20 results on '"T. Kopytova"'
Search Results
2. Search for giant planets around seven white dwarfs in the Hyades cluster with the Hubble Space Telescope
- Author
-
T. Kopytova, Hans Zinnecker, and Wolfgang Brandner
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,FOS: Physical sciences ,White dwarf ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Exoplanet ,Radial velocity ,Jupiter ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Planet ,Astrophysics::Solar and Stellar Astrophysics ,Asymptotic giant branch ,Astrophysics::Earth and Planetary Astrophysics ,Planetary mass ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Only a small number of exoplanets has been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its NICMOS instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (45 pc) Hyades cluster. The observations were obtained with NIC1 in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations >0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main sequence masses were >2.8 Msun, was found. Comparison with evolutionary models yields detection limits of 5 to 7 Jupiter masses according to one model, and between 9 and 12 Mjup according to another model, at physical separations corresponding to initial semimajor axis of >5 to 8 A.U. (i.e., before the mass loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar disks, and their transformation into giant planets (with m>6 Mjup and a>6 A.U.). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than about 3 Msun., 6 pages, 3 figures; https://academic.oup.com/mnras/advance-article/doi/10.1093/mnras/staa3422/5956540
- Published
- 2020
3. The SPHERE infrared survey for exoplanets (SHINE). I. Sample definition and target characterization
- Author
-
E. L. Rickman, Julien Charton, Stéphane Udry, A. Roux, S. Rochat, Alice Zurlo, O. Möller-Nilsson, Riccardo Claudi, D. Fantinel, A. Pavlov, E. Covino, Christian Soenke, M. Kasper, Valentina D'Orazi, Anne-Lise Maire, Joshua E. Schlieder, J. Pragt, Enrico Cascone, Markus Janson, Mariangela Bonavita, T. Kopytova, C. Petit, P. Martinez, Mickael Bonnefoy, A. Deboulbe, Joany Andreina Manjarres Ramos, Franz-Josef Hambsch, L. Weber, Francois Menard, Thibaut Moulin, A. Bazzon, Yves Magnard, Norbert Hubin, F. Rigal, Thiam-Guan Tan, Eric Stadler, J.-F. Sauvage, T. O. B. Schmidt, Emmanuel Hugot, L. Gluck, Th. Henning, S. Benatti, Michael Meyer, Raphaël Galicher, Anne-Marie Lagrange, M. Feldt, M. Carle, Carsten Dominik, G. Rousset, Matthias Samland, Tristan Buey, Janis Hagelberg, H. M. Schmid, Philippe Feautrier, D. Le Mignant, Arnaud Sevin, H. LeCoroller, Pierre Baudoz, J. Antichi, Arthur Vigan, Wolfgang Brandner, Massimo Turatto, Gael Chauvin, Alain Origne, R. Ligi, P. Gigan, Bernardo Salasnich, C. Lazzoni, V. De Caprio, M. Jaquet, D. Gisler, Pascal Puget, Philippe Delorme, D. Perret, T. Fusco, Dino Mesa, E. Sissa, Francois Wildi, Silvano Desidera, D. Maurel, F. Madec, Joseph C. Carson, J. M. Alcalá, E. Rigliaco, S. Messina, J. Baudrand, Anne Costille, R. G. Gratton, M. Millward, André Müller, Beth Biller, Enrico Giro, Andrea Baruffolo, Faustine Cantalloube, Jean-Luc Beuzit, Ronald Roelfsema, Marcel Carbillet, Eric Lagadec, Kjetil Dohlen, R. Asensio-Torres, Anthony Cheetham, P. Rabou, M. Llored, Maud Langlois, P. Blanchard, Anthony Boccaletti, C. Fontanive, Marcos Suarez, L. Abe, and Low Energy Astrophysics (API, FNWI)
- Subjects
PRE-MAIN SEQUENCE [STARS] ,HIGH CONTRAST IMAGING ,STATISTICAL CONSTRAINTS ,PLANET DETECTION ,FOS: Physical sciences ,Sample (statistics) ,Context (language use) ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,ROTATION [STARS] ,ROTATION PERIOD ,01 natural sciences ,7. Clean energy ,FUNDAMENTAL PARAMETERS [STARS] ,Planet ,0103 physical sciences ,GENERAL [PLANETS AND SATELLITES] ,DETECTION LIMITS ,Astrophysics::Solar and Stellar Astrophysics ,KINEMATICS AND DYNAMICS [STARS] ,ACTIVITY [STARS] ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,TARGET CHARACTERIZATION ,Light curve ,Exoplanet ,Characterization (materials science) ,SPHERES ,Stars ,Astrophysics - Solar and Stellar Astrophysics ,13. Climate action ,Space and Planetary Science ,ORIGINAL SAMPLE ,STATISTICAL SAMPLES ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Rotation (mathematics) ,SURVEYS ,STARS ,EXTRASOLAR PLANETS ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Large surveys with new-generation high-contrast imaging instruments are needed to derive the frequency and properties of exoplanet populations with separations from ~5 to 300 au. A careful assessment of the stellar properties is crucial for a proper understanding of when, where, and how frequently planets form, and how they evolve. The sensitivity of detection limits to stellar age makes this a key parameter for direct imaging surveys. Aims. We describe the SpHere INfrared survey for Exoplanets (SHINE), the largest direct imaging planet-search campaign initiated at the VLT in 2015 in the context of the SPHERE Guaranteed Time Observations of the SPHERE consortium. In this first paper we present the selection and the properties of the complete sample of stars surveyed with SHINE, focusing on the targets observed during the first phase of the survey (from February 2015 to February 2017). This early sample composed of 150 stars is used to perform a preliminary statistical analysis of the SHINE data, deferred to two companion papers presenting the survey performance, main discoveries, and the preliminary statistical constraints set by SHINE. Methods. Based on a large database collecting the stellar properties of all young nearby stars in the solar vicinity (including kinematics, membership to moving groups, isochrones, lithium abundance, rotation, and activity), we selected the original sample of 800 stars that were ranked in order of priority according to their sensitivity for planet detection in direct imaging with SPHERE. The properties of the stars that are part of the early statistical sample wererevisited, including for instance measurements from the Gaia Data Release 2. Rotation periods were derived for the vast majority of the late-type objects exploiting TESS light curves and dedicated photometric observations. Results. The properties of individual targets and of the sample as a whole are presented. © ESO 2021. SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF – Osservatorio di Padova (Italy), Observatoire de Genève (Switzerland), ETH Zürich (Switzerland), NOVA (Netherlands), ONERA (France) and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland) and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004–2008), grant number 226 604 for FP7 (2009–2012) and grant number 312430 for FP7 (2013–2016). This research has made use of the SIMBAD database and Vizier services, operated at CDS, Strasbourg, France and of the Washington Double Star Catalog maintained at the US Naval Observatory. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This paper includes data collected with the TESS mission, obtained from the MAST data archive at the Space Telescope Science Institute (STScI). Funding for the TESS mission is provided by the NASA Explorer Program. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5–26555. This paper has made use of data products available in ESO archive. Program ID: 60.A-9036(A); 072.C-0488(E) (PI Mayor), 074.C-0364(A) (PI Robichon), 074.C-0037(A) (PI Gunther), 075.C-0202(A) (PI Gunther), 075.C-0689(A) (PI Galland), 076.C-0010(A) (PI Gunther), 077.C-0012(A) (PI Gunther), 077.C-0295(D) (PI Galland), 078.D-0245(C) (PI Dall), 079.C-0046(A) (PI Gunther), 080.D-0151(A) (PI Hatzes), 080.C-0712(A) (PI Desort), 180.C-0886(A) (PI Bonfils), 082.C-0718(B) (PI Bonfils), 082.C-0427(A) (PI Doellinger), 082.C-0390(A) (PI Weise), 183.C-0437(A) (PI Bonfils), 083.C-0794(A) (PI Chauvin), 084.C-1039(A) (PI Chauvin), 184.C-0815(B) (PI Desort), 089.C-0732(A) (PI Lo Curto), 191.C-0873(D) (PI Bonfils), 192.C-0224(A) (PI Lagrange), 097.C-0864(B) (PI Lannier), 098.C-0739(A) (PI Lagrange), 099.C-0205(A) (PI Lagrange), 099.C-0458(A) (PI Lo Curto), 1101.C-0557(A) (PI Lagrange). We have used data from the WASP public archive in this research. The WASP consortium comprises of the University of Cambridge, Keele University, University of Leicester, The Open University, The Queen’s University Belfast, St. Andrews University and the Isaac Newton Group. Funding for WASP comes from the consortium universities and from the UK’s Science and Technology Facilities Council. Based on data retrieved from the SOPHIE archive at Observatoire de Haute-Provence (OHP), available at http://atlas.obs-hp.fr/sophie/. We thank the anonymous referee for useful comments. S.D., V.D., D.M. and R.G. acknowledge the support by INAF/Frontiera through the “Progetti Premiali” funding scheme of the Italian Ministry of Education, University, and Research, the PRIN-INAF 2019 “Planetary systems at young ages” (PLATEA) and the ASI-INAF agreement n.2018-16-HH.0. AV acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 757561). A.M.L. acknowledges funding from Agence Nationale de la Recherche (France) under contract number ANR-14-CE33-0018. J.C. was supported by SC Space Grant and Fulbright Colombia. M.B. acknowledges funding by the UK Science and Technology Facilities Council (STFC) grant no. ST/M001229.
- Published
- 2021
4. A Search for Variability in Exoplanet Analogues and Low-Gravity Brown Dwarfs
- Author
-
Ian J. M. Crossfield, Thomas Henning, Beth Biller, Wolfgang Brandner, Derek Homeier, T. Kopytova, Johanna M. Vos, Trent J. Dupuy, William M. J. Best, Esther Buenzli, Joshua E. Schlieder, Mariangela Bonavita, Simon C. Eriksson, Stanimir Metchev, Katelyn N. Allers, Markus Janson, Mickael Bonnefoy, Michael C. Liu, Niall R. Deacon, Jacqueline Radigan, and Elena Manjavacas
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,010504 meteorology & atmospheric sciences ,Infrared telescope ,Astrophysics::Instrumentation and Methods for Astrophysics ,Brown dwarf ,FOS: Physical sciences ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,New Technology Telescope ,01 natural sciences ,Low Gravity ,Sample (graphics) ,Exoplanet ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Earth and Planetary Astrophysics ,0105 earth and related environmental sciences - Abstract
We report the results of a $J$-band survey for photometric variability in a sample of young, low-gravity objects using the New Technology Telescope (NTT) and the United Kingdom InfraRed Telescope (UKIRT). Surface gravity is a key parameter in the atmospheric properties of brown dwarfs and this is the first large survey that aims to test the gravity dependence of variability properties. We do a full analysis of the spectral signatures of youth and assess the group membership probability of each target using membership tools from the literature. This results in a 30 object sample of young low-gravity brown dwarfs. Since we are lacking in objects with spectral types later than L9, we focus our statistical analysis on the L0-L8.5 objects. We find that the variability occurrence rate of L0-L8.5 low-gravity brown dwarfs in this survey is $30^{+16}_{-8}\%$. We reanalyse the results of Radigan 2014 and find that the field dwarfs with spectral types L0-L8.5 have a variability occurrence rate of $11^{+13}_{-4}\%$. We determine a probability of $98\%$ that the samples are drawn from different distributions. This is the first quantitative indication that the low-gravity objects are more likely to be variable than the field dwarf population. Furthermore, we present follow-up $J_S$ and $K_S$ observations of the young, planetary-mass variable object PSO 318.5-22 over three consecutive nights. We find no evidence of phase shifts between the $J_S$ and $K_S$ bands and find higher $J_S$ amplitudes. We use the $J_S$ lightcurves to measure a rotational period of $8.45\pm0.05~$hr for PSO 318.5-22., accepted for publication in MNRAS
- Published
- 2018
5. Investigation of the inner structures around HD169142 with VLT/SPHERE
- Author
-
A. Pohl, Th. Henning, S. Peretti, Matthias Samland, Myriam Benisty, Sascha P. Quanz, Francois Menard, Anne-Lise Maire, J. de Boer, L. Weber, Philippe Delorme, Daniela Fantinel, Julien Girard, Ch. Ginski, Anthony Cheetham, Arthur Vigan, Paola Pinilla, Tomas Stolker, T. Fusco, Raphaël Galicher, T. Kopytova, Roxanne Ligi, Raffaele Gratton, Gael Chauvin, Silvano Desidera, Cecile Gry, Francois Wildi, Thibaut Moulin, Zahed Wahhaj, Markus Janson, M. Cudel, Beth Biller, Anne-Marie Lagrange, Marcos Suarez, H. LeCoroller, E. Sissa, M. Bonnefoy, M. Kasper, Joany Andreina Manjarres Ramos, C. Perrot, Maud Langlois, Dino Mesa, Tristan Buey, Michael Meyer, M. Feldt, A. Boccaletti, Alice Zurlo, J. L. Beuzit, M. Jaquet, D. Rouan, Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Leiden Observatory [Leiden], Universiteit Leiden, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institute of Astronomy [ETH Zürich], Department of Physics [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Michigan [Ann Arbor], University of Michigan System, Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Institute for Astronomy [Edinburgh] (IfA), University of Edinburgh, Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève = University of Geneva (UNIGE), Sydney Institute for Astronomy (SIfA), The University of Sydney, European Southern Observatory [Santiago] (ESO), European Southern Observatory (ESO), Department of Astronomy, Stockholm University, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Ural Federal University [Ekaterinburg] (UrFU), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Arizona, Heidelberg University, Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Universidad Diego Portales [Santiago] (UDP), Millennium Nucleus Protoplanetary Disk, ONERA - The French Aerospace Lab [Châtillon], ONERA-Université Paris Saclay (COmUE), ANR-16-CE31-0013,PLANET-FORMING-DISKS,De meilleurs modèles pour de meilleures données(2016), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Universiteit Leiden [Leiden], Université de Genève (UNIGE), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Laboratoire d'interaction du rayonnement X avec la matière (LIXAM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Stockholm Observatory Department of Astronomy, ESO, Physics Department [Garching], Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)-Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), IRD, Geneva Observatory, University of Geneva [Switzerland], Franche-Comté Électronique Mécanique, Thermique et Optique - Sciences et Technologies (UMR 6174) (FEMTO-ST), Université de Technologie de Belfort-Montbeliard (UTBM)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS), Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), André, Cécile, Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Belfort-Montbeliard (UTBM), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Technical University of Munich (TUM)-Technical University of Munich (TUM), Université de Franche-Comté (UFC)-Centre National de la Recherche Scientifique (CNRS)-Ecole Nationale Supérieure de Mécanique et des Microtechniques (ENSMM)-Université de Technologie de Belfort-Montbeliard (UTBM), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), and ONERA
- Subjects
INDIVIDUAL ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,TELESCOPE ,Infrared ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,OPTIQUE ADAPTATIVE ,01 natural sciences ,law.invention ,DETECTION ,Telescope ,Integral field spectrograph ,Planet ,law ,0103 physical sciences ,TECHNIQUES ,Astrophysics::Solar and Stellar Astrophysics ,PLANETS AND SATELLITES ,010306 general physics ,010303 astronomy & astrophysics ,Spectrograph ,[PHYS.PHYS.PHYS-SPACE-PH] Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] ,ComputingMilieux_MISCELLANEOUS ,Astrophysics::Galaxy Astrophysics ,HD169142 ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,EXOPLANETE ,Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,[PHYS]Physics [physics] ,PROTOPLANETARY DISC ,HIGH ANGULAR RESOLUTION ,Astronomy and Astrophysics ,Position angle ,Exoplanet ,FORMATION ,[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph] ,Stars ,Space and Planetary Science ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Astrophysics::Earth and Planetary Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,STARS ,Astrophysics - Earth and Planetary Astrophysics - Abstract
We present observations of the Herbig Ae star HD169142 with VLT/SPHERE instruments InfraRed Dual-band Imager and Spectrograph (IRDIS) ($K1K2$ and $H2H3$ bands) and the Integral Field Spectrograph (IFS) ($Y$, $J$ and $H$ bands). We detect several bright blobs at $\sim$180 mas separation from the star, and a faint arc-like structure in the IFS data. Our reference differential imaging (RDI) data analysis also finds a bright ring at the same separation. We show, using a simulation based on polarized light data, that these blobs are actually part of the ring at 180 mas. These results demonstrate that the earlier detections of blobs in the $H$ and $K_S$ bands at these separations in Biller et al. as potential planet/substellar companions are actually tracing a bright ring with a Keplerian motion. Moreover, we detect in the images an additional bright structure at $\sim$93 mas separation and position angle of 355$^{\circ}$, at a location very close to previous detections. It appears point-like in the $YJ$ and $K$ bands but is more extended in the $H$ band. We also marginally detect an inner ring in the RDI data at $\sim$100 mas. Follow-up observations are necessary to confirm the detection and the nature of this source and structure., 11 pages, 7 figures, 2 tables; published in MNRAS (this version includes proofs corrections)
- Published
- 2018
6. First scattered light detection of a nearly edge-on transition disk around the T Tauri star RY Lupi
- Author
-
A. Pohl, Alice Zurlo, Anne-Lise Maire, R. van Boekel, T. Kopytova, C. Petit, Mickael Bonnefoy, Marcos Suarez, Tristan Buey, Dino Mesa, Christian Ginski, Myriam Benisty, R. G. Gratton, R. Ligi, P. Blanchard, Anthony Cheetham, Enrico Cascone, Anthony Boccaletti, Yves Magnard, Th. Henning, Raphaël Galicher, Maud Langlois, Carsten Dominik, Hubert Klahr, L. Weber, J. de Boer, Arthur Vigan, Christophe Pinte, Quentin Kral, Francois Menard, M. Feldt, Anne-Marie Lagrange, S. Peretti, Markus Janson, S. Messina, Julien Girard, Henning Avenhaus, Gael Chauvin, L. Denneulin, O. Möller-Nilsson, J. Pragt, Silvano Desidera, Tomas Stolker, E. Sissa, Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Heidelberg University, Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Instituto de Astronomia y ciencias Planetarias de Atacama (INCT), Universidad de Atacama, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Stockholm University, University of Cambridge [UK] (CAM), Geneva Observatory, University of Geneva [Switzerland], European Southern Observatory (ESO), INAF - Osservatorio Astronomico di Capodimonte (OAC), DOTA, ONERA, Université Paris Saclay [Châtillon], ONERA-Université Paris-Saclay, NOVA Optical Infrared Instrumentation Group, Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), DOTA, ONERA, Université Paris Saclay (COmUE) [Châtillon], ONERA-Université Paris Saclay (COmUE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Genève = University of Geneva (UNIGE), Universiteit Leiden, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), and Low Energy Astrophysics (API, FNWI)
- Subjects
INFRARED DEVICES ,NUMERICAL [METHODS] ,Polarimetry ,FOS: Physical sciences ,Context (language use) ,DUST ,POLARIMETERS ,Astrophysics ,01 natural sciences ,methods: numerical ,010309 optics ,Planet ,0103 physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Angular resolution ,observational ,techniques: polarimetric [protoplanetary disks ,planet-disk interactions ,methods] ,SILICATES ,Adaptive optics ,NUMERICAL METHODS ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,PLANET-DISK INTERACTIONS ,POLARIMETRIC [TECHNIQUES] ,ADAPTIVE OPTICS ,Spiral galaxy ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,protoplanetary disks ,NUMERICALS [METHODS] ,Astronomy and Astrophysics ,Wavelength ,T Tauri star ,techniques: polarimetric ,LIGHT ,13. Climate action ,Space and Planetary Science ,OBSERVATIONAL [METHODS] ,Astrophysics::Earth and Planetary Astrophysics ,LIGHT SCATTERING ,methods: observational ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,PROTOPLANETARY DISKS ,STARS ,Astrophysics - Earth and Planetary Astrophysics ,PLANETS - Abstract
Context. Transition disks are considered sites of ongoing planet formation, and their dust and gas distributions could be signposts of embedded planets. The transition disk around the T Tauri star RY Lup has an inner dust cavity and displays a strong silicate emission feature. Aims. Using high-resolution imaging we study the disk geometry, including non-axisymmetric features, and its surface dust grain, to gain a better understanding of the disk evolutionary process. Moreover, we search for companion candidates, possibly connected to the disk. Methods. We obtained high-contrast and high angular resolution data in the near-infrared with the VLT/SPHERE extreme adaptive optics instrument whose goal is to study the planet formation by detecting and characterizing these planets and their formation environments through direct imaging. We performed polarimetric imaging of the RY Lup disk with IRDIS (at 1.6 μm), and obtained intensity images with the IRDIS dual-band imaging camera simultaneously with the IFS spectro-imager (0.9-1.3 μm). Results. We resolved for the first time the scattered light from the nearly edge-on circumstellar disk around RY Lup, at projected separations in the 100 au range. The shape of the disk and its sharp features are clearly detectable at wavelengths ranging from 0.9 to 1.6 μm. We show that the observed morphology can be interpreted as spiral arms in the disk. This interpretation is supported by in-depth numerical simulations. We also demonstrate that these features can be produced by one planet interacting with the disk. We also detect several point sources which are classified as probable background objects. © 2018 ESO. Acknowledgements. We acknowledge our anonymous reviewers for the very careful reading and constructive suggestions that contributed to improving this paper. SPHERE is an instrument designed and built by a consortium consisting of IPAG (Grenoble, France), MPIA (Heidelberg, Germany), LAM (Marseille, France), LESIA (Paris, France), Laboratoire Lagrange (Nice, France), INAF–Osservatorio di Padova (Italy), Observatoire astronomique de l’universite de Geneve (Switzerland), ETH Zurich (Switzerland), NOVA (Netherlands), ONERA (France), and ASTRON (Netherlands) in collaboration with ESO. SPHERE was funded by ESO, with additional contributions from CNRS (France), MPIA (Germany), INAF (Italy), FINES (Switzerland), and NOVA (Netherlands). SPHERE also received funding from the European Commission Sixth and Seventh Framework Programmes as part of the Optical Infrared Coordination Network for Astronomy (OPTICON) under grant number RII3-Ct-2004-001566 for FP6 (2004-2008), grant number 226604 for FP7 (2009-2012), and grant number 312430 for FP7 (2013-2016). This work was supported by the Programme National de Planétologie (PNP) and the Programme National de Physique Stellaire (PNPS) of CNRS-INSU co-funded by CNES. This work has also been supported by a grant from the French Labex OSUG2020 (Investisse-ments d’avenir - ANR10 LABX56) and by the ANR grant ANR-14-CE33-0018 (GIPSE). This work has made use of the SPHERE Data Centre, jointly operated by OSUG/IPAG (Grenoble), PYTHEAS /LAM/CeSAM (Marseille), OCA/Lagrange (Nice), and Observatoire de Paris/LESIA (Paris). This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. Q. Kral also acknowledges support from STFC (consolidated grant) via the institute of Asronomy, Cambridge.
- Published
- 2018
7. Peculiarities of Spectral and Multifractal Estimates of the Brain Microwave Radiation
- Author
-
T. Kopytova, Vladimir S. Kublanov, and Vasilii I. Borisov
- Subjects
Physics ,Hurst exponent ,0206 medical engineering ,Microwave radiometer ,02 engineering and technology ,Multifractal system ,020601 biomedical engineering ,01 natural sciences ,010309 optics ,symbols.namesake ,0103 physical sciences ,Healthy volunteers ,symbols ,Statistical physics ,Gaussian process ,Microwave ,Research method - Abstract
The paper presents the results of dependency assessments of the spectral and multifractal analysis of the brain microwave radiation signals. Twenty neurology healthy volunteers participated in study. The biomedical signals formed by the dual-channel microwave radiometer. The research method used a machine-learning algorithm that allows predicting relation between the spectral power and the Hurst exponent. Compare the distribution of possible functions with data obtained from different channels were present. The results obtained allowed to demonstrate the absence interrelation between spectral and multifractal estimates of the brain microwave radiation signals.
- Published
- 2017
8. First light of the VLT planet finder SPHERE. II. The physical properties and the architecture of the young systems PZ Telescopii and HD 1160 revisited
- Author
-
Th. Henning, Emmanuel Hugot, Cyril Petit, Julien Milli, Massimo Turatto, Dimitri Mawet, Silvano Desidera, M. Kasper, O. Möller-Nilsson, Stéphane Udry, Alice Zurlo, A. Pavlov, Enrico Giro, Cecile Gry, M. Millward, Andrea Baruffolo, David Ehrenreich, Sergio Messina, Enrico Cascone, Jean-Luc Beuzit, M. Llored, T. Kopytova, Zahed Wahhaj, Andreas Bazzon, P. Martinez, Norbert Hubin, C. Moutou, Mickael Bonnefoy, Thibaut Moulin, Raffaele Gratton, Kjetil Dohlen, P. Blanchard, L. Weber, S. Rochat, Ch. Ginski, Riccardo Claudi, Pascal Puget, Anne Costille, Alain Origne, M. Carle, D. Le Mignant, Gael Chauvin, David Mouillet, H. M. Schmid, A. Delboulbe, M. Feldt, Anthony Boccaletti, Raphaël Galicher, Arthur Vigan, J. Pragt, D. Gisler, C. Thalmann, Jacopo Antichi, L. Gluck, Jose Ramos, J. de Boer, Anne-Marie Lagrange, Anne-Lise Maire, Ronald Roelfsema, Thierry Fusco, Julien Girard, Farrokh Vakili, Dino Mesa, Bernardo Salasnich, Maud Langlois, V. De Caprio, M. Jaquet, Carsten Dominik, Jean-François Sauvage, Francois Wildi, F. Madec, INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), European Southern Observatory [Santiago] (ESO), European Southern Observatory (ESO), INAF - Osservatorio Astrofisico di Catania (OACT), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, Institute for Astronomy [Zürich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Geneva Observatory, University of Geneva [Switzerland], Universidad Diego Portales [Santiago] (UDP), Departamento de Astronomia (DAS), Universidad de Santiago de Chile [Santiago] (USACH), Laboratoire d'Astrophysique de Grenoble (LAOG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Euratom/UKAEA Fusion Assoc., Culham Science Centre [Abingdon], Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), ONERA - The French Aerospace Lab [Châtillon], ONERA, Centre de Physique des Particules de Marseille (CPPM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Aix Marseille Université (AMU), ESO, Physics Department [Garching], Technical University of Munich (TUM)-Technical University of Munich (TUM), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), Caltech Department of Astronomy [Pasadena], California Institute of Technology (CALTECH), Canada-France-Hawaii Telescope Corporation, NASA Goddard Space Flight Center (GSFC), De la Molécule aux Nanos-objets : Réactivité, Interactions et Spectroscopies (MONARIS), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), European Synchrotron Radiation Facility (ESRF), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Universiteit Leiden, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Université de Genève = University of Geneva (UNIGE), ONERA-Université Paris Saclay (COmUE), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)-Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Environnements et Paléoenvironnements OCéaniques (EPOC), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Canada-France-Hawaii Telescope Corporation (CFHT), National Research Council of Canada (NRC)-Centre National de la Recherche Scientifique (CNRS)-University of Hawai'i [Honolulu] (UH), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Institut de Chimie du CNRS (INC)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Low Energy Astrophysics (API, FNWI)
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Very Large Telescope ,010308 nuclear & particles physics ,Metallicity ,Brown dwarf ,FOS: Physical sciences ,Astronomy and Astrophysics ,Context (language use) ,Astrophysics ,01 natural sciences ,Exoplanet ,Luminosity ,Photometry (optics) ,Space and Planetary Science ,0103 physical sciences ,Spectral energy distribution ,Astrophysics - Instrumentation and Methods for Astrophysics ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010303 astronomy & astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
[Abridged] Context. The young systems PZ Tel and HD 1160, hosting known low-mass companions, were observed during the commissioning of the new planet finder SPHERE with several imaging and spectroscopic modes. Aims. We aim to refine the physical properties and architecture of both systems. Methods. We use SPHERE commissioning data and REM observations, as well as literature and unpublished data from VLT/SINFONI, VLT/NaCo, Gemini/NICI, and Keck/NIRC2. Results. We derive new photometry and confirm the nearly daily photometric variability of PZ Tel A. Using literature data spanning 38 yr, we show that the star also exhibits a long-term variability trend. The 0.63-3.8 mic SED of PZ Tel B allows us to revise its properties: spectral type M7+/-1, Teff=2700+/-100 K, log(g)0.66) of PZ Tel B. For e4 MJ) outside 0.5" for the PZ Tel system. We also show that K1-K2 color can be used with YJH low-resolution spectra to identify young L-type companions, provided high photometric accuracy (, 25 pages, 23 figures, accepted for publication in A&A on Oct. 13th, 2015; version including language editing. Typo on co-author name on astroph page corrected, manuscript unchanged
- Published
- 2016
9. Discovery of an outflow of the very low-mass star ISO 143
- Author
-
Adriana Pohl, T. Kopytova, and Viki Joergens
- Subjects
Physics ,Brown dwarf ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Spectral line ,Stars ,T Tauri star ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Outflow ,Emission spectrum ,Low Mass ,Solar and Stellar Astrophysics (astro-ph.SR) ,Line (formation) - Abstract
We discover that the very young very low-mass star ISO143 (M5) is driving an outflow based on spectro-astrometry of forbidden [SII] emission lines at 6716A and 6731A observed in UVES/VLT spectra. This adds another object to the handful of brown dwarfs and very low-mass stars (M5-M8) for which an outflow has been confirmed and which show that the T Tauri phase continues at very low masses. We find the outflow of ISO143 to be intrinsically asymmetric and the accretion disk to not obscure the outflow, as only the red outflow component is visible in the [SII] lines. ISO143 is only the third T Tauri object showing a stronger red outflow component in spectro-astrometry, after RW Aur (G5) and ISO217 (M6.25). We show here that including ISO143 two out of seven outflows confirmed in the very low-mass regime (M5-M8) are intrinsically asymmetric. We measure a spatial extension of the outflow in [SII] of up to 200-300 mas (about 30-50 AU) and velocities of up to 50-70 km/s. We furthermore detect line emission of ISO143 in CaII (8498), OI (8446), HeI (7065), and weakly in [FeII] (7155). Based on a line profile analysis and decomposition we demonstrate that (i) the CaII emission can be attributed to chromospheric activity, a variable wind, and the magnetospheric infall zone, (ii) the OI emission mainly to accretion-related processes but also a wind, and (iii) the HeI emission to chromospheric or coronal activity. We estimate a mass outflow rate of ISO143 of ~10^{-10} Msol/yr and a mass accretion rate in the range of ~10^{-8} to ~10^{-9} Msol/yer. These values are consistent with those of other brown dwarfs and very low-mass stars. The derived Mout/Macc ratio of 1-20% is not supporting previous findings of this number to be very large (>40%) for very low-mass objects., Accepted for publication at A&A; 9 pages, 5 figures. Minor changes due to language editing
- Published
- 2012
10. Master Robotic Net
- Author
-
Andrey Popov, Alexander Krylov, V. V. Chazov, Nikolaj Shatskij, T. Kopytova, V. Krushinsky, P. V. Kortunov, A. V. Parkhomenko, Ivan Zalozhnyh, V. G. Kornilov, V. M. Lipunov, N. V. Tyurina, E. S. Gorbovskoy, Alexander Belinski, Anatoly Sankovich, Kirill Ivanov, D. Kuvshinov, Andrey Tlatov, Pavel Balanutsa, S. Yazev, V. Yurkov, and A. S. Kuznetsov
- Subjects
Solar System ,Article Subject ,lcsh:Astronomy ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Gravitational microlensing ,lcsh:QB1-991 ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Astrophysics::Galaxy Astrophysics ,media_common ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Polarization (waves) ,Exoplanet ,Supernova ,Space and Planetary Science ,Limiting magnitude ,Sky ,Dark energy ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
The main goal of the MASTER-Net project is to produce a unique fast sky survey with all sky observed over a single night down to a limiting magnitude of 19 - 20mag. Such a survey will make it possible to address a number of fundamental problems: search for dark energy via the discovery and photometry of supernovas (including SNIa), search for exoplanets, microlensing effects, discovery of minor bodies in the Solar System and space-junk monitoring. All MASTER telescopes can be guided by alerts, and we plan to observe prompt optical emission from gamma-ray bursts synchronously in several filters and in several polarization planes., Comment: 10 pages, 8 figures
- Published
- 2010
11. Transient Detections and Other Real-Time Data Processing from MASTER-VWF Wide-Field Cameras
- Author
-
A. Parkhomenko, D. Kuvshinov, Pavel Balanutsa, N. V. Tyurina, V. M. Lipunov, Andrey Popov, V. Krushinsky, Andrey Tlatov, Alexander Krylov, V. V. Chazov, Alexander Belinski, Ivan Zalozhnyh, T. Kopytova, Kirill E. Ivanov, P. V. Kortunov, E. S. Gorbovskoy, Nikolaj Shatskij, A. S. Kuznetsov, S. Yazev, and V. G. Kornilov
- Subjects
Physics ,Large field of view ,Data processing ,Article Subject ,lcsh:Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Real-time computing ,Astronomy and Astrophysics ,Wide field ,Field (computer science) ,lcsh:QB1-991 ,Space and Planetary Science ,Transient (computer programming) ,Real-time data ,Gamma-ray burst - Abstract
Construction of robotic observatories has developed into an important and thriving field of astronomy. Their large field of view combined with the capability to be pointed at any direction makes robotic astronomical systems indispensable for tasks involving searches for transients like GRB, supernovae explosions, novae, and so forth, where both the time and direction of the search are impossible to predict. This paper describes prompt GRB observations made with MASTER-VWF wide-field cameras and the methods of image analysis and classification of transients used for real-time data processing. During seven months of operation six synchronous observations of gamma-ray bursts have been made using MASTER VWF facilities deployed in Kislovodsk and Irkutsk. In all cases high upper limits have been obtained.
- Published
- 2010
12. The LEECH Exoplanet Imaging Survey. Further constraints on the planet architecture of the HR 8799 system(Corrigendum)
- Author
-
Anne-Lise Maire, T. Kopytova, Kimberly Ward-Duong, Abhijith Rajan, Apurva Oza, Silvano Desidera, Karl-Heinz Hofmann, Denis Defrere, Esther Buenzli, Vanessa P. Bailey, Daniel Apai, Mike Skrutskie, Amali Vaz, Simone Esposito, P. M. Hinz, Mickael Bonnefoy, R. J. De Rosa, Justin R. Crepp, Th. Henning, Chick E Woodward, J. Patience, R. G. Gratton, Joshua E. Schlieder, Riccardo Claudi, Wolfgang Brandner, Jared R. Males, Katie M. Morzinski, Francesco Marzari, Beth Biller, Dino Mesa, J. J. Fortney, Enrico Pinna, Dieter Schertl, Josh A. Eisner, Jarron Leisenring, Laird M. Close, Gerd Weigelt, Andy Skemer, and Kate Y. L. Su
- Subjects
individual: HR 8799 [stars] ,Physics ,high angular resolution [techniques] ,Leech ,Astronomy ,Astronomy and Astrophysics ,Astrophysics ,adaptive optics [instrumentation] ,Astronomy & Astrophysics ,Exoplanet ,Space and Planetary Science ,Planet ,data analysis [methods] ,planetary systems ,addenda ,errata ,Astronomical and Space Sciences - Abstract
The LBT is an international collaboration among institutions in the United States, Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.
- Published
- 2015
13. Variability of CHXR 20: accretion, extinction, spots or a companion?
- Author
-
T. Kopytova, Reinhard Mundt, M. V. Rodriguez-Ledesma, Aurora Sicilia-Aguilar, and Viki Joergens
- Subjects
Spots ,Space and Planetary Science ,Astronomy ,Astronomy and Astrophysics ,Geology ,Accretion (astrophysics) - Abstract
We study the photometric variability of a pre-main sequence star (K6, 0.9M⊙) CHXR 20. We test several scenarios for the variability including variable accretion, variable extinction, cool and hot spots on the stellar surface and the presence of a potential companion.
- Published
- 2013
14. Dynamical models to explain observations with SPHERE in planetary systems with double debris belts
- Author
-
N. Pawellek, R. Ligi, Raphaël Galicher, C. Lazzoni, Luigi Lessio, T. Kopytova, Michael Meyer, Francois Wildi, M. Feldt, Anne-Marie Lagrange, Daniela Fantinel, Ch. Ginski, Anthony Cheetham, Bernardo Salasnich, T. Schmidt, Maud Langlois, V. De Caprio, Wolfgang Brandner, S. Incorvaia, Graeme Salter, G. Farisato, Mickael Bonnefoy, M. Cudel, Salvo Scuderi, Francesco Marzari, Alice Zurlo, J. L. Beuzit, E. Sissa, Markus Janson, Pietro Bruno, Andreas Bazzon, Philippe Delorme, Dino Mesa, Anne-Lise Maire, M. Samland, C. Perrot, Stéphane Udry, R. G. Gratton, F. Cantalloube, Riccardo Claudi, Daniel Rouan, Sebastian Daemgen, Henning Avenhaus, Beth Biller, Jacopo Antichi, S. Peretti, Enrico Cascone, E. Sezestre, Johan Olofsson, Th. Henning, H. LeCoroller, J. Milli, Enrico Giro, Jean-Loup Baudino, Massimo Turatto, Andrea Baruffolo, Julien Girard, M. Kasper, Esther Buenzli, Janis Hagelberg, Gael Chauvin, Quentin Kral, David Mouillet, Arthur Vigan, Mariangela Bonavita, Francois Menard, Anthony Boccaletti, Silvano Desidera, INAF - Osservatorio Astronomico di Padova (OAPD), Istituto Nazionale di Astrofisica (INAF), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), INAF - Osservatorio Astrofisico di Arcetri (OAA), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, INAF - Osservatorio Astronomico di Capodimonte (OAC), Observatoire Astronomique de l'Université de Genève (ObsGE), Université de Genève (UNIGE), Institute of Astronomy [ETH Zürich], Department of Physics [ETH Zürich] (D-PHYS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich)-Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Leiden Observatory [Leiden], Universiteit Leiden [Leiden], Stockholm University, European Southern Observatory (ESO), Geneva Observatory, University of Geneva [Switzerland], Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Université de Genève = University of Geneva (UNIGE), Universiteit Leiden, ANR-16-CE31-0013,PLANET-FORMING-DISKS,De meilleurs modèles pour de meilleures données(2016), Pawellek, Nicole [0000-0002-9385-9820], and Apollo - University of Cambridge Repository
- Subjects
GENERAL [KUIPER BELT] ,IMAGE PROCESSING ,GENERALS [KUIPER BELT] ,FOS: Physical sciences ,DEBRIS ,Orbital eccentricity ,techniques: image processing ,Astrophysics ,IMAGE PROCESSING [TECHNIQUES] ,01 natural sciences ,methods: analytical ,Planet ,instrumentation: high angular resolution ,0103 physical sciences ,ANALYTICAL [METHODS] ,Circular orbit ,010303 astronomy & astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,PLANET-DISK INTERACTIONS ,Debris disk ,planet-disk interactions ,010308 nuclear & particles physics ,Astronomy and Astrophysics ,Mass ratio ,Planetary system ,Exoplanet ,SPHERES ,13. Climate action ,Space and Planetary Science ,OBSERVATIONAL [METHODS] ,HIGH ANGULAR RESOLUTION [INSTRUMENTATION] ,Kuiper belt: general ,Astrophysics::Earth and Planetary Astrophysics ,ORBITS ,methods: observational ,Low Mass ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Earth and Planetary Astrophysics ,PLANETS - Abstract
A large number of systems harboring a debris disk show evidence for a double belt architecture. One hypothesis for explaining the gap between the belts is the presence of one or more planets dynamically carving it. This work aims to investigate this scenario in systems harboring two components debris disks. All the targets in the sample were observed with the SPHERE instrument which performs high-contrast direct imaging. Positions of the inner and outer belts were estimated by SED fitting of the infrared excesses or, when available, from resolved images of the disk. Very few planets have been observed so far in debris disks gaps and we intended to test if such non-detections depend on the observational limits of the present instruments. This aim is achieved by deriving theoretical predictions of masses, eccentricities and semi-major axes of planets able to open the observed gaps and comparing such parameters with detection limits obtained with SPHERE. The relation between the gap and the planet is due to the chaotic zone around the orbit of the planet. The radial extent of this zone depends on the mass ratio between the planet and the star, on the semi-major axis and on the eccentricity of the planet and it can be estimated analytically. We apply the formalism to the case of one planet on a circular or eccentric orbit. We then consider multi-planetary systems: 2 and 3 equal-mass planets on circular orbits and 2 equal-mass planets on eccentric orbits in a packed configuration. We then compare each couple of values (M,a), derived from the dynamical analysis of single and multiple planetary models, with the detection limits obtained with SPHERE. Our results show that the apparent lack of planets in gaps between double belts could be explained by the presence of a system of two or more planets possibly of low mass and on an eccentric orbits whose sizes are below the present detection limits., Comment: 23 pages, 13 figures
15. K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY.
- Author
-
S. T. Douglas, M. A. Agüeros, K. R. Covey, P. A. Cargile, T. Barclay, A. Cody, S. B. Howell, and T. Kopytova
- Subjects
ROTATIONAL motion ,PLANETS ,SOLAR eclipses ,ATMOSPHERE ,ASTRONOMY - Abstract
As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2, is the first opportunity to measure rotation periods (P
rot ) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present Prot values for 48. Thirty-seven of these are new measurements, including the first Prot measurements for fully convective Hyads. For 9 of the 11 stars with Prot in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses ≲0.3 M⊙ are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass–period plane, only three rapid rotators with masses ≳0.3 M⊙ remain. This is in contrast to previous results showing that the single-valued mass–period sequence for ≈600 Myr old stars ends at ≈0.65 M⊙ when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at ≈600 Myr for stars ≲0.9 M⊙ . The dearth of single rapid rotators more massive than ≈0.3 M⊙ indicates that magnetic braking is more efficient than previously thought, and that age–rotation studies must account for multiplicity. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
16. Glutathione and Its Metabolic Enzymes in Gliomal Tumor Tissue and the Peritumoral Zone at Different Degrees of Anaplasia.
- Author
-
Obukhova L, Kopytova T, Murach E, Shchelchkova N, Kontorshchikova C, Medyanik I, Orlinskaya N, Grishin A, Kontorshchikov M, and Badanina D
- Abstract
This research was aimed at investigating the features of free radical activity and the parameters of glutathione metabolism in tumor tissues and the peritumoral zone at different degrees of glial tumor anaplasia. We analyzed postoperative material from 20 patients with gliomas of different degrees of anaplasia. The greatest differences compared to adjacent noncancerous tissues were found in the tumor tissue: an increased amount of glutathione and glutathione-related enzymes at Grades I and II, and a decrease of these parameters at Grades III and IV. For the peritumoral zone of Grades I and II, the indices changed in different directions, while for Grades III and IV, they occurred synchronously with the tumor tissue changes. For Low Grade and High Grade gliomas, opposite trends were revealed regarding changes in the level of glutathione and the enzymes involved in its metabolism and in the free radical activity in the peritumoral zone. The content of glutathione and the enzymes involved in its metabolism decreased with the increasing degree of glioma anaplasia. In contrast, free radical activity increased. The glutathione system is an active participant in the antioxidant defense of the body and can be used to characterize the cell condition of gliomas at different stages of tumor development.
- Published
- 2022
- Full Text
- View/download PDF
17. Asynchronous calibration of quantitative computed tomography bone mineral density assessment for opportunistic osteoporosis screening: phantom-based validation and parameter influence evaluation.
- Author
-
Skornitzke S, Vats N, Kopytova T, Tong EWY, Hofbauer T, Weber TF, Rehnitz C, von Stackelberg O, Maier-Hein K, Stiller W, Biederer J, Kauczor HU, Heußel CP, Wielpütz M, and Palm V
- Subjects
- Humans, Calibration, Phantoms, Imaging, Tomography, X-Ray Computed, Bone Density, Osteoporosis diagnostic imaging
- Abstract
Asynchronous calibration could allow opportunistic screening based on routine CT for early osteoporosis detection. In this phantom study, a bone mineral density (BMD) calibration phantom and multi-energy CT (MECT) phantom were imaged on eight different CT scanners with multiple tube voltages (80-150 kV
p ) and image reconstruction settings (e.g. soft/hard kernel). Reference values for asynchronous BMD estimation were calculated from the BMD-phantom and validated with six calcium composite inserts of the MECT-phantom with known ground truth. Relative errors/changes in estimated BMD were calculated and investigated for influence of tube voltage, CT scanner and reconstruction setting. Reference values for 282 acquisitions were determined, resulting in an average relative error between calculated BMD and ground truth of - 9.2% ± 14.0% with a strong correlation (R2 = 0.99; p < 0.0001). Tube voltage and CT scanner had a significant effect on calculated BMD (p < 0.0001), with relative differences in BMD of 3.8% ± 28.2% when adapting reference values for tube voltage, - 5.6% ± 9.2% for CT scanner and 0.2% ± 0.2% for reconstruction setting, respectively. Differences in BMD were small when using reference values from a different CT scanner of the same model (0.0% ± 1.4%). Asynchronous phantom-based calibration is feasible for opportunistic BMD assessment based on CT images with reference values adapted for tube voltage and CT scanner model., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
18. AI-Supported Comprehensive Detection and Quantification of Biomarkers of Subclinical Widespread Diseases at Chest CT for Preventive Medicine.
- Author
-
Palm V, Norajitra T, von Stackelberg O, Heussel CP, Skornitzke S, Weinheimer O, Kopytova T, Klein A, Almeida SD, Baumgartner M, Bounias D, Scherer J, Kades K, Gao H, Jäger P, Nolden M, Tong E, Eckl K, Nattenmüller J, Nonnenmacher T, Naas O, Reuter J, Bischoff A, Kroschke J, Rengier F, Schlamp K, Debic M, Kauczor HU, Maier-Hein K, and Wielpütz MO
- Abstract
Automated image analysis plays an increasing role in radiology in detecting and quantifying image features outside of the perception of human eyes. Common AI-based approaches address a single medical problem, although patients often present with multiple interacting, frequently subclinical medical conditions. A holistic imaging diagnostics tool based on artificial intelligence (AI) has the potential of providing an overview of multi-system comorbidities within a single workflow. An interdisciplinary, multicentric team of medical experts and computer scientists designed a pipeline, comprising AI-based tools for the automated detection, quantification and characterization of the most common pulmonary, metabolic, cardiovascular and musculoskeletal comorbidities in chest computed tomography (CT). To provide a comprehensive evaluation of each patient, a multidimensional workflow was established with algorithms operating synchronously on a decentralized Joined Imaging Platform (JIP). The results of each patient are transferred to a dedicated database and summarized as a structured report with reference to available reference values and annotated sample images of detected pathologies. Hence, this tool allows for the comprehensive, large-scale analysis of imaging-biomarkers of comorbidities in chest CT, first in science and then in clinical routine. Moreover, this tool accommodates the quantitative analysis and classification of each pathology, providing integral diagnostic and prognostic value, and subsequently leading to improved preventive patient care and further possibilities for future studies.
- Published
- 2022
- Full Text
- View/download PDF
19. Relationship between Glutathione-Dependent Enzymes and the Immunohistochemical Profile of Glial Neoplasms.
- Author
-
Obukhova L, Kopytova T, Murach E, Shchelchkova N, Kontorshchikova C, Medyanik I, Orlinskaya N, Grishin A, Kontorshchikov M, and Badanina D
- Abstract
This research aimed to investigate the relationships between the parameters of glutathione metabolism and the immunohistochemical characteristics of glial tumors. Postoperative material from 20 patients with gliomas of different grades of anaplasia was analyzed. Bioinformatic analysis of the interactions between the gliomas' immunohistochemical markers and their glutathione-dependent enzymes was carried out using the STRING, BioGrid, while Signor databases revealed interactions between such glioma markers as IDH and p53 and the glutathione exchange enzymes (glutathione peroxidase, glutathione reductase, glutathione S-transferase). The most pronounced relationship with glutathione metabolism was demonstrated by the level of the nuclear protein Ki67 as a marker of proliferative activity, and the presence of the IDH1 mutation as one of the key genetic events of gliomagenesis. The glutathione system is an active participant in the body's antioxidant defense, involving the p53 markers and MGMT promoter methylation. It allows characterization of the gliomal cells' status at different stages of tumor development.
- Published
- 2022
- Full Text
- View/download PDF
20. A global cloud map of the nearest known brown dwarf.
- Author
-
Crossfield IJ, Biller B, Schlieder JE, Deacon NR, Bonnefoy M, Homeier D, Allard F, Buenzli E, Henning T, Brandner W, Goldman B, and Kopytova T
- Abstract
Brown dwarfs--substellar bodies more massive than planets but not massive enough to initiate the sustained hydrogen fusion that powers self-luminous stars--are born hot and slowly cool as they age. As they cool below about 2,300 kelvin, liquid or crystalline particles composed of calcium aluminates, silicates and iron condense into atmospheric 'dust', which disappears at still cooler temperatures (around 1,300 kelvin). Models to explain this dust dispersal include both an abrupt sinking of the entire cloud deck into the deep, unobservable atmosphere and breakup of the cloud into scattered patches (as seen on Jupiter and Saturn). However, hitherto observations of brown dwarfs have been limited to globally integrated measurements, which can reveal surface inhomogeneities but cannot unambiguously resolve surface features. Here we report a two-dimensional map of a brown dwarf's surface that allows identification of large-scale bright and dark features, indicative of patchy clouds. Monitoring suggests that the characteristic timescale for the evolution of global weather patterns is approximately one day.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.