Background Organophosphate insecticides and the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D) are used to protect crops or control weeds. Pyrethroids are used to manage pests both in agriculture and in residences, and to reduce the transmission of insect-borne diseases. Several studies have reported inverse associations between exposure to organophosphates (as a larger class) and birth outcomes but these associations have not been conclusive for pyrethroids or 2,4-D, specifically. We aimed to investigate the association between birth outcomes and urinary biomarkers of pyrethroids, organophosphates and 2,4-D among healthy pregnant women living in New York City. Methods We quantified urinary biomarkers of 2,4-D and of organophosphate and pyrethroid insecticides from 269 women from two cohorts: a) Thyroid Disruption And Infant Development (TDID) and b) Sibling/Hermanos cohort (S/H). We used weighted quantile sum regression and multivariable linear regression models to evaluate the associations between a mixture of urinary creatinine-adjusted biomarker concentrations and birth outcomes of length, birthweight and head circumference, controlling for covariates. We also used linear regression models and further classified biomarkers concentrations into three categories (i: non-detectable; ii: between the limit of detection and median; and iii: above the median) to investigate single pesticides’ association with these birth outcomes. Covariates considered were delivery mode, ethnicity, marital status, education, income, employment status, gestational age, maternal age and pre-pregnancy BMI. Analyses were conducted separately for each cohort and stratified by child sex within each cohort. Results In TDID cohort, we found a significant inverse association between weighted quantile sum of mixture of pesticides and head circumference among boys. We found that the urinary biomarkers of organophosphate chlorpyrifos, TCPy, and 2,4-D had the largest contribution to the overall mixture effect in the TDID cohort among boys (b = −0.57, 95%CI: −0.92, −0.22) (weights = 0.81 and 0.16 respectively) but not among girls. In the multivariable linear regression models, we found that among boys, for each log unit increase in 3,5,6-trichloro-2-pyridinol (TCPy, metabolite of organophosphate chlorpyrifos) in maternal urine, there was a −0.56 cm decrease in head circumference (95%CI: −0.92, −0.19). Among boys in the TDID cohort, 2,4-D was associated with smaller head circumference in the second (b = −1.57; 95%CI: −2.74, −0.39) and third (b = −1.74, 95%CI: −2.98, −0.49) concentration categories compared to the first. No associations between pyrethroid and organophosphate biomarkers and birth outcomes were observed in girls analyzed in WQS regression or individually in linear regression models in TDID cohort. In the S/H cohort, head circumference increased with higher concentrations of 3-phenoxybenzoic acid (3-PBA, a biomarker of several pyrethroids) (b = 0.53, 95%CI: 0.03, 1.04) among boys and head circumference was lower among girls in the high compared to low category of 2,4-D (b = −2.27, 95%CI: − 3.98, −0.56). Birth length was also positively associated with the highest concentration of 2,4-D compared to the lowest among boys (b = 4.01, 95%CI: 0.02,8.00). Conclusions Weighted quantile sum of pesticides was negatively associated with head circumference among boys in one cohort. Nonetheless, due to directional homogeneity assumption in WQS no positive associations were detected. In linear regression models with individual pesticides, concentrations of TCPy were inversely associated with head circumference in boys and higher concentrations of 2,4-D was inversely associated with head circumference among girls; 2,4-D concentrations were also associated with higher birth length among boys. Concentrations of 3-PBA was positively associated with head circumference among boys.