1. Peristaltic pumping down a porous conduit.
- Author
-
Takagi, D., Balmforth, N. J., and Smith, Stefan G. Llewellyn
- Subjects
PRESSURE drop (Fluid dynamics) ,IMPACT strength ,PUMPING machinery ,MARINE organisms ,POROUS materials - Abstract
A theoretical analysis is presented of peristaltic pumping down a narrow conduit with permeable walls, motivated by the flushing action of lugworms and other marine organisms in sandy burrows. Flow in the conduit is dealt with using lubrication theory; the leakage into the surrounding medium is taken into account by exploiting slender-body theory to solve the associated Darcy problem. By adopting a model for the local force balance on the pumping surface, we bridge between the limits in which the pump operates with either fixed load or displacement. In the latter limit we characterize peristaltic waves with either fixed form or ones that partially collapse the conduit. We construct pump characteristics (the relation between the mean flux and net pressure drop) when the burrow wall is impermeable and pressures are fixed at each end, and compare the results with existing laboratory experiments performed on lugworms. We then consider how the peristaltic dynamics is changed when the wall is made permeable. Last, we consider pumping along an impermeable burrow into a leaky head shaft. The results reveal that the permeability of the conduit wall or end can greatly impact the direction and strength of the recirculating flow. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF