Branquinho, Luis Cesar, Bakuzis, Andris Figueiroa, Pelegrini, Fernando, Franco Junior, Adolfo, Morais, Paulo Cesar de, and Landi, Gabriel Teixeira
Nanopartículas magnéticas são capazes de gerar calor quando submetidas a campo magnético alternado de amplitude e frequência adequadas. Este fenômeno é conhecido como magnetohipertermia e possui aplicações terapêuticas como, por exemplo, no tratamento de câncer. Em geral, os modelos teóricos que descrevem o fenômeno não levam em conta efeitos associados à interação partícula-partícula. Nesta tese investigamos o efeito da interação dipolar magnética na eficiência magnetotérmica (SLP) de nanopartículas magnéticas biocompatíveis. Primeiramente desenvolvemos um modelo de cadeia de nanopartículas magnéticas, aonde provamos que a interação entre partículas que formam uma cadeia linear equivalem a uma contribuição uniaxial a anisotropia. Essa contribuição à densidade de energia permitiu que obtivéssemos por meio da técnica de ressonância magnética eletrônica (RME) informações acerca do tamanho médio de aglomerado na suspensão coloidal. Posteriormente utilizamos esse termo adicional da anisotropia efetiva da nanopartícula para propor um modelo teórico analítico que leve em consideração o efeito de tal interação na eficiência de aquecimento de nanopartículas magnéticas em um fluido para o caso em que a magnetização das nanopartículas responde linearmente ao campo (Teoria da Resposta Linear). Nossos cálculos indicaram que, dependendo de parâmetros da nanopartícula, em particular da anisotropia, este efeito pode aumentar ou diminuir a geração de calor. Além disso, mostramos que o aumento do número de partículas formando cadeias lineares reduz o diâmetro ótimo para hipertermia em até 30% em relação ao valor esperado para partículas isoladas. Este resultado possui fortes implicações clínicas, e permitiu que sugeríssemos algumas estratégias para aumentar a eficiência terapêutica. No intuito de investigar experimentalmente este efeito, dois fluidos magnéticos, um contendo nanopartículas esféricas de ferrita de Mn (MnF-citrato) no regime superparamagnético e outra comercial (BNF-starch) à base de magnetita com forma de nanoparalelepípedos e contendo partículas bloqueadas, foram selecionados e amplamente caracterizados. Observamos uma diminuição no SLP com o aumento de partículas na cadeia para a amostra MnF-citrato, para todos os valores de campo, enquanto que para a amostra BNF-starch não percebemos alteração do SLP. O decréscimo do SLP da amostra MnF, na faixa de concentração investigada, foi explicado incluindo não apenas o efeito na anisotropia efetiva, mas também o aumento no valor do fator de amortecimento. Dados de RME e simulação de Monte Carlo corroboraram tal hipótese. A ausência de efeito para amostra BNF-starch foi atribuída à alta anisotropia e provável influência de relaxação browniana. Adicionalmente, o modelo de cadeia foi usado para explicar o comportamento de nanopartículas bloqueadas do tipo Stoner-Wohlfarth. Neste caso demonstramos que a formação de cadeias aumenta a hipertermia magnética, como verificado em magnetossomos. Finalmente, mostramos que uma flutuação no campo dipolar interpartículas na cadeia, que não destrua a simetria desta contribuição, fornece um comportamento do tipo Vogel-Fulcher no regime fracamente interagente. Magnetic nanoparticles can generate heat when submitted to alternating magnetic fields of adequate amplitude and frequency. This phenomenon is named magnetic hyperthermia and has several therapeutic applications, as for example, in the treatment of cancer. In general, the theoretical models used to describe this neglect the effect of interparticle interaction. In this thesis we investigate the effect of magnetic dipolar interaction in the magnetothermal efficiency (named specific loss power – SLP) of bicompatible magnetic nanoparticles. Firstly, we develop a chain of magnetic particles model, where we prove that the interaction leads to a contribution to the uniaxial anisotropy. This term in the free energy density allowed us to extract from the electron magnetic resonance technique (EMR) information about the mean chain size in the colloid. Further, this additional magnetic nanoparticle anisotropy term was used to develop an analytical theoretical model that takes into account the effect of the dipolar interaction between nanoparticles to SLP, considering the case where the magnetization responds linearly to the field (Linear Response Theory). Our calculations indicate that depending on the particle parameters, specially the anisotropy, the effect can be to enhance or decrease the heat generation. Moreover, we showed that increasing the chain size (number of particles in the chain) the optimal particle size for hyperthermia can decrease up to 30% in comparison with non-interacting particles. This result has several clinical implications, which allowed us to suggest some strategies for improving the therapeutic efficacy. In order to investigate experimentally the effect, two magnetic fluids, one containing spherical nanoparticles based on manganese ferrite (MnF-citrate) in the superparamagnetic regime, and another commercial one (BNF-starch) magnetite-based with a shape of a parallellepiped and blocked, were selected and deeply characterized. We found a decrease of SLP increasing the chain size for the MnF sample, while for BNF-starch no effect was found at the same experimental conditions. The decrease of SLP in the MnF sample, within the particle concentration range, was explained considering in the model not only the effect in the anisotropy but also by an increase in the damping factor parameter, a term correlated to spin-phonon interaction. Data obtained using EMR and Monte Carlo simulations corroborate our hypothesis. The absence of concentration effect for the BNF sample was attributed to the higher anisotropy value and to the probable influence of brownian relaxation. In addition, the same chain model was used to investigate the behavior of blocked nanoparticles of Stoner-Wohlfarth type. In this case, we demonstrate that the chain formation increases the magnetic hyperthermia, as found in magnetosomes. Finally, we showed that a fluctuation of the dipolar interaction field between particles in the chain, which does not destroy the symmetry of this term, shows a Vogel-Fulcher behaviour in the weak coupling regime. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES