1. Isotopic composition and source regions of winter precipitation in the Nadym Lowland
- Author
-
N. S. Malygina, A. N. Eyrikh, E. V. Agbalyan, and T. S. Papina
- Subjects
nadym lowland ,stable isotopes of oxygen and hydrogen ,winter precipitation ,Science - Abstract
According to the forecast of IPCC (Intergovernmental Panel of the Climate Change), an increase in precipitation is expected in this century in the Arctic. The main reason is intensification of evaporation from waters of the Arctic Ocean opening due to the intensive melting of sea ice. It is supposed that these changes will be most severe in winters in the Arctic regions, which are subject to significant anthropogenic load. In this respect, the intensively developed Nadym Lowland may be considered as a promising area for researches. The results of our study showed that the circulation conditions (primarily cyclones coming from the North Atlantic under the Eastern (E) circulation form of the G.Ya. Vangenheim–A.A. Girs classification) significantly influence on the isotopic composition of precipitation in this region. Thus, in the cold period of 2016–2017, the isotopic composition of precipitation changed for δ18О by 21 ‰, and for δD by 167 ‰ (weighted average values δ18О = −22.3 ‰, δD = −172.6 ‰, and dexc = 5.6 ‰). The use of the dew point temperature at the moment of precipitation in the calculations of the isotopic-temperature dependences allows obtaining the following coupling equation: δ18О = 0.67Tdp − 15.2 (R2 = 0.67). On the basis of the joint analysis of synoptic, trajectory and isotopic data, the main regions-sources of atmospheric moisture, precipitated in the Nadym Lowland during the cold period of 2016–2017, were determined. The major contributions were made by the Atlantic Ocean (35.7%), the North Atlantic Ocean and the Arctic Ocean (30.4%), and the Black Sea-Caspian region (20%). The last one is characterized by the most weighted isotopic composition. Inland source regions have contributed the least to precipitation (slightly larger 10%), and their lightweight isotopic composition is related to cryogenic fractionation.
- Published
- 2020
- Full Text
- View/download PDF