb circular chromosome encoding 606 proteins and a 14.5 kb plasmid encoding 13 proteins. Phylogenetic analysis indicated that the bacterium is closely related to other obligate insect symbionts belonging to the Gammaproteobacteria, including Buchnera of aphids and Blochmannia of ants, and the most closely related to Ishikawaella, an extracellular gut symbiont of plataspid stinkbugs. These data suggested that the symbiont genome has evolved like highly reduced gamma-proteobacterial symbiont genomes reported from a variety of insects. The presence of genes involved in biosynthesis pathways for amino acids, vitamins, and cofactors in the genome implicated the symbiont as a nutritional mutualist, supplementing essential nutrients to the host. Interestingly, the symbiont’s plasmid encoded genes for thiamine and carotenoid synthesis pathways, suggesting the possibility of additional functions of the symbiont for protecting the host against oxidative stress and DNA damage. Finally, possible involvement of the symbiont in uric acid metabolism during diapause is discussed.
- Published
- 2020
- Full Text
- View/download PDF
29. Author Correction: Inhibition of a nutritional endosymbiont by glyphosate abolishes mutualistic benefit on cuticle synthesis in Oryzaephilus surinamensis
- Author
-
Julian Simon Thilo Kiefer, Suvdanselengee Batsukh, Eugen Bauer, Bin Hirota, Benjamin Weiss, Jürgen C. Wierz, Takema Fukatsu, Martin Kaltenpoth, and Tobias Engl
- Subjects
Biology (General) ,QH301-705.5 - Published
- 2021
- Full Text
- View/download PDF
30. Novel bacteriocyte-associated pleomorphic symbiont of the grain pest beetle Rhyzopertha dominica (Coleoptera: Bostrichidae)
- Author
-
Genta Okude, Ryuichi Koga, Toshinari Hayashi, Yudai Nishide, Xian-Ying Meng, Naruo Nikoh, Akihiro Miyanoshita, and Takema Fukatsu
- Subjects
Rhyzopertha dominica ,Lesser grain borer ,Bacterial symbiont ,Bacteroidetes ,Bacteriocyte ,Pleomorphism ,Zoology ,QL1-991 - Abstract
Abstract Background The lesser grain borer Rhyzopertha dominica (Coleoptera: Bostrichidae) is a stored-product pest beetle. Early histological studies dating back to 1930s have reported that R. dominica and other bostrichid species possess a pair of oval symbiotic organs, called the bacteriomes, in which the cytoplasm is densely populated by pleomorphic symbiotic bacteria of peculiar rosette-like shape. However, the microbiological nature of the symbiont has remained elusive. Results Here we investigated the bacterial symbiont of R. dominica using modern molecular, histological, and microscopic techniques. Whole-mount fluorescence in situ hybridization specifically targeting symbiotic bacteria consistently detected paired bacteriomes, in which the cytoplasm was full of pleomorphic bacterial cells, in the abdomen of adults, pupae and larvae, confirming previous histological descriptions. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont constituted a distinct bacterial lineage allied to a variety of insect-associated endosymbiont clades, including Uzinura of diaspidid scales, Walczuchella of giant scales, Brownia of root mealybugs, Sulcia of diverse hemipterans, and Blattabacterium of roaches. The symbiont gene exhibited markedly AT-biased nucleotide composition and significantly accelerated molecular evolution, suggesting degenerative evolution of the symbiont genome. The symbiotic bacteria were detected in oocytes and embryos, confirming continuous host–symbiont association and vertical symbiont transmission in the host life cycle. Conclusions We demonstrate that the symbiont of R. dominica constitutes a novel bacterial lineage in the Bacteroidetes. We propose that reductive evolution of the symbiont genome may be relevant to the amorphous morphology of the bacterial cells via disruption of genes involved in cell wall synthesis and cell division. Genomic and functional aspects of the host-symbiont relationship deserve future studies.
- Published
- 2017
- Full Text
- View/download PDF
31. Grand Challenges to Launching an Ideal Platform for Publishing Microbe-Insect Symbiosis Studies
- Author
-
Takema Fukatsu
- Subjects
symbiosis ,microbe ,insect ,publishing ,grand challenge ,Microbiology ,QR1-502 - Published
- 2019
- Full Text
- View/download PDF
32. Plant Manipulation by Gall-Forming Social Aphids for Waste Management
- Author
-
Mayako Kutsukake, Keigo Uematsu, and Takema Fukatsu
- Subjects
social aphid ,gall ,manipulation ,waste management ,plant cuticle ,trichome ,Plant culture ,SB1-1110 - Abstract
Many social aphids form spectacular galls on their host plants, in which hundreds to thousands of aphids thrive for several months or even for over a year. Here, in addition to colony defense against natural enemies, waste disposal is an important task for the gall dwellers to sustain their social life. In open galls, soldier nymphs actively clean colony wastes such as honeydew droplets, cast-off skins, and cadavers by pushing them with their head out of the gall opening. In the gall, the excreted honeydew is coated with aphid-derived powdery wax to form “honeydew balls,” which prevents the aphids from wetting and drowning with their own excretion. How the aphids deal with the accumulated honeydew in closed galls has been a mystery. Here, we report a novel gall-cleaning mechanism: the gall inner surface absorbs and removes the liquid waste through the plant vascular system. Such a plant-mediated water-absorbing property is commonly found in aphids forming closed galls, which must have evolved at least three times independently. By contrast, the inner surface of open galls is wax-coated and water-repelling, and in some cases, the inner surface is covered with dense trichomes, which further enhance the water repellency. In conclusion, gall-forming aphids induce novel plant phenotypes to manage the waste problems by manipulating plant morphogenesis and physiology for their own sake. This review describes our recent studies on waste management strategies by gall-forming social aphids and discusses future directions of this research topic.
- Published
- 2019
- Full Text
- View/download PDF
33. Dimorphic Sessile Apterae of the Aphid Neothoracaphis glaucae (Hemiptera) on the Evergreen Oak Quercus glauca
- Author
-
Shigeyuki Aoki, Utako Kurosu, Keigo Uematsu, Takema Fukatsu, and Mayako Kutsukake
- Subjects
Zoology ,QL1-991 - Abstract
Species of the aphid genus Neothoracaphis (Hormaphidinae, Nipponaphidini) produce tiny, sessile, sclerotized apterous adults on leaves of oaks. Among Japanese species, “N. glaucae” has been known to have the largest, ovate apterae, while “N. saramaoensis” has smaller, elongated oval apterae on Quercus glauca. Through examining mitochondrial DNA sequences of Japanese Neothoracaphis species, we found that the two are the same species with a clear dimorphism. Neothoracaphis glaucae (Takahashi) was adopted as the valid name for the species. In Tokyo, Japan, apterae of the smaller type are abundantly seen throughout the year, and those of the larger type are generally few in number from summer to autumn. Alates, which are supposed to be sexuparae, appear from November to January. Nymphs developing into the alates are covered with long, semitransparent, bristle-like wax filaments. We conclude that N. querciphaga, N. elongata, and N. yanonis are distinct species and that both the genus Neothoracaphis and the three Neothoracaphis species other than N. yanonis form monophyletic groups among Japanese Nipponaphidini species we have examined.
- Published
- 2019
- Full Text
- View/download PDF
34. Molecular basis of wax-based color change and UV reflection in dragonflies
- Author
-
Ryo Futahashi, Yumi Yamahama, Migaku Kawaguchi, Naoki Mori, Daisuke Ishii, Genta Okude, Yuji Hirai, Ryouka Kawahara-Miki, Kazutoshi Yoshitake, Shunsuke Yajima, Takahiko Hariyama, and Takema Fukatsu
- Subjects
Orthetrum albistylum ,Orthetrum melania ,Sympetrum darwinianum ,dragonfly ,UV reflection ,wax ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Many animals change their body color for visual signaling and environmental adaptation. Some dragonflies show wax-based color change and ultraviolet (UV) reflection, but the biochemical properties underlying the phenomena are totally unknown. Here we investigated the UV-reflective abdominal wax of dragonflies, thereby identifying very long-chain methyl ketones and aldehydes as unique and major wax components. Little wax was detected on young adults, but dense wax secretion was found mainly on the dorsal abdomen of mature males of Orthetrum albistylum and O. melania, and pruinose wax secretion was identified on the ventral abdomen of mature females of O. albistylum and Sympetrum darwinianum. Comparative transcriptomics demonstrated drastic upregulation of the ELOVL17 gene, a member of the fatty acid elongase gene family, whose expression reflected the distribution of very long-chain methyl ketones. Synthetic 2-pentacosanone, the major component of dragonfly’s wax, spontaneously formed light-scattering scale-like fine structures with strong UV reflection, suggesting its potential utility for biomimetics.
- Published
- 2019
- Full Text
- View/download PDF
35. Male-killing symbiont damages host’s dosage-compensated sex chromosome to induce embryonic apoptosis
- Author
-
Toshiyuki Harumoto, Hisashi Anbutsu, Bruno Lemaitre, and Takema Fukatsu
- Subjects
Science - Abstract
Symbiotic bacteria are able to interfere with host reproduction in ways that are detrimental to the host organism. Here the authors show that Spiroplasma induces DNA damage on the male X chromosome in Drosophila, causing sex-specific apoptosis.
- Published
- 2016
- Full Text
- View/download PDF
36. Genomic Insight into Symbiosis-Induced Insect Color Change by a Facultative Bacterial Endosymbiont, 'Candidatus Rickettsiella viridis'
- Author
-
Naruo Nikoh, Tsutomu Tsuchida, Taro Maeda, Katsushi Yamaguchi, Shuji Shigenobu, Ryuichi Koga, and Takema Fukatsu
- Subjects
Acyrthosiphon pisum ,Coxiella ,Legionella ,"Candidatus Rickettsiella viridis ,aphid ,facultative symbiont ,Microbiology ,QR1-502 - Abstract
ABSTRACT Members of the genus Rickettsiella are bacterial pathogens of insects and other arthropods. Recently, a novel facultative endosymbiont, “Candidatus Rickettsiella viridis,” was described in the pea aphid Acyrthosiphon pisum, whose infection causes a striking host phenotype: red and green genetic color morphs exist in aphid populations, and upon infection with the symbiont, red aphids become green due to increased production of green polycyclic quinone pigments. Here we determined the complete genome sequence of the symbiont. The 1.6-Mb circular genome, harboring some 1,400 protein-coding genes, was similar to the genome of entomopathogenic Rickettsiella grylli (1.6 Mb) but was smaller than the genomes of phylogenetically allied human pathogens Coxiella burnetii (2.0 Mb) and Legionella pneumophila (3.4 Mb). The symbiont’s metabolic pathways exhibited little complementarity to those of the coexisting primary symbiont Buchnera aphidicola, reflecting the facultative nature of the symbiont. The symbiont genome harbored neither polyketide synthase genes nor the evolutionarily allied fatty acid synthase genes that are suspected to catalyze the polycyclic quinone synthesis, indicating that the green pigments are produced not by the symbiont but by the host aphid. The symbiont genome retained many type IV secretion system genes and presumable effector protein genes, whose homologues in L. pneumophila were reported to modulate a variety of the host's cellular processes for facilitating infection and virulence. These results suggest the possibility that the symbiont is involved in the green pigment production by affecting the host’s metabolism using the secretion machineries for delivering the effector molecules into the host cells. IMPORTANCE Insect body color is relevant to a variety of biological aspects such as species recognition, sexual selection, mimicry, aposematism, and crypsis. Hence, the bacterial endosymbiont “Candidatus Rickettsiella viridis,” which alters aphid body color from red to green, is of ecological interest, given that different predators preferentially exploit either red- or green-colored aphids. Here we determined the complete 1.6-Mb genome of the symbiont and uncovered that, although the red-green color transition was ascribed to upregulated production of green polycyclic quinone pigments, the symbiont genome harbored few genes involved in the polycyclic quinone biosynthesis. Meanwhile, the symbiont genome contained type IV secretion system genes and presumable effector protein genes, whose homologues modulate eukaryotic cellular processes for facilitating infection and virulence in the pathogen Legionella pneumophila. We propose the hypothesis that the symbiont may upregulate the host’s production of polycyclic quinone pigments via cooption of secretion machineries and effector molecules for pathogenicity.
- Published
- 2018
- Full Text
- View/download PDF
37. A Novel, Extremely Elongated, and Endocellular Bacterial Symbiont Supports Cuticle Formation of a Grain Pest Beetle
- Author
-
Bin Hirota, Genta Okude, Hisashi Anbutsu, Ryo Futahashi, Minoru Moriyama, Xian-Ying Meng, Naruo Nikoh, Ryuichi Koga, and Takema Fukatsu
- Subjects
bacterial symbiont ,bacteriocyte ,bacteriome ,Bacteroidetes ,cuticle formation ,Oryzaephilus surinamensis ,Microbiology ,QR1-502 - Abstract
ABSTRACT The saw-toothed grain beetle, Oryzaephilus surinamensis (Silvanidae), is a cosmopolitan stored-product pest. Early studies on O. surinamensis in the 1930s described the presence of peculiar bacteriomes harboring endosymbiotic bacteria in the abdomen. Since then, however, the microbiological nature of the symbiont has been elusive. Here we investigated the endosymbiotic system of O. surinamensis in detail. In the abdomen of adults, pupae, and larvae, four oval bacteriomes were consistently identified, whose cytoplasm was full of extremely elongated tubular bacterial cells several micrometers wide and several hundred micrometers long. Molecular phylogenetic analysis identified the symbiont as a member of the Bacteroidetes, in which the symbiont was the most closely related to the endosymbiont of a grain pest beetle, Rhyzopertha dominica (Bostrichidae). The symbiont was detected in developing embryos, corroborating vertical symbiont transmission through host generations. The symbiont gene showed AT-biased nucleotide composition and accelerated molecular evolution, plausibly reflecting degenerative evolution of the symbiont genome. When the symbiont infection was experimentally removed, the aposymbiotic insects grew and reproduced normally, but exhibited a slightly but significantly more reddish cuticle and lighter body mass. These results indicate that the symbiont of O. surinamensis is not essential for the host’s growth and reproduction but contributes to the host’s cuticle formation. Symbiont genome sequencing and detailed comparison of fitness parameters between symbiotic and aposymbiotic insects under various environmental conditions will provide further insights into the symbiont’s biological roles for the stored-product pest. IMPORTANCE Some beetles notorious as stored-product pests possess well-developed symbiotic organs called bacteriomes for harboring specific symbiotic bacteria, although their biological roles have been poorly understood. Here we report a peculiar endosymbiotic system of a grain pest beetle, Oryzaephilus surinamensis, in which four oval bacteriomes in the abdomen are full of extremely elongated tubular bacterial cells. Experimental symbiont elimination did not hinder the host’s growth and reproduction, but resulted in emergence of reddish beetles, uncovering the symbiont’s involvement in host’s cuticle formation. We speculate that the extremely elongated symbiont cell morphology might be due to the degenerative symbiont genome deficient in bacterial cell division and/or cell wall formation, which highlights an evolutionary consequence of intimate host-symbiont coevolution.
- Published
- 2017
- Full Text
- View/download PDF
38. Collapse of Insect Gut Symbiosis under Simulated Climate Change
- Author
-
Yoshitomo Kikuchi, Akiyo Tada, Dmitry L. Musolin, Nobuhiro Hari, Takahiro Hosokawa, Kenji Fujisaki, and Takema Fukatsu
- Subjects
Microbiology ,QR1-502 - Abstract
ABSTRACT Global warming impacts diverse organisms not only directly but also indirectly via other organisms with which they interact. Recently, the possibility that elevated temperatures resulting from global warming may substantially affect biodiversity through disrupting mutualistic/parasitic associations has been highlighted. Here we report an experimental demonstration that global warming can affect a pest insect via suppression of its obligate bacterial symbiont. The southern green stinkbug Nezara viridula depends on a specific gut bacterium for its normal growth and survival. When the insects were reared inside or outside a simulated warming incubator wherein temperature was controlled at 2.5°C higher than outside, the insects reared in the incubator exhibited severe fitness defects (i.e., retarded growth, reduced size, yellowish body color, etc.) and significant reduction of symbiont population, particularly in the midsummer season, whereas the insects reared outside did not. Rearing at 30°C or 32.5°C resulted in similar defective phenotypes of the insects, whereas no adult insects emerged at 35°C. Notably, experimental symbiont suppression by an antibiotic treatment also induced similar defective phenotypes of the insects, indicating that the host’s defective phenotypes are attributable not to the heat stress itself but to the suppression of the symbiont population induced by elevated temperature. These results strongly suggest that high temperature in the midsummer season negatively affects the insects not directly but indirectly via the heat-vulnerable obligate bacterial symbiont, which highlights the practical relevance of mutualism collapse in this warming world. IMPORTANCE Climate change is among the biggest environmental issues in the contemporary world, and its impact on the biodiversity and ecosystem is not only of scientific interest but also of practical concern for the general public. On the basis of our laboratory data obtained under strictly controlled environmental conditions and our simulated warming data obtained in seminatural settings (elevated 2.5°C above the normal temperature), we demonstrate here that Nezara viridula, the notorious stinkbug pest, suffers serious fitness defects in the summer season under the simulated warming conditions, wherein high temperature acts on the insect not directly but indirectly via suppression of its obligate gut bacterium. Our finding highlights that heat-susceptible symbionts can be the “Achilles’ heel” of symbiont-dependent organisms under climate change conditions.
- Published
- 2016
- Full Text
- View/download PDF
39. Suppression of Bedbug's Reproduction by RNA Interference of Vitellogenin.
- Author
-
Minoru Moriyama, Takahiro Hosokawa, Masahiko Tanahashi, Naruo Nikoh, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Recent resurgence of the bedbug Cimex lectularius is a global problem on the public health. On account of the worldwide rise of insecticide-resistant bedbug populations, exploration of new approaches to the bedbug control and management is anticipated. In this context, gene silencing by RNA interference (RNAi) has been considered for its potential application to pest control and management, because RNAi enables specific suppression of target genes and thus flexible selection of target traits to be disrupted. In this study, in an attempt to develop a control strategy targeting reproduction of the bedbug, we investigated RNAi-mediated gene silencing of vitellogenin (Vg), a major yolk protein precursor essential for oogenesis. From the bedbug transcriptomes, we identified a typical Vg gene and a truncated Vg gene, which were designated as ClVg and ClVg-like, respectively. ClVg gene was highly expressed mainly in the fat body of adult females, which was more than 100 times higher than the expression level of ClVg-like gene, indicating that ClVg gene is the primary functional Vg gene in the bedbug. RNAi-mediated suppression of ClVg gene expression in adult females resulted in drastically reduced egg production, atrophied ovaries, and inflated abdomen due to hypertrophied fat bodies. These phenotypic consequences are expected not only to suppress the bedbug reproduction directly but also to deteriorate its feeding and survival indirectly via behavioral modifications. These results suggest the potential of ClVg gene as a promising target for RNAi-based population management of the bedbug.
- Published
- 2016
- Full Text
- View/download PDF
40. Defensive Nymphs of the Woolly Aphid Thoracaphis kashifolia (Hemiptera) on the Oak Quercus glauca
- Author
-
Utako Kurosu, Shigeyuki Aoki, Keigo Uematsu, Mayako Kutsukake, and Takema Fukatsu
- Subjects
Zoology ,QL1-991 - Abstract
Aphid nymphs with enlarged fore- and mid-legs were found from woolly colonies of Thoracaphis kashifolia (Hormaphidinae, Nipponaphidini) on leaves of the evergreen Quercus glauca in Japan. It was shown that they grasped an introduced moth larva with their legs and some inserted their stylets deep into the body. These defenders were first-instar nymphs of the alate generation and were produced by aleyrodiform apterae from early September onward. There was a large variation in the size of their forelegs. First-instar nymphs (to be alates) produced early in the season had fore-femorotrochanters shorter than those produced later. The molting rate (the percentage of pharate individuals) of the latter was very low (less than 5% to zero), suggesting their semisterility. Although first-instar nymphs with various lengths of forelegs joined to attack moth larvae, these facts indicate that an incipient caste differentiation occurs within the first-instar nymphs of the alate generation.
- Published
- 2016
- Full Text
- View/download PDF
41. Riboflavin Provisioning Underlies Wolbachia's Fitness Contribution to Its Insect Host
- Author
-
Minoru Moriyama, Naruo Nikoh, Takahiro Hosokawa, and Takema Fukatsu
- Subjects
Microbiology ,QR1-502 - Abstract
ABSTRACT Endosymbiotic bacteria of the genus Wolbachia represent the most successful symbiotic bacteria in the terrestrial ecosystem. The success of Wolbachia has been ascribed to its remarkable phenotypic effects on host reproduction, such as cytoplasmic incompatibility, whereby maternally inherited bacteria can spread in their host populations at the expense of their host's fitness. Meanwhile, recent theoretical as well as empirical studies have unveiled that weak and/or conditional positive fitness effects may significantly facilitate invasion and spread of Wolbachia infections in host populations. Here, we report a previously unrecognized nutritional aspect, the provision of riboflavin (vitamin B2), that potentially underpins the Wolbachia-mediated fitness benefit to insect hosts. A comparative genomic survey for synthetic capability of B vitamins revealed that only the synthesis pathway for riboflavin is highly conserved among diverse insect-associated Wolbachia strains, while the synthesis pathways for other B vitamins were either incomplete or absent. Molecular phylogenetic and genomic analyses of riboflavin synthesis genes from diverse Wolbachia strains revealed that, in general, their phylogenetic relationships are concordant with Wolbachia's genomic phylogeny, suggesting that the riboflavin synthesis genes have been stably maintained in the course of Wolbachia evolution. In rearing experiments with bedbugs (Cimex lectularius) on blood meals in which B vitamin contents were manipulated, we demonstrated that Wolbachia's riboflavin provisioning significantly contributes to growth, survival, and reproduction of the insect host. These results provide a physiological basis upon which Wolbachia-mediated positive fitness consequences are manifested and shed new light on the ecological and evolutionary relevance of Wolbachia infections. IMPORTANCE Conventionally, Wolbachia has been regarded as a parasitic bacterial endosymbiont that manipulates the host insect's reproduction in a selfish manner, which tends to affect a host's fitness negatively. Meanwhile, some theories predict that, at the same time, Wolbachia can directly affect the host's fitness positively, which may potentially reconcile the negative effect and facilitate spread and stability of the symbiotic association. Here we demonstrate, by using comparative genomic and experimental approaches, that among synthetic pathways for B vitamins, the synthetic pathway for riboflavin (vitamin B2) is exceptionally conserved among diverse insect-associated Wolbachia strains, and Wolbachia's riboflavin provisioning certainly contributes to growth, survival, and reproduction in an insect. These findings uncover a nutritional mechanism of a Wolbachia-mediated fitness benefit, which provides empirical evidence highlighting a “Jekyll and Hyde” aspect of Wolbachia infection.
- Published
- 2015
- Full Text
- View/download PDF
42. Male-killing Spiroplasma induces sex-specific cell death via host apoptotic pathway.
- Author
-
Toshiyuki Harumoto, Hisashi Anbutsu, and Takema Fukatsu
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Some symbiotic bacteria cause remarkable reproductive phenotypes like cytoplasmic incompatibility and male-killing in their host insects. Molecular and cellular mechanisms underlying these symbiont-induced reproductive pathologies are of great interest but poorly understood. In this study, Drosophila melanogaster and its native Spiroplasma symbiont strain MSRO were investigated as to how the host's molecular, cellular and morphogenetic pathways are involved in the symbiont-induced male-killing during embryogenesis. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) staining, anti-cleaved-Caspase-3 antibody staining, and apoptosis-deficient mutant analysis unequivocally demonstrated that the host's apoptotic pathway is involved in Spiroplasma-induced male-specific embryonic cell death. Double-staining with TUNEL and an antibody recognizing epidermal marker showed that embryonic epithelium is the main target of Spiroplasma-induced male-specific apoptosis. Immunostaining with antibodies against markers of differentiated and precursor neural cells visualized severe neural defects specifically in Spiroplasma-infected male embryos as reported in previous studies. However, few TUNEL signals were detected in the degenerate nervous tissues of male embryos, and the Spiroplasma-induced neural defects in male embryos were not suppressed in an apoptosis-deficient host mutant. These results suggest the possibility that the apoptosis-dependent epidermal cell death and the apoptosis-independent neural malformation may represent different mechanisms underlying the Spiroplasma-induced male-killing. Despite the male-specific progressive embryonic abnormality, Spiroplasma titers remained almost constant throughout the observed stages of embryonic development and across male and female embryos. Strikingly, a few Spiroplasma-infected embryos exhibited gynandromorphism, wherein apoptotic cell death was restricted to male cells. These observations suggest that neither quantity nor proliferation of Spiroplasma cells but some Spiroplasma-derived factor(s) may be responsible for the expression of the male-killing phenotype.
- Published
- 2014
- Full Text
- View/download PDF
43. Fine-scale geographical origin of an insect pest invading North America.
- Author
-
Takahiro Hosokawa, Naruo Nikoh, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Invasive species may rapidly spread throughout new areas once introduced, which may potentially lead to serious damage to local fauna and flora. Information on geographical origins, introduction routes, and biology in native regions of such invasive species is of critical importance in identifying means of transport, preventing reintroduction, and establishing control/eradication methods. The plataspid stinkbug Megacopta cribraria, known as kudzu bug, recently invaded North America and now has become not only an agricultural pest of soybean but also a nuisance pest. Here we investigate the geographical origin of the invasive M. cribraria populations. Phylogeographical analyses based on 8.7 kb mitochondrial DNA sequences of the introduced and East Asian native Megacopta populations identified a well-supported clade consisting of the introduced populations and M. punctatissima populations in the Kyushu region of Japan, which strongly suggests that the invading M. cribraria populations are derived from a M. punctatissima population in the Kyushu region. Therefore, the region is proposed as a promising source of natural enemies for biological control of the invasive pest. Based on the phylogenetic information, relationship and treatment of the two Megacopta species are discussed.
- Published
- 2014
- Full Text
- View/download PDF
44. Gene expression in gut symbiotic organ of stinkbug affected by extracellular bacterial symbiont.
- Author
-
Ryo Futahashi, Kohjiro Tanaka, Masahiko Tanahashi, Naruo Nikoh, Yoshitomo Kikuchi, Bok Luel Lee, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations.
- Published
- 2013
- Full Text
- View/download PDF
45. Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector.
- Author
-
Atsushi Nakabachi, Naruo Nikoh, Kenshiro Oshima, Hiromitsu Inoue, Moriya Ohkuma, Yuichi Hongoh, Shin-ya Miyagishima, Masahira Hattori, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial 'Candidatus Liberibacter asiaticus' and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium 'Candidatus Profftella armatura' in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium 'Candidatus Carsonella ruddii' in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector's symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.
- Published
- 2013
- Full Text
- View/download PDF
46. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs.
- Author
-
Takahiro Hosokawa, Mantaro Hironaka, Koichi Inadomi, Hiromi Mukai, Naruo Nikoh, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Sociality may affect symbiosis and vice versa. Many plant-sucking stinkbugs harbor mutualistic bacterial symbionts in the midgut. In the superfamily Pentatomoidea, adult females excrete symbiont-containing materials from the anus, which their offspring ingest orally and establish vertical symbiont transmission. In many stinkbug families whose members are mostly non-social, females excrete symbiont-containing materials onto/beside eggs upon oviposition. However, exceptional cases have been reported from two subsocial species representing the closely related families Cydnidae and Parastrachiidae, wherein females remain nearby eggs for maternal care after oviposition, and provide their offspring with symbiont-containing secretions at later stages, either just before or after hatching. These observations suggested that sociality of the host stinkbugs may be correlated with their symbiont transmission strategies. However, we found that cydnid stinkbugs of the genus Adomerus, which are associated with gammaproteobacterial gut symbionts and exhibit elaborate maternal care over their offspring, smear symbiont-containing secretions onto eggs upon oviposition as many non-social stinkbugs do. Surface sterilization of the eggs resulted in aposymbiotic insects of slower growth, smaller size and abnormal body coloration, indicating vertical symbiont transmission via egg surface contamination and presumable beneficial nature of the symbiosis. The Adomerus symbionts exhibited AT-biased nucleotide compositions, accelerated molecular evolutionary rates and reduced genome size, while these degenerative genomic traits were less severe than those in the symbiont of a subsocial parastrachiid. These results suggest that not only sociality but also other ecological and evolutionary aspects of the host stinkbugs, including the host-symbiont co-evolutionary history, may have substantially affected their symbiont transmission strategies.
- Published
- 2013
- Full Text
- View/download PDF
47. Fungal farming in a non-social beetle.
- Author
-
Wataru Toki, Masahiko Tanahashi, Katsumi Togashi, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Culturing of microbes for food production, called cultivation mutualism, has been well-documented from eusocial and subsocial insects such as ants, termites and ambrosia beetles, but poorly described from solitary, non-social insects. Here we report a fungal farming in a non-social lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae), which entails development of a special female structure for fungal storage/inoculation, so-called mycangium, and also obligate dependence of the insect on the fungal associate. Adult females of D. bucculenta bore a hole on a recently-dead bamboo culm with their specialized mandibles, lay an egg into the internode cavity, and plug the hole with bamboo fibres. We found that the inner wall of the bamboo internode harboring a larva is always covered with a white fungal layer. A specific Saccharomycetes yeast, Wickerhamomyces anomalus ( = Pichia anomala), was consistently isolated from the inner wall of the bamboo internodes and also from the body surface of the larvae. Histological examination of the ovipositor of adult females revealed an exoskeletal pocket on the eighth abdominal segment. The putative mycangium contained yeast cells, and W. anomalus was repeatedly detected from the symbiotic organ. When first instar larvae were placed on culture media inoculated with W. anomalus, they grew and developed normally to adulthood. By contrast, first instar larvae placed on either sterile culture media or autoclaved strips of bamboo inner wall exhibited arrested growth at the second instar, and addition of W. anomalus to the media resumed growth and development of the larvae. These results strongly suggest a mutualistic nature of the D. bucculenta-W. anomalus association with morphological specialization and physiological dependence. Based on these results, we compare the fungal farming of D. bucculenta with those of social and subsocial insects, and discuss ecological factors relevant to the evolution of fungal farming in a non-social insect.
- Published
- 2012
- Full Text
- View/download PDF
48. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae.
- Author
-
Grant L Hughes, Ryuichi Koga, Ping Xue, Takema Fukatsu, and Jason L Rasgon
- Subjects
Immunologic diseases. Allergy ,RC581-607 ,Biology (General) ,QH301-705.5 - Abstract
Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12-24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria.
- Published
- 2011
- Full Text
- View/download PDF
49. Facultative symbiont infections affect aphid reproduction.
- Author
-
Jean-Christophe Simon, Sébastien Boutin, Tsutomu Tsuchida, Ryuichi Koga, Jean-François Le Gallic, Adrien Frantz, Yannick Outreman, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.
- Published
- 2011
- Full Text
- View/download PDF
50. Biological role of Nardonella endosymbiont in its weevil host.
- Author
-
Takashi Kuriwada, Takahiro Hosokawa, Norikuni Kumano, Keiko Shiromoto, Dai Haraguchi, and Takema Fukatsu
- Subjects
Medicine ,Science - Abstract
Weevils constitute the most species-rich animal group with over 60,000 described species, many of which possess specialized symbiotic organs and harbor bacterial endosymbionts. Among the diverse microbial associates of weevils, Nardonella spp. represent the most ancient and widespread endosymbiont lineage, having co-speciated with the host weevils for over 125 million years. Thus far, however, no empirical work on the role of Nardonella for weevil biology has been reported. Here we investigated the biological role of the Nardonella endosymbiont for the West Indian sweet potato weevil, Euscepes postfasciatus. This insect is an experimentally tractable pest insect that can easily be reared on a natural diet of sweet potato root as well as on an agar-based artificial diet. By larval feeding on an antibiotic-containing artificial diet, Nardonella infection was effectively eliminated from the treated insects. The antibiotic-treated insects exhibited significantly lighter body weight and lower growth rate than the control insects. Then, the antibiotic-treated insects and the control insects were respectively allowed to mate and oviposit on fresh sweet potatoes without the antibiotic. The offspring of the antibiotic-treated insects, which were all Nardonella-negative, exhibited significantly lighter body weight, smaller body size, lower growth rate and paler body color in comparison with the offspring of the control insects, which were all Nardonella-positive. In conclusion, the Nardonella endosymbiont is involved in normal growth and development of the host weevil. The biological role of the endosymbiont probably underlies the long-lasting host-symbiont co-speciation in the evolutionary course of weevils.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.