1. A tabletop, ultrashort pulse photoneutron source driven by electrons from laser wakefield acceleration
- Author
-
X.J. Jiao, J.M. Shaw, T. Wang, X.M. Wang, H. Tsai, P. Poth, I. Pomerantz, L.A. Labun, T. Toncian, M.C. Downer, and B.M. Hegelich
- Subjects
Nuclear and particle physics. Atomic energy. Radioactivity ,QC770-798 - Abstract
Relativistic electron beams driven by laser wakefield acceleration were utilized to produce ultrashort neutron sources. The experiment was carried out on the 38 fs, ∼0.5 J, 800 nm Ti:Sapphire laser in the 10 TW UT3 laser lab at University of Texas at Austin. The target gas was a high density pulsed gas jet composed of 90% He and 10% N2. The laser pulse with a peak intensity of 1.5 × 1018 W/cm2 interacted with the target to create a cylindrical plasma channel of 60 μm radius (FWHM) and 1.5 mm length (FWHM). Electron beams of ∼80 pC with the Gaussian energy distribution centered at 37 MeV and a width of 30 MeV (FWHM) were produced via laser wakefield acceleration. Neutron fluences of ∼2.4 × 106 per shot with hundreds of ps temporal length were generated through bremsstrahlung and subsequent photoneutron reactions in a 26.6 mm thick tungsten converter. Results were compared with those of simulations using EPOCH and GEANT4, showing agreement in electron spectrum, neutron fluence, neutron angular distribution and conversion rate.
- Published
- 2017
- Full Text
- View/download PDF