9 results on '"T. Zechlau"'
Search Results
2. A magnetic trap for high-field seeking neutron spin states
- Author
-
Th. Brenner, S. Chesnevskaya, P. Fierlinger, P. Geltenbort, E. Gutsmiedl, T. Lauer, K. Rezai, J. Rothe, T. Zechlau, and R. Zou
- Subjects
Physics ,QC1-999 - Abstract
A first experimental demonstration of a new type of magnetic trap for ultra-cold neutrons is presented. High-field seeking spin-states are trapped in a potential formed by the magnetic field of a straight wire and a repulsive coating on the wire surface. Life-times of the trapped neutrons of 60 s could be observed. This configuration can in principle be used to form bound states of the wave function on the surface of the wire to probe new forces at short distances. Further applications include the use as a guide and selector for perfectly polarized neutrons.
- Published
- 2015
- Full Text
- View/download PDF
3. Improved measurement of the neutron absorption cross section for very low velocities
- Author
-
T. Zechlau, Helmut Rauch, P. Geltenbort, J. Schroffenegger, T. Lauer, Peter Fierlinger, and A. Hollering
- Subjects
Physics ,Nuclear and High Energy Physics ,Protons and neutrons ,Absorption cross section ,01 natural sciences ,lcsh:QC1-999 ,ddc ,Neutron transport: diffusion and moderation ,010305 fluids & plasmas ,Nuclear physics ,Neutron capture ,Cross section (physics) ,0103 physical sciences ,Neutron ,010306 general physics ,Absorption (electromagnetic radiation) ,lcsh:Physics - Abstract
The absorption cross section of natural Gd and isotopic enriched 157 Gd for ultra-cold neutrons (UCN) as a function of the velocity has been measured within a time-of-flight-experiment. Particular attention is paid to small velocities in the region of a few m/s. This is intended to determine the validity of the 1 / v -law governing absorption cross sections in this region and the resulting divergence at v = 0 . The experiment does not show any significant violation of 1 / v for v > 3 m / s .
- Published
- 2016
- Full Text
- View/download PDF
4. Losses and depolarization of ultracold neutrons on neutron guide and storage materials
- Author
-
P. Geltenbort, T. Lauer, Malgorzata Kasprzak, G. Kessler, M. Daum, Yu. Sobolev, L. Göltl, A. Kraft, Guillaume Pignol, Erwin Gutsmiedl, T. Zechlau, E. Pierre, S. Chesnevskaya, B. Franke, J. Karch, Klaus Kirch, Philipp Schmidt-Wellenburg, V. Bondar, H.-C. Koch, Bernhard Lauss, Davide Reggiani, Geza Zsigmond, Institut Laue-Langevin (ILL), ILL, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Université Grenoble Alpes (UGA)
- Subjects
Physics ,010308 nuclear & particles physics ,chemistry.chemical_element ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,Nuclear physics ,Paramagnetism ,Nickel ,Ferromagnetism ,Deuterium ,chemistry ,0103 physical sciences ,Content (measure theory) ,Ultracold neutrons ,Neutron ,Sensitivity (control systems) ,Atomic physics ,010306 general physics - Abstract
At Institut Laue-Langevin (ILL) and Paul Scherrer Institute (PSI), we have measured the losses and depolarization probabilities of ultracold neutrons on various materials: (i) nickel-molybdenum alloys with weight percentages of 82/18, 85/15, 88/12, 91/9, and 94/6 and natural nickel Ni100, (ii) nickel-vanadium NiV93/7, (iii) copper, and (iv) deuterated polystyrene (dPS). For the different samples, storage-time constants up to $\ensuremath{\sim}460\phantom{\rule{0.16em}{0ex}}\mathrm{s}$ were obtained at room temperature. The corresponding loss parameters for ultracold neutrons, $\ensuremath{\eta}$, varied between $1.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$ and $2.2\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}4}$. All $\ensuremath{\eta}$ values are in agreement with theory except for dPS, where anomalous losses at room temperature were established with four standard deviations. The depolarization probabilities per wall collision $\ensuremath{\beta}$ measured with unprecedented sensitivity varied between $0.7\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$ and $9.0\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}6}$. Our depolarization result for copper differs from other experiments by 4.4 and 15.8 standard deviations. The $\ensuremath{\beta}$ values of the paramagnetic NiMo alloys over molybdenum content show an increase of $\ensuremath{\beta}$ with increasing Mo content. This is in disagreement with expectations from literature. Finally, ferromagnetic behavior of NiMo alloys at room temperature was found for molybdenum contents of 6.5 at.% or less and paramagnetic behavior for more than 8.7 at.%. This may contribute to solving an ambiguity in literature.
- Published
- 2017
- Full Text
- View/download PDF
5. Deuterated polyethylene coatings for ultra-cold neutron applications
- Author
-
T. Zechlau, K. M. Seemann, D. Windmayer, J. Schroffenegger, G. Petzoldt, B. Taubenheim, Erwin Gutsmiedl, P. Geltenbort, O. Soltwedel, Daniel Ruhstorfer, T. Lauer, A. Hollering, Th. Brenner, S. Stuiber, and Peter Fierlinger
- Subjects
Range (particle radiation) ,Physics - Instrumentation and Detectors ,Fabrication ,Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,engineering.material ,Polyethylene ,Electric dipole moment ,chemistry.chemical_compound ,Deuterium ,Coating ,chemistry ,engineering ,Ultracold neutrons ,Optoelectronics ,Neutron ,business ,Nuclear Experiment - Abstract
We report on the fabrication and use of deuterated polyethylene (dPE) as a coating material for ultra-cold neutron (UCN) storage and transport. The Fermi potential has been determined to be 214~neV and the wall loss coefficient $\eta$ is 1.3$\cdot$10$^4$ per wall collision. The coating technique allows for a wide range of applications and new possibilities in this field of physics. In particular, flexible and quasi-massless UCN guides with slit-less shutters and slit-less UCN storage volumes become possible. These properties enable the use in next-generation measurements of the electric dipole moment of the neutron., Comment: 4 pages, 3 figures
- Published
- 2015
- Full Text
- View/download PDF
6. A magnetic trap for high-field seeking neutron spin states
- Author
-
Peter Fierlinger, R. Zou, S. Chesnevskaya, T. Zechlau, Kristine Rezai, J. Rothe, Erwin Gutsmiedl, P. Geltenbort, T. Lauer, and Th. Brenner
- Subjects
Surface (mathematics) ,Physics ,Condensed Matter::Quantum Gases ,Nuclear and High Energy Physics ,Condensed matter physics ,Spin states ,engineering.material ,lcsh:QC1-999 ,ddc ,Magnetic field ,Coating ,Magnetic trap ,Bound state ,engineering ,Neutron ,High field ,Atomic physics ,lcsh:Physics - Abstract
A first experimental demonstration of a new type of magnetic trap for ultra-cold neutrons is presented. High-field seeking spin-states are trapped in a potential formed by the magnetic field of a straight wire and a repulsive coating on the wire surface. Life-times of the trapped neutrons of 60 s could be observed. This configuration can in principle be used to form bound states of the wave function on the surface of the wire to probe new forces at short distances. Further applications include the use as a guide and selector for perfectly polarized neutrons.
- Published
- 2014
7. A magnetically shielded room with ultra low residual field and gradient
- Author
-
S. Chesnevskaya, Jaideep Singh, S. Degenkolb, Jens-Uwe Voigt, T. Lins, Isaac Fan, F. Kuchler, S.D. Sharma, Tim Chupp, Douglas H Beck, T. Zechlau, T. Lauer, U. Schläpfer, B. Niessen, I. Altarev, R. Stoepler, B. Taubenheim, G. Petzoldt, Allard Schnabel, J. McAndrew, Erwin Gutsmiedl, A. Frei, P. Link, S. Knappe-Grüneberg, S. Stuiber, Stephan Paul, Michael Sturm, Martin Burghoff, Lutz Trahms, Michael G. Marino, P. Fierlinger, and Earl Babcock
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,Field (physics) ,010308 nuclear & particles physics ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Residual ,01 natural sciences ,law.invention ,Computational physics ,Magnetic shield ,Dipole ,Volume (thermodynamics) ,13. Climate action ,law ,0103 physical sciences ,Shielded cable ,Fundamental physics ,ddc:530 ,Detectors and Experimental Techniques ,010306 general physics ,Instrumentation - Abstract
A versatile and portable magnetically shielded room with a field of (700 \pm 200) pT within a central volume of 1m x 1m x 1m and a field gradient less than 300 pT/m is described. This performance represents more than a hundred-fold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements. A versatile and portable magnetically shielded room with a field of (700 \pm 200) pT within a central volume of 1m x 1m x 1m and a field gradient less than 300 pT/m is described. This performance represents more than a hundred-fold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus.
- Published
- 2014
- Full Text
- View/download PDF
8. First observation of trapped high-field seeking ultracold neutron spin states
- Author
-
Philipp Schmidt-Wellenburg, L. Goeltl, Guillaume Pignol, P. Geltenbort, T. Zechlau, B. Franke, Klaus Kirch, Yu. Sobolev, G. Kessler, Peter Fierlinger, M. Daum, J. Karch, E. Pierre, Erwin Gutsmiedl, H.-C. Koch, T. Lauer, A. Kraft, Geza Zsigmond, Bernhard Lauss, Davide Reggiani, Institut Laue-Langevin (ILL), ILL, Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut Polytechnique de Grenoble - Grenoble Institute of Technology-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Neutron lifetime ,Nuclear and High Energy Physics ,Spin states ,Condensed matter physics ,Ultracold neutron storage ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Nuclear Theory ,Magnetic confinement fusion ,Ultracold neutrons ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,01 natural sciences ,3. Good health ,Magnetic field ,Shutter ,0103 physical sciences ,Neutron ,010306 general physics ,Axial symmetry ,Nuclear Experiment ,Magnetic dipole - Abstract
Ultracold neutrons were stored in a volume, using a magnetic dipole field shutter. Radial confinement was provided by material walls. Low-field seeking neutrons were axially confined above the magnetic field. High-field seeking neutrons are trapped inside the magnetic field. They can systematically shift the measured neutron lifetime to lower values in experiments with magnetic confinement. ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
- Full Text
- View/download PDF
9. A magnetically shielded room with ultra low residual field and gradient.
- Author
-
Altarev I, Babcock E, Beck D, Burghoff M, Chesnevskaya S, Chupp T, Degenkolb S, Fan I, Fierlinger P, Frei A, Gutsmiedl E, Knappe-Grüneberg S, Kuchler F, Lauer T, Link P, Lins T, Marino M, McAndrew J, Niessen B, Paul S, Petzoldt G, Schläpfer U, Schnabel A, Sharma S, Singh J, Stoepler R, Stuiber S, Sturm M, Taubenheim B, Trahms L, Voigt J, and Zechlau T
- Abstract
A versatile and portable magnetically shielded room with a field of (700 ± 200) pT within a central volume of 1 m × 1 m × 1 m and a field gradient less than 300 pT/m, achieved without any external field stabilization or compensation, is described. This performance represents more than a hundredfold improvement of the state of the art for a two-layer magnetic shield and provides an environment suitable for a next generation of precision experiments in fundamental physics at low energies; in particular, searches for electric dipole moments of fundamental systems and tests of Lorentz-invariance based on spin-precession experiments. Studies of the residual fields and their sources enable improved design of future ultra-low gradient environments and experimental apparatus. This has implications for developments of magnetometry beyond the femto-Tesla scale in, for example, biomagnetism, geosciences, and security applications and in general low-field nuclear magnetic resonance (NMR) measurements.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.