1. Late Triassic paleogeography of southern Laurentia and its fringing arcs: Insights from detrital zircon U-Pb geochronology and Hf isotope geochemistry, Auld Lang Syne basin (Nevada, USA).
- Author
-
Schwartz, Theresa M., Wyld, Sandra J., Colgan, Joseph P., and Prihar, Douglas W.
- Subjects
- *
PALEOGEOGRAPHY , *ISOTOPE geology , *GEOLOGICAL time scales , *ZIRCON , *TRIASSIC Period ,LAURENTIA (Continent) - Abstract
Fluvial strata of the Upper Triassic Chinle Formation and Dockum Group, exposed across the Western Interior of North America, have long been interpreted to record a transcontinental river system that connected the ancestral Ouachita orogen of Texas and Oklahoma, USA, to the Auld Lang Syne basin of northwestern Nevada, USA, its inferred marine terminus. Fluvial strata are well-characterized by existing detrital zircon data, but the provenance of the Auld Lang Syne basin is poorly constrained. We present new detrital zircon U-Pb and Hf isotopic data that characterize the provenance of Norian siliciclastic strata that dominate the Auld Lang Syne basin. Mixture modeling of Auld Lang Syne basin data identifies the Alleghany-Ouachita-Marathon belt of eastern Laurentia as a dominant source of sediment, but the presence of Triassic detrital zircon grains in Auld Lang Syne basin strata indicates that at least one peri-Laurentian arc segment had to have also contributed sediment. A comparison of new Hf isotopic data with those characterizing various peri-Laurentian volcanic arcs demonstrates that although multiple arc segments may have simultaneously contributed zircons to the Auld Lang Syne basin, the west Pangean arc of northern Mexico stands out as a unique source of highly evolved Permian to Triassic detrital zircon grains in samples from the Auld Lang Syne basin. Altogether, our data and analyses demonstrate source-to-sink connectivity between the Late Triassic (Norian) Cordilleran margin and remnant late Paleozoic highlands of southern to eastern Laurentia, which ultimately framed a Mississippi River-scale, transcontinental watershed that traversed the topographically subdued Laurentian continental interior. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF