1. Stability of optimal traffic plans in the irrigation problem
- Author
-
Antoine Prouff, Antonio De Rosa, Andrea Marchese, Maria Colombo, Paul Pegon, Ecole Polytechnique Fédérale de Lausanne (EPFL), Courant Institute of Mathematical Sciences [New York] (CIMS), New York University [New York] (NYU), NYU System (NYU)-NYU System (NYU), Department of mathematics/Dipartimento di Matematica [Univ. Trento], Università degli Studi di Trento (UNITN), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Maria Colombo was partially supported by the Swiss National Science Foundation grant 200021_182565. Antonio De Rosa has been supported by the NSF DMS Grant No. 1906451. Andrea Marchese acknowledges partial support from GNAMPA-INdAM., Department of Mathematics [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Bocconi Institute for Data Science and Analytics (BIDSA), Bocconi University [Milan, Italy], Université Paris Dauphine-PSL, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, M. C. was partially supported by the Swiss National Science Foundation grant 200021_182565. A. D. R. has been supported by the NSF DMS Grant No. 1906451 and the NSF DMS Grant No. 2112311. A. M. acknowledges partial support from GNAMPA-INdAM. A.P. was supported by the Fondation Mathématiques Jacques Hadamard. P.P and A.P. both acknowledge EPFL for hosting them during the semester this paper was prepared., Inria de Paris, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-CEntre de REcherches en MAthématiques de la DEcision (CEREMADE)
- Subjects
BRANCHED TRANSPORT ,Mathematical optimization ,Irrigation ,TRAFFIC PLANS ,[MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA] ,01 natural sciences ,Stability (probability) ,symbols.namesake ,Mathematics - Analysis of PDEs ,Classical Analysis and ODEs (math.CA) ,FOS: Mathematics ,Computer Science::Networking and Internet Architecture ,[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] ,Discrete Mathematics and Combinatorics ,Limit (mathematics) ,0101 mathematics ,Mathematics - Optimization and Control ,Mathematics ,TRANSPORTATION NETWORK, BRANCHED TRANSPORT, IRRIGATION PROBLEM, TRAFFIC PLANS, STABILITY ,STABILITY ,IRRIGATION PROBLEM ,Applied Mathematics ,TRANSPORTATION NETWORK ,010102 general mathematics ,Eulerian path ,Flow network ,010101 applied mathematics ,Optimization and Control (math.OC) ,Mathematics - Classical Analysis and ODEs ,symbols ,[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] ,Analysis ,Lagrangian ,Analysis of PDEs (math.AP) - Abstract
We prove the stability of optimal traffic plans in branched transport. In particular, we show that any limit of optimal traffic plans is optimal as well. This result goes beyond the Eulerian stability proved in [7], extending it to the Lagrangian framework.
- Published
- 2022