1. A self-reactivated PdCu catalyst for aldehyde electro-oxidation with anodic hydrogen production
- Author
-
Ming Yang, Yimin Jiang, Chung-Li Dong, Leitao Xu, Yutong Huang, Shifan Leng, Yandong Wu, Yongxiang Luo, Wei Chen, Ta Thi Thuy Nga, Shuangyin Wang, and Yuqin Zou
- Subjects
Science - Abstract
Abstract The low-potential aldehyde oxidation reaction can occur at low potential (~0 VRHE) and release H2 at the anode, enabling hydrogen production with less than one-tenth of the energy consumption required for water splitting. Nevertheless, the activity and stability of Cu catalysts remain inadequate due to the oxidative deactivation of Cu-based materials. Herein, we elucidate the deactivation and reactivation cycle of Cu electrocatalyst and develop a self-reactivating PdCu catalyst that exhibits significantly enhanced stability. Initially, in-situ Raman spectroscopy confirm the cycle involved in electrochemical oxidation and non-electrochemical reduction. Subsequently, in-situ Raman spectroscopy and X-ray absorption fine structure reveal that the Pd component accelerates the rate of the non-electrochemical reduction, thereby enhancing the stability of the Cu-based electrocatalyst. Finally, a bipolar hydrogen production device is assembled utilizing the PdCu electrocatalyst, which can deliver a current of 400 mA cm−2 at 0.42 V and operate continuously for 120 h. This work offers guidance to enhance the stability of the Cu-based electrocatalyst in a bipolar hydrogen production system.
- Published
- 2024
- Full Text
- View/download PDF