1,666 results on '"T Saitoh"'
Search Results
2. Development of Supercontinuum Laser Source for 2 μm OCT with Tm-Ho co-doped Ultrashort Pulse Fiber Laser Using Single Wall Carbon Nanotube
- Author
-
Masahito Yamanaka, J. Yamamoto, Ying Zhou, T. Saitoh, Norihiko Nishizawa, and Youichi Sakakibara
- Subjects
Materials science ,medicine.diagnostic_test ,Absorption spectroscopy ,business.industry ,Carbon nanotube ,Supercontinuum ,law.invention ,Optical coherence tomography ,law ,Fiber laser ,medicine ,Optoelectronics ,sense organs ,Wideband ,business ,Ultrashort pulse ,Co doped - Abstract
Highly efficient Tm-Ho co-doped ultrashort pulse fiber laser operating at 1.9 μm was developed using single wall carbon nanotube. Wideband supercontinuum at 2.0 μm was generated and high-resolution OCT imaging of human tooth was demonstrated.
- Published
- 2021
3. Predicting the Expansion of Supernova Shells for High-Resolution Galaxy Simulations Using Deep Learning
- Author
-
K. Hirashima, K. Moriwaki, M. S. Fujii, Y. Hirai, T. Saitoh, and J. Makino
- Subjects
History ,Computer Science Applications ,Education - Abstract
Small integration timesteps for a small fraction of the particles become a bottleneck for future galaxy simulations with a higher resolution, especially for massively parallel computing. As we increase the resolution, we must resolve physics on a smaller timescale while the total integration time is fixed as the universe age. The small timesteps for a small fraction of the particles worsen the scalability. More specifically, the regions affected by supernovae (SN) have the smallest timestep in the whole galaxy. Using a Hamiltonian splitting method, we calculate the SN regions with small timesteps using a few thousand CPU cores but integrate the entire galaxy using a shared timestep. For this approach, we need to pick up particles in regions, which will be affected by SN (the target particles) by the next global step (the integration timestep for the entire galaxy) in advance. In this work, we developed the deep learning model to predict the region where the shell due to a supernova explosion expands during one global step. In addition, we identify the target particles using image processing of the density distribution predicted by our deep learning model. Our algorithm could identify the target particles better than the method based on the analytical solution. This particle selection method using deep learning and the Hamiltonian splitting method will improve the performance of galaxy simulations with extremely high resolution.
- Published
- 2022
4. Phylogeography and demographic history of Siberian rubythroat Luscinia calliope
- Author
-
Alexey P. Kryukov, L. N. Spiridonova, T. Saitoh, Ya. A. Red’kin, and O. P. Valchuk
- Subjects
0301 basic medicine ,biology ,Ecology ,Demographic history ,Range (biology) ,Haplotype ,Zoology ,biology.organism_classification ,Haplogroup ,03 medical and health sciences ,Phylogeography ,030104 developmental biology ,Siberian rubythroat ,Genetics ,Luscinia ,Biological dispersal - Abstract
Phylogeographic analysis on the basis of individual marker variability provides insight into the history and mechanisms of the range formation of widely distributed species. A preliminary study of the mtDNA cytochrome b gene in Siberian rubythroat Luscinia calliope revealed the existence of three well-differentiated haplogroups, including one western and two eastern haplogroups. Continuing the study of the genetic markers of the species, we found that, in western part of the range, represented by the nominative geographic race, there were almost exclusively haplotypes of western group. In eastern populations of Khabarovsk krai, Chukotka, Kamchatka, and Sakhalin, haplotypes of all groups are mixed in different proportions. At the same time, the populations of Hokkaido and Iturup islands are exclusively represented by individuals with eastern haplotypes. Comparison of the identified nuclear copies of mitochondrial genes and construction of the phylogenetic network of haplotypes on the basis of cloned and initial sequences showed that two groups of eastern haplotypes (one of which geographically corresponded to L. c. anadyrensis and L. c. camtschatkensis and the second corresponded to L. c. sachalinensis) originated from nuclear pseudogenes of L. c. calliope through intergenomic recombination. In this regard, we propose a new hypothesis for the establishment of the modern range of this species, according to which the Siberian rubythroat dispersal from South Siberia occurred in two stages. At first, the species expanded its range to the northeast in the direction of the Kolyma and Koryak uplands. During the settling of these areas of northeastern Asia, a recombination between the mitochondrial and nuclear DNA took place, which led to the forming of a new haplotype, which was widespread in the emerging breeding populations. Birds with recombinant haplotypes populated the territories of Chukotka and Kamchatka, and then gradually occupied the Kuril Islands and, eventually, reached Hokkaido. At the next stage, Siberian rubythroat, probably, appeared in Sakhalin Island during spring migration, where some individuals stopped for breeding. Settling of the island was accompanied by similar intergenomic recombination and rapid fixation of a new recombinant haplotype with its subsequent spread across Sakhalin. The insular way of dispersal is completely repeated by modern migrants.
- Published
- 2017
5. Applicability of an Image-Based Estimation Method of Nearshore Morphology Using Small Unmanned Aerial Vehicle
- Author
-
T. Saitoh, M. Yuhi, and S. Ishida
- Subjects
Pixel ,Range (statistics) ,Image processing ,Linear dispersion ,Tracking (particle physics) ,Video image ,Intensity (heat transfer) ,Image based ,Geology ,Remote sensing - Abstract
Systematic monitoring of nearshore area provides useful information on sandy beaches over a wide range of temporal and spatial scales. In this study, accordingly, a simple local remote sensing system is developed to monitor the morphological variations of sandy beaches. This monitoring system consists of acquisition of geo-referenced video image of nearshore area from a small UAV (Unmanned Aerial Vehicle) and subsequent image analysis. Owing to the rapid development of information technology, high resolution photographic images of sea surface can be easily recorded at favorable location in a cost-efficient way. The subsequent quantification of morphological changes is carried out based on bright intensity patterns. First, the video images are converted to successive snapshots and rectified. After removing the small oscillations through semi-automatic identification of Ground Control Points (GCPs), the time-stack images of bright intensity variations are constructed for a series of cross-shore sections located at specified alongshore intervals. For each cross-section, the crest lines of waves are tracked out by inspecting the location of steep gradient in bright intensity variations. The local tracking results provide the celerity of waves. Combined with the observed wave period, the local water depth is estimated based on the linear dispersion relation. The system has been applied to the field observation of Uchinada Coast, Ishikawa, Japan facing to the Sea of Japan. The accuracy of geo-referencing was shown to be as small as a couple of pixels. The accuracy of morphological estimation based on image processing has been confirmed through comparison with a field survey using a jet bike. The image-based estimation results qualitatively reproduced the patterns of morphological variation. The typical error was in the range 0.2 to 0.8 m. These results demonstrated the capability of the developed system to remotely estimate the coastal morphology on sandy beaches.
- Published
- 2019
6. Erratum: Anomalous metallic state with strong charge fluctuations in BaxTi8O16+δ revealed by hard x-ray photoemission spectroscopy [Phys. Rev. B 97 , 165116 (2018)]
- Author
-
Takashi Mizokawa, T. Saitoh, Eiji Ikenaga, Mario Okawa, S. Dash, Naurang L. Saini, T. Kajita, and Takuro Katsufuji
- Subjects
X ray photoemission ,Metal ,Materials science ,Condensed matter physics ,visual_art ,visual_art.visual_art_medium ,Charge (physics) ,State (functional analysis) ,Spectroscopy - Published
- 2019
7. 2459Diagnostic value of simultaneous dual-isotope imaging with 99mTc-sestamibi and 123I-BMIPP using cadmium-zinc-telluride SPECT system in patients with acute myocardial infarction
- Author
-
Satoshi Hida, Yuko Igarashi, R Itoh, T. Saitoh, Takayuki Morishima, M Goto, Jun Yamashita, T Chikamori, K. Hirose, T. Hatano, and Naotaka Murata
- Subjects
business.industry ,medicine.disease ,99mTc Sestamibi ,Cadmium zinc telluride ,chemistry.chemical_compound ,chemistry ,123i bmipp ,Dual isotope ,medicine ,In patient ,Myocardial infarction ,Cardiology and Cardiovascular Medicine ,business ,Nuclear medicine ,Value (mathematics) - Published
- 2018
8. Development of a 66 kV-5 kArms Class HTS Power Cable Using REBCO Tapes With High Critical Current
- Author
-
Hikaru Hidaka, Yasuhiro Iijima, K. Watanabe, O. Maruyama, T. Ohkuma, M. Yoshida, Kazuya Akashi, M. Nagata, T. Saitoh, Masanori Daibo, and M. Itoh
- Subjects
Cryostat ,Power transmission ,Materials science ,Nuclear engineering ,Condensed Matter Physics ,Magnetic flux ,Electronic, Optical and Magnetic Materials ,law.invention ,Conductor ,Nuclear magnetic resonance ,law ,Shield ,Eddy current ,Power cable ,Electrical and Electronic Engineering ,Electrical conductor - Abstract
High temperature superconducting (HTS) cables are able to achieve large power capacity and low-loss power transmission. Fujikura Ltd. worked on developing a 66 kV-5 kArms HTS power cable using high critical current (I c ) REBCO tapes in the Japanese national project. One of the technical targets in this project was to reduce AC loss to less than 2 W/m at 5 kArms. REBCO tapes with 240 A/4 mm-width of I c at 77 K, self field, which were fabricated by ion-beam-assisted-deposition (IBAD) and pulsed laser deposition (PLD) methods, were applied to the HTS power cable. As a result, we succeeded in developing the 20 m-long 66 kV-5 kArms HTS power cable. The measured AC loss was achieved 1.4 W/m at 77 K and 1.0 W/m at 67 K at 5 kArms. On the other hand, it is considered that the eddy current loss of the stainless-steel cryostat pipe of HTS cable become obvious in the case of the single-core cable with the large current capacity. It is suggested that the eddy current loss of the stainless-steel cryostat pipe is due to the internal magnetic flux. Therefore, the eddy current loss of the stainless-steel cryostat pipe as well as uniform current distribution of HTS conductor and shield layer should be taken into account for designing the winding direction and pitch of HTS conductor and shield layer of HTS cable. In this work, the measured eddy current loss of the stainless-steel cryostat pipe is also compared with the calculated one.
- Published
- 2015
9. Development of a monochromator for aberration-corrected scanning transmission electron microscopy
- Author
-
Kazunori Somehara, Masanori Ashino, K Omoto, Toshikatsu Kaneyama, Tomohisa Fukuda, Eiji Okunishi, T. Saitoh, Akihiro Ikeda, Masaki Mukai, Tsukasa Hirayama, and Yuichi Ikuhara
- Subjects
Conventional transmission electron microscope ,Materials science ,Wien filter ,business.industry ,Resolution (electron density) ,Scanning confocal electron microscopy ,Electron ,law.invention ,Optics ,Structural Biology ,law ,Scanning transmission electron microscopy ,Physics::Accelerator Physics ,Energy filtered transmission electron microscopy ,Radiology, Nuclear Medicine and imaging ,business ,Instrumentation ,Monochromator - Abstract
In this article, we report the development of a new 200-kV analytical electron microscope equipped with a monochromator with an integrated double Wien-filter system. It enables us to study the electronic structures of materials in detail using electron energy-loss spectroscopy (EELS) analysis at an atomic scale. A highly monochromated and isotropically round electron probe is produced on the specimen plane. The ultimate energy resolutions with 0.1-s acquisition times are measured to be 36 meV at 200 kV and 30 meV at 60 kV. In an EELS mapping experiment performed on SrTiO3 with a monochromated electron probe whose energy resolution is 146 meV, an elemental map exhibits atomic resolution.
- Published
- 2015
10. 5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival
- Author
-
Maruyama K Fukasaka M Uematsu S Takeuchi O Kondo T Saitoh T Martino MM Akira S.
- Published
- 2015
11. P2969Comparison of diagnostic performance of cadmium-zinc-telluride camera system between 201Tl and 99mTc-radiotracers as assessed by fractional flow reserve
- Author
-
K. Hoshino, Satoshi Hida, Akira Yamashina, Jun Yamashita, T. Saitoh, T. Hatano, Yuko Igarashi, Naotaka Murata, Hirokazu Tanaka, K. Hirose, and T Chikamori
- Subjects
chemistry.chemical_compound ,chemistry ,business.industry ,Radiochemistry ,Medicine ,Fractional flow reserve ,Cardiology and Cardiovascular Medicine ,business ,Cadmium zinc telluride - Published
- 2017
12. Development of new elastic constant estimation method using laser ultrasonic visualization testing
- Author
-
A Mori and T Saitoh
- Subjects
Optics ,Materials science ,business.industry ,law ,Acoustics ,Ultrasonic sensor ,Development (differential geometry) ,business ,Constant (mathematics) ,Laser ,Visualization ,law.invention - Published
- 2017
13. Simulation of nonlinear ultrasonic waves in anisotropic materials using convolution quadrature time-domain boundary element method
- Author
-
T. Saitoh and T. Maruyama A. Furukawa
- Subjects
Physics ,Nonlinear system ,Mathematical analysis ,Ultrasonic sensor ,Time domain ,Anisotropy ,Boundary element method ,Quadrature (astronomy) - Published
- 2017
14. Evaluation of a 426 kJ Cryocooled Magnet and a Model Magnet With REBCO Coated Conductors
- Author
-
Masanori Daibo, Masashi Haraguchi, M. Itoh, T. Saitoh, Yasuhiro Iijima, and Shinji Fujita
- Subjects
High-temperature superconductivity ,Materials science ,Condensed matter physics ,Superconducting magnet ,Cryogenics ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Conductor ,law ,Electromagnetic coil ,Magnet ,Electrical and Electronic Engineering ,Composite material ,Electrical conductor ,Current density - Abstract
REBa2Cu3Ox (REBCO, RE = rare earth) coated conductors are expected to show high performance for superconducting applications because of their high current density and high mechanical strength. Fujikura has developed REBCO coated conductor over 570 A/cm width at 77 K, self field with over 800 m length. In addition, we have succeeded in developing a 5 T cryocooled REBCO magnet with a stored energy of 426 kJ. The magnet is composed of 24 pancake coils with an inner diameter of 260 mm, and the total length of the REBCO coated conductors is approximately 7.2 km. We confirmed that the REBCO magnet could be excited up to 5 T for 720 min 9 months after the fabrication of the magnet. It is important to validate the long-term operation test results of the REBCO magnets with larger diameters in order to use these conductors in practical superconducting applications. On the other hand, we have fabricated and evaluated a model magnet before we fabricated a 426 kJ cryocooled magnet. The model magnet is composed of 6 REBCO pancake coils and 18 “dummy coils” with an inner diameter of 260 mm and an outer diameter of 515 mm. The model magnet is about the same size and shape as the 426 kJ cryocooled magnet. We have confirmed that the calculated critical current (Ic) of the top pancake coil of the model magnet was in good agreement with the measured coil Ic from 30 to 77 K under the conduction-cooled conditions. In addition, we have evaluated the thermal runaway behavior of the model magnet under the conduction-cooled conditions. As a result, we have confirmed that the model magnet with a 0.3-mm-thick copper stabilizer had sufficient time to ramp down without degradation at 361 A transport current after the detected normal transition.
- Published
- 2014
15. Development of a 66 kV-5 kA Class HTS Power Cable with IBAD/PLD REBCO Tapes
- Author
-
Hikaru Hidaka, T. Ohkuma, Kazuya Akashi, M. Itoh, Yasuhiro Iijima, M. Yoshida, K. Watanabe, M. Nagata, Masanori Daibo, T. Saitoh, and O. Maruyama
- Subjects
Power transmission ,Materials science ,High-temperature superconductivity ,Superconducting cables ,Rare earth ,Power capacity ,High temperature superconducting ,High temperature superconductors ,AC loss ,Yttrium barium copper oxide ,Physics and Astronomy(all) ,Engineering physics ,Pulsed laser deposition ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Power cable - Abstract
High temperature superconducting (HTS) cables are able to achieve large power capacity and low-loss power transmission. In the Japanese national project, Fujikura Ltd. worked on developing a 66 kV-5 kArms HTS power cable using high critical current ( I c ) REBa 2 Cu 3 O x (REBCO, RE = rare earth) tapes. One of the technical targets in this project is to reduce AC loss to less than 2 W/m at 5 kArms. The REBCO tapes with 240 A/4mm-width of I c at 77 K, self field, which were fabricated by Ion-beam-assisted-deposition (IBAD) and Pulsed Laser Deposition (PLD) method, were applied to a HTS power cable in order to achieve extremely low AC loss. As a result, we have succeeded in developing a 20 m-long 66 kV-5 kArms HTS power cable. The measured AC loss was achieved 1.4 W/m at 77 K and 1.0 W/m at 67 K at 5 kArms.
- Published
- 2014
- Full Text
- View/download PDF
16. PS1489 TH1 CYTOKINE IFN-GAMMA+874T/A AND TNF-ALPHA-857C/T POLYMORPHISMS AFFECT THROMBOCYTOPENIA IN CHRONIC IMMUNE THROMBOCYTOPENIA (CITP)
- Author
-
Tetsuhiro Kasamatsu, Y. Murakami, H. Handa, M. Awata, R. Ishihara, K. Souma, T. Saitoh, N. Gotoh, and H. Murakami
- Subjects
business.industry ,Immunology ,Medicine ,Tumor necrosis factor alpha ,Hematology ,Th1 cytokines ,business ,Affect (psychology) ,Ifn gamma ,Immune thrombocytopenia - Published
- 2019
17. EP-1391 Stereotactic body radiotherapy using a new real-time tumor tracking system and fiducial markers
- Author
-
T. Saitoh, Y. Hiroshima, K. Nitta, Y. Tamaki, T. Ohno, and K. Shinoda
- Subjects
Oncology ,business.industry ,Tumor tracking ,Medicine ,Radiology, Nuclear Medicine and imaging ,Hematology ,business ,Fiducial marker ,Nuclear medicine ,Stereotactic body radiotherapy - Published
- 2019
18. Evaluation of a 5T 2nd Generation High Temperature Superconducting Magnet with a 200-mm-diameter Room Temperature Bore
- Author
-
Masashi Haraguchi, Masanori Daibo, M. Itoh, Shinji Fujita, Yasuhiro Iijima, and T. Saitoh
- Subjects
Superconductivity ,High-temperature superconductivity ,Materials science ,High temperature superconductors ,Yttrium barium copper oxide ,Superconducting magnet ,Cryocooler ,Physics and Astronomy(all) ,Superconducting coils ,law.invention ,chemistry.chemical_compound ,Nuclear magnetic resonance ,chemistry ,law ,Electromagnetic coil ,Magnet ,Superconducting magnets ,Composite material ,Electrical conductor - Abstract
REBCO coated conductors are expected to show high performance in superconducting applications, because of their high mechanical strength and high current density in the magnetic field. However, more characteristics data of REBCO magnet with larger diameter are required in order to apply these conductors in practical superconducting applications. In this work, we have succeeded in developing a 5 T cryo-cooled high-temperature superconducting (HTS) magnet, which was composed of 24 pancake coils with an inner diameter of 260 mm, using REBCO coated conductors. The stored energy of the magnet was 426 kJ. The total length of the REBCO coated conductors was approximately 7.2 km. These conductors were fabricated by Fujikura Ltd. using ion-beam-assisted deposition (IBAD) and pulsed laser deposition (PLD) methods. All pancake coils were confirmed the V-I characteristics without degradation in liquid nitrogen before fabricating the magnet. The magnet was cooled down to 24 K by a GM (Gifford-McMahon) cryocooler after the fabrication. The magnet could excite up to 5.0 T in 60 minutes, successfully. Furthermore, we confirmed that 1% current reversal of the coil current could stabilize the axial central magnetic field drift of this magnet.
- Published
- 2013
- Full Text
- View/download PDF
19. Design and Evaluation of 275 kV-3 kA HTS Power Cable
- Author
-
O. Maruyama, T. Jun, Liu Jin, Masashi Yagi, Naoki Hayakawa, R. Nakayama, Takayo Hasegawa, Naoyuki Amemiya, T. Ohkuma, Atsushi Ishiyama, Takaharu Mitsuhashi, Shinichi Mukoyama, Xudong Wang, and T. Saitoh
- Subjects
Materials science ,business.industry ,YBCO ,Electric Insulation ,Electrical engineering ,High voltage ,HTS power cable ,Physics and Astronomy(all) ,Line (electrical engineering) ,Electric power transmission ,Partial discharge ,High Voltage ,Power cable ,business ,Short circuit ,Short-circuit test ,Voltage - Abstract
A 275 kV 3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. The cable is expected to be put to practical use as the backbone power line in the future because the capacity of 1.5 GW is about the same as overhead transmission lines. The 30 m cable has been designed on the basis of design values that had been obtained by various voltage tests, AC loss measurement tests, short circuit tests, and other elementary tests. Cable insulation was determined by the design stresses and test conditions based on IEC, JEC (Japan electrical standards), and other HTS demonstrations. This cable was also designed to withstand the short circuit test of 63 kA for 0.6 seconds and to have low losses, including AC loss and dielectric loss of 0.8 W/m at 3kA, 275 kV. Based on the design, a 30 m cable was manufactured, and short samples during this manufacturing process were confirmed to have the designed characteristics. Furukawa Electric prepared a demonstration of the 30 m cable with two terminations and a cable joint. The long-term test under a current of 3 kA, and test voltage determined from 30 years of insulation degradation has been conducted since November 2012 at Shenyang in China.
- Published
- 2013
- Full Text
- View/download PDF
20. Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356
- Author
-
Klionsky, D.J. Abdelmohsen, K. Abe, A. Abedin, M.J. Abeliovich, H. Arozena, A.A. Adachi, H. Adams, C.M. Adams, P.D. Adeli, K. Adhihetty, P.J. Adler, S.G. Agam, G. Agarwal, R. Aghi, M.K. Agnello, M. Agostinis, P. Aguilar, P.V. Aguirre-Ghiso, J. Airoldi, E.M. Ait-Si-Ali, S. Akematsu, T. Akporiaye, E.T. Al-Rubeai, M. Albaiceta, G.M. Albanese, C. Albani, D. Albert, M.L. Aldudo, J. Algül, H. Alirezaei, M. Alloza, I. Almasan, A. Almonte-Beceril, M. Alnemri, E.S. Alonso, C. Altan-Bonnet, N. Altieri, D.C. Alvarez, S. Alvarez-Erviti, L. Alves, S. Amadoro, G. Amano, A. Amantini, C. Ambrosio, S. Amelio, I. Amer, A.O. Amessou, M. Amon, A. An, Z. Anania, F.A. Andersen, S.U. Andley, U.P. Andreadi, C.K. Andrieu-Abadie, N. Anel, A. Ann, D.K. Anoopkumar-Dukie, S. Antonioli, M. Aoki, H. Apostolova, N. Aquila, S. Aquilano, K. Araki, K. Arama, E. Aranda, A. Araya, J. Arcaro, A. Arias, E. Arimoto, H. Ariosa, A.R. Armstrong, J.L. Arnould, T. Arsov, I. Asanuma, K. Askanas, V. Asselin, E. Atarashi, R. Atherton, S.S. Atkin, J.D. Attardi, L.D. Auberger, P. Auburger, G. Aurelian, L. Autelli, R. Avagliano, L. Avantaggiati, M.L. Avrahami, L. Azad, N. Awale, S. Bachetti, T. Backer, J.M. Bae, D.-H. Bae, J.-S. Bae, O.-N. Bae, S.H. Baehrecke, E.H. Baek, S.-H. Baghdiguian, S. Bagniewska-Zadworna, A. Bai, H. Bai, J. Bai, X.-Y. Bailly, Y. Balaji, K.N. Balduini, W. Ballabio, A. Balzan, R. Banerjee, R. Bánhegyi, G. Bao, H. Barbeau, B. Barrachina, M.D. Barreiro, E. Bartel, B. Bartolomé, A. Bassham, D.C. Bassi, M.T. Bast, R.C., Jr. Basu, A. Batista, M.T. Batoko, H. Battino, M. Bauckman, K. Baumgarner, B.L. Bayer, K.U. Beale, R. Beaulieu, J.-F. Beck, G.R., Jr. Becker, C. Beckham, J.D. Bédard, P.-A. Bednarski, P.J. Begley, T.J. Behl, C. Behrends, C. Behrens, G.M.N. Behrns, K.E. Bejarano, E. Belaid, A. Belleudi, F. Bénard, G. Berchem, G. Bergamaschi, D. Bergami, M. Berkhout, B. Berliocchi, L. Bernard, A. Bernard, M. Bernassola, F. Bertolotti, A. Bess, A.S. Besteiro, S. Bettuzzi, S. Bhalla, S. Bhattacharyya, S. Bhutia, S.K. Biagosch, C. Bianchi, M.W. Biard-Piechaczyk, M. Billes, V. Bincoletto, C. Bingol, B. Bird, S.W. Bitoun, M. Bjedov, I. Blackstone, C. Blanc, L. Blanco, G.A. Blomhoff, H.K. Boada-Romero, E. Böckler, S. Boes, M. Boesze-Battaglia, K. Boise, L.H. Bolino, A. Boman, A. Bonaldo, P. Bordi, M. Bosch, J. Botana, L.M. Botti, J. Bou, G. Bouché, M. Bouchecareilh, M. Boucher, M.-J. Boulton, M.E. Bouret, S.G. Boya, P. Boyer-Guittaut, M. Bozhkov, P.V. Brady, N. Braga, V.M.M. Brancolini, C. Braus, G.H. Bravo-San-Pedro, J.M. Brennan, L.A. Bresnick, E.H. Brest, P. Bridges, D. Bringer, M.-A. Brini, M. Brito, G.C. Brodin, B. Brookes, P.S. Brown, E.J. Brown, K. Broxmeyer, H.E. Bruhat, A. Brum, P.C. Brumell, J.H. Brunetti-Pierri, N. Bryson-Richardson, R.J. Buch, S. Buchan, A.M. Budak, H. Bulavin, D.V. Bultman, S.J. Bultynck, G. Bumbasirevic, V. Burelle, Y. Burke, R.E. Burmeister, M. Bütikofer, P. Caberlotto, L. Cadwell, K. Cahova, M. Cai, D. Cai, J. Cai, Q. Calatayud, S. Camougrand, N. Campanella, M. Campbell, G.R. Campbell, M. Campello, S. Candau, R. Caniggia, I. Cantoni, L. Cao, L. Caplan, A.B. Caraglia, M. Cardinali, C. Cardoso, S.M. Carew, J.S. Carleton, L.A. Carlin, C.R. Carloni, S. Carlsson, S.R. Carmona-Gutierrez, D. Carneiro, L.A.M. Carnevali, O. Carra, S. Carrier, A. Carroll, B. Casas, C. Casas, J. Cassinelli, G. Castets, P. Castro-Obregon, S. Cavallini, G. Ceccherini, I. Cecconi, F. Cederbaum, A.I. Ceña, V. Cenci, S. Cerella, C. Cervia, D. Cetrullo, S. Chaachouay, H. Chae, H.-J. Chagin, A.S. Chai, C.-Y. Chakrabarti, G. Chamilos, G. Chan, E.Y.W. Chan, M.T.V. Chandra, D. Chandra, P. Chang, C.-P. Chang, R.C.-C. Chang, T.Y. Chatham, J.C. Chatterjee, S. Chauhan, S. Che, Y. Cheetham, M.E. Cheluvappa, R. Chen, C.-J. Chen, G. Chen, G.-C. Chen, G. Chen, H. Chen, J.W. Chen, J.-K. Chen, M. Chen, M. Chen, P. Chen, Q. Chen, Q. Chen, S.-D. Chen, S. Chen, S.S.-L. Chen, W. Chen, W.-J. Chen, W.Q. Chen, W. Chen, X. Chen, Y.-H. Chen, Y.-G. Chen, Y. Chen, Y. Chen, Y. Chen, Y.-J. Chen, Y.-Q. Chen, Y. Chen, Z. Chen, Z. Cheng, A. Cheng, C.H.K. Cheng, H. Cheong, H. Cherry, S. Chesney, J. Cheung, C.H.A. Chevet, E. Chi, H.C. Chi, S.-G. Chiacchiera, F. Chiang, H.-L. Chiarelli, R. Chiariello, M. Chieppa, M. Chin, L.-S. Chiong, M. Chiu, G.N.C. Cho, D.-H. Cho, S.-G. Cho, W.C. Cho, Y.-Y. Cho, Y.-S. Choi, A.M.K. Choi, E.-J. Choi, E.-K. Choi, J. Choi, M.E. Choi, S.-I. Chou, T.-F. Chouaib, S. Choubey, D. Choubey, V. Chow, K.-C. Chowdhury, K. Chu, C.T. Chuang, T.-H. Chun, T. Chung, H. Chung, T. Chung, Y.-L. Chwae, Y.-J. Cianfanelli, V. Ciarcia, R. Ciechomska, I.A. Ciriolo, M.R. Cirone, M. Claerhout, S. Clague, M.J. Cl� ria, J. Clarke, P.G.H. Clarke, R. Clementi, E. Cleyrat, C. Cnop, M. Coccia, E.M. Cocco, T. Codogno, P. Coers, J. Cohen, E.E.W. Colecchia, D. Coletto, L. Coll, N.S. Colucci-Guyon, E. Comincini, S. Condello, M. Cook, K.L. Coombs, G.H. Cooper, C.D. Cooper, J.M. Coppens, I. Corasaniti, M.T. Corazzari, M. Corbalan, R. Corcelle-Termeau, E. Cordero, M.D. Corral-Ramos, C. Corti, O. Cossarizza, A. Costelli, P. Costes, S. Cotman, S.L. Coto-Montes, A. Cottet, S. Couve, E. Covey, L.R. Cowart, L.A. Cox, J.S. Coxon, F.P. Coyne, C.B. Cragg, M.S. Craven, R.J. Crepaldi, T. Crespo, J.L. Criollo, A. Crippa, V. Cruz, M.T. Cuervo, A.M. Cuezva, J.M. Cui, T. Cutillas, P.R. Czaja, M.J. Czyzyk-Krzeska, M.F. Dagda, R.K. Dahmen, U. Dai, C. Dai, W. Dai, Y. Dalby, K.N. Valle, L.D. Dalmasso, G. D'amelio, M. Damme, M. Darfeuille-Michaud, A. Dargemont, C. Darley-Usmar, V.M. Dasarathy, S. Dasgupta, B. Dash, S. Dass, C.R. Davey, H.M. Davids, L.M. Dávila, D. Davis, R.J. Dawson, T.M. Dawson, V.L. Daza, P. de Belleroche, J. de Figueiredo, P. de Figueiredo, R.C.B.Q. de la Fuente, J. De Martino, L. De Matteis, A. De Meyer, G.R.Y. De Milito, A. De Santi, M. de Souza, W. De Tata, V. De Zio, D. Debnath, J. Dechant, R. Decuypere, J.-P. Deegan, S. Dehay, B. Del Bello, B. Del Re, D.P. Delage-Mourroux, R. Delbridge, L.M.D. Deldicque, L. Delorme-Axford, E. Deng, Y. Dengjel, J. Denizot, M. Dent, P. Der, C.J. Deretic, V. Derrien, B. Deutsch, E. Devarenne, T.P. Devenish, R.J. Di Bartolomeo, S. Di Daniele, N. Di Domenico, F. Di Nardo, A. Di Paola, S. Di Pietro, A. Di Renzo, L. Di Antonio, A. Díaz-Araya, G. Díaz-Laviada, I. Diaz-Meco, M.T. Diaz-Nido, J. Dickey, C.A. Dickson, R.C. Diederich, M. Digard, P. Dikic, I. Dinesh-Kumar, S.P. Ding, C. Ding, W.-X. Ding, Z. Dini, L. Distler, J.H.W. Diwan, A. Djavaheri-Mergny, M. Dmytruk, K. Dobson, R.C.J. Doetsch, V. Dokladny, K. Dokudovskaya, S. Donadelli, M. Dong, X.C. Dong, X. Dong, Z. Donohue, T.M., Jr. Donohue-Jr, T.M. Doran, K.S. D'orazi, G. Dorn, G.W., II Dosenko, V. Dridi, S. Drucker, L. Du, J. Du, L.-L. Du, L. du Toit, A. Dua, P. Duan, L. Duann, P. Dubey, V.K. Duchen, M.R. Duchosal, M.A. Duez, H. Dugail, I. Dumit, V.I. Duncan, M.C. Dunlop, E.A. Dunn, W.A., Jr. Dupont, N. Dupuis, L. Durán, R.V. Durcan, T.M. Duvezin-Caubet, S. Duvvuri, U. Eapen, V. Ebrahimi-Fakhari, D. Echard, A. Eckhart, L. Edelstein, C.L. Edinger, A.L. Eichinger, L. Eisenberg, T. Eisenberg-Lerner, A. Eissa, N.T. El-Deiry, W.S. El-Khoury, V. Elazar, Z. Eldar-Finkelman, H. Elliott, C.J.H. Emanuele, E. Emmenegger, U. Engedal, N. Engelbrecht, A.-M. Engelender, S. Enserink, J.M. Erdmann, R. Erenpreisa, J. Eri, R. Eriksen, J.L. Erman, A. Escalante, R. Eskelinen, E.-L. Espert, L. Esteban-Martínez, L. Evans, T.J. Fabri, M. Fabrias, G. Fabrizi, C. Facchiano, A. Færgeman, N.J. Faggioni, A. Fairlie, W.D. Fan, C. Fan, D. Fan, J. Fang, S. Fanto, M. Fanzani, A. Farkas, T. Faure, M. Favier, F.B. Fearnhead, H. Federici, M. Fei, E. Felizardo, T.C. Feng, H. Feng, Y. Feng, Y. Ferguson, T.A. Fernández, Á.F. Fernandez-Barrena, M.G. Fernandez-Checa, J.C. Fernández-López, A. Fernandez-Zapico, M.E. Feron, O. Ferraro, E. Ferreira-Halder, C.V. Fesus, L. Feuer, R. Fiesel, F.C. Filippi-Chiela, E.C. Filomeni, G. Fimia, G.M. Fingert, J.H. Finkbeiner, S. Finkel, T. Fiorito, F. Fisher, P.B. Flajolet, M. Flamigni, F. Florey, O. Florio, S. Floto, R.A. Folini, M. Follo, C. Fon, E.A. Fornai, F. Fortunato, F. Fraldi, A. Franco, R. Francois, A. François, A. Frankel, L.B. Fraser, I.D.C. Frey, N. Freyssenet, D.G. Frezza, C. Friedman, S.L. Frigo, D.E. Fu, D. Fuentes, J.M. Fueyo, J. Fujitani, Y. Fujiwara, Y. Fujiya, M. Fukuda, M. Fulda, S. Fusco, C. Gabryel, B. Gaestel, M. Gailly, P. Gajewska, M. Galadari, S. Galili, G. Galindo, I. Galindo, M.F. Galliciotti, G. Galluzzi, L. Galluzzi, L. Galy, V. Gammoh, N. Gandy, S. Ganesan, A.K. Ganesan, S. Ganley, I.G. Gannagé, M. Gao, F.-B. Gao, F. Gao, J.-X. Nannig, L.G. Véscovi, E.G. Garcia-Macía, M. Garcia-Ruiz, C. Garg, A.D. Garg, P.K. Gargini, R. Gassen, N.C. Gatica, D. Gatti, E. Gavard, J. Gavathiotis, E. Ge, L. Ge, P. Ge, S. Gean, P.-W. Gelmetti, V. Genazzani, A.A. Geng, J. Genschik, P. Gerner, L. Gestwicki, J.E. Gewirtz, D.A. Ghavami, S. Ghigo, E. Ghosh, D. Giammarioli, A.M. Giampieri, F. Giampietri, C. Giatromanolaki, A. Gibbings, D.J. Gibellini, L. Gibson, S.B. Ginet, V. Giordano, A. Giorgini, F. Giovannetti, E. Girardin, S.E. Gispert, S. Giuliano, S. Gladson, C.L. Glavic, A. Gleave, M. Godefroy, N. Gogal, R.M., Jr. Gokulan, K. Goldman, G.H. Goletti, D. Goligorsky, M.S. Gomes, A.V. Gomes, L.C. Gomez, H. Gomez-Manzano, C. Gómez-Sánchez, R. Gonçalves, D.A.P. Goncu, E. Gong, Q. Gongora, C. Gonzalez, C.B. Gonzalez-Alegre, P. Gonzalez-Cabo, P. González-Polo, R.A. Goping, I.S. Gorbea, C. Gorbunov, N.V. Goring, D.R. Gorman, A.M. Gorski, S.M. Goruppi, S. Goto-Yamada, S. Gotor, C. Gottlieb, R.A. Gozes, I. Gozuacik, D. Graba, Y. Graef, M. Granato, G.E. Grant, G.D. Grant, S. Gravina, G.L. Green, D.R. Greenhough, A. Greenwood, M.T. Grimaldi, B. Gros, F. Grose, C. Groulx, J.-F. Gruber, F. Grumati, P. Grune, T. Guan, J.-L. Guan, K.-L. Guerra, B. Guillen, C. Gulshan, K. Gunst, J. Guo, C. Guo, L. Guo, M. Guo, W. Guo, X.-G. Gust, A.A. Gustafsson, Å.B. Gutierrez, E. Gutierrez, M.G. Gwak, H.-S. Haas, A. Haber, J.E. Hadano, S. Hagedorn, M. Hahn, D.R. Halayko, A.J. Hamacher-Brady, A. Hamada, K. Hamai, A. Hamann, A. Hamasaki, M. Hamer, I. Hamid, Q. Hammond, E.M. Han, F. Han, W. Handa, J.T. Hanover, J.A. Hansen, M. Harada, M. Harhaji-Trajkovic, L. Harper, J.W. Harrath, A.H. Harris, A.L. Harris, J. Hasler, U. Hasselblatt, P. Hasui, K. Hawley, R.G. Hawley, T.S. He, C. He, C.Y. He, F. He, G. He, R.-R. He, X.-H. He, Y.-W. He, Y.-Y. Heath, J.K. Hébert, M.-J. Heinzen, R.A. Helgason, G.V. Hensel, M. Henske, E.P. Her, C. Herman, P.K. Hernández, A. Hernandez, C. Hernández-Tiedra, S. Hetz, C. Hiesinger, P.R. Higaki, K. Hilfiker, S. Hill, B.G. Hill, J.A. Hill, W.D. Hino, K. Hofius, D. Hofman, P. Höglinger, G.U. Höhfeld, J. Holz, M.K. Hong, Y. Hood, D.A. Hoozemans, J.J.M. Hoppe, T. Hsu, C. Hsu, C.-Y. Hsu, L.-C. Hu, D. Hu, G. Hu, H.-M. Hu, H. Hu, M.C. Hu, Y.-C. Hu, Z.-W. Hua, F. Hua, Y. Huang, C. Huang, H.-L. Huang, K.-H. Huang, K.-Y. Huang, S. Huang, S. Huang, W.-P. Huang, Y.-R. Huang, Y. Huang, Y. Huber, T.B. Huebbe, P. Huh, W.-K. Hulmi, J.J. Hur, G.M. Hurley, J.H. Husak, Z. Hussain, S.N.A. Hussain, S. Hwang, J.J. Hwang, S. Hwang, T.I.S. Ichihara, A. Imai, Y. Imbriano, C. Inomata, M. Into, T. Iovane, V. Iovanna, J.L. Iozzo, R.V. Ip, N.Y. Irazoqui, J.E. Iribarren, P. Isaka, Y. Isakovic, A.J. Ischiropoulos, H. Isenberg, J.S. Ishaq, M. Ishida, H. Ishii, I. Ishmael, J.E. Isidoro, C. Isobe, K.-I. Isono, E. Issazadeh-Navikas, S. Itahana, K. Itakura, E. Ivanov, A.I. Iyer, A.K.V. Izquierdo, J.M. Izumi, Y. Izzo, V. Jäättelä, M. Jaber, N. Jackson, D.J. Jackson, W.T. Jacob, T.G. Jacques, T.S. Jagannath, C. Jain, A. Jana, N.R. Jang, B.K. Jani, A. Janji, B. Jannig, P.R. Jansson, P.J. Jean, S. Jendrach, M. Jeon, J.-H. Jessen, N. Jeung, E.-B. Jia, K. Jia, L. Jiang, H. Jiang, H. Jiang, L. Jiang, T. Jiang, X. Jiang, X. Jiang, Y. Jiang, Y. Jiménez, A. Jin, C. Jin, H. Jin, L. Jin, M. Jin, S. Jinwal, U.K. Jo, E.-K. Johansen, T. Johnson, D.E. Johnson, G.V.W. Johnson, J.D. Jonasch, E. Jones, C. Joosten, L.A.B. Jordan, J. Joseph, A.-M. Joseph, B. Joubert, A.M. Ju, D. Ju, J. Juan, H.-F. Juenemann, K. Juhász, G. Jung, H.S. Jung, J.U. Jung, Y.-K. Jungbluth, H. Justice, M.J. Jutten, B. Kaakoush, N.O. Kaarniranta, K. Kaasik, A. Kabuta, T. Kaeffer, B. Kågedal, K. Kahana, A. Kajimura, S. Kakhlon, O. Kalia, M. Kalvakolanu, D.V. Kamada, Y. Kambas, K. Kaminskyy, V.O. Kampinga, H.H. Kandouz, M. Kang, C. Kang, R. Kang, T.-C. Kanki, T. Kanneganti, T.-D. Kanno, H. Kanthasamy, A.G. Kantorow, M. Kaparakis-Liaskos, M. Kapuy, O. Karantza, V. Karim, M.R. Karmakar, P. Kaser, A. Kaushik, S. Kawula, T. Kaynar, A.M. Ke, P.-Y. Ke, Z.-J. Kehrl, J.H. Keller, K.E. Kemper, J.K. Kenworthy, A.K. Kepp, O. Kern, A. Kesari, S. Kessel, D. Ketteler, R. Kettelhut, I.C. Khambu, B. Khan, M.M. Khandelwal, V.K.M. Khare, S. Kiang, J.G. Kiger, A.A. Kihara, A. Kim, A.L. Kim, C.H. Kim, D.R. Kim, D.-H. Kim, E.K. Kim, H.Y. Kim, H.-R. Kim, J.-S. Kim, J.H. Kim, J.C. Kim, J.H. Kim, K.W. Kim, M.D. Kim, M.-M. Kim, P.K. Kim, S.W. Kim, S.-Y. Kim, Y.-S. Kim, Y. Kimchi, A. Kimmelman, A.C. Kimura, T. King, J.S. Kirkegaard, K. Kirkin, V. Kirshenbaum, L.A. Kishi, S. Kitajima, Y. Kitamoto, K. Kitaoka, Y. Kitazato, K. Kley, R.A. Klimecki, W.T. Klinkenberg, M. Klucken, J. Knævelsrud, H. Knecht, E. Knuppertz, L. Ko, J.-L. Kobayashi, S. Koch, J.C. Koechlin-Ramonatxo, C. Koenig, U. Koh, Y.H. Köhler, K. Kohlwein, S.D. Koike, M. Komatsu, M. Kominami, E. Kong, D. Kong, H.J. Konstantakou, E.G. Kopp, B.T. Korcsmaros, T. Korhonen, L. Korolchuk, V.I. Koshkina, N.V. Kou, Y. Koukourakis, M.I. Koumenis, C. Kovács, A.L. Kovács, T. Kovacs, W.J. Koya, D. Kraft, C. Krainc, D. Kramer, H. Kravic-Stevovic, T. Krek, W. Kretz-Remy, C. Krick, R. Krishnamurthy, M. Kriston-Vizi, J. Kroemer, G. Kruer, M.C. Kruger, R. Ktistakis, N.T. Kuchitsu, K. Kuhn, C. Kumar, A.P. Kumar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, R. Kumar, S. Kundu, M. Kung, H.-J. Kuno, A. Kuo, S.-H. Kuret, J. Kurz, T. Kwok, T. Kwon, T.K. Kwon, Y.T. Kyrmizi, I. La Spada, A.R. Lafont, F. Lahm, T. Lakkaraju, A. Lam, T. Lamark, T. Lancel, S. Landowski, T.H. Lane, D.J.R. Lane, J.D. Lanzi, C. Lapaquette, P. Lapierre, L.R. Laporte, J. Laukkarinen, J. Laurie, G.W. Lavandero, S. Lavie, L. Lavoie, M.J. Law, B.Y.K. Law, H.K.-W. Law, K.B. Layfield, R. Lazo, P.A. Le Cam, L. Le Roch, K.G. Le Stunff, H. Leardkamolkarn, V. Lecuit, M. Lee, B.-H. Lee, C.-H. Lee, E.F. Lee, G.M. Lee, H.-J. Lee, H. Lee, J.K. Lee, J. Lee, J.-H. Lee, J.H. Lee, M. Lee, M.-S. Lee, P.J. Lee, S.W. Lee, S.-J. Lee, S.-J. Lee, S.Y. Lee, S.H. Lee, S.S. Lee, S.-J. Lee, S. Lee, Y.-R. Lee, Y.J. Lee, Y.H. Leeuwenburgh, C. Lefort, S. Legouis, R. Lei, J. Lei, Q.-Y. Leib, D.A. Leibowitz, G. Lekli, I. Lemaire, S.D. Lemasters, J.J. Lemberg, M.K. Lemoine, A. Leng, S. Lenz, G. Lenzi, P. Lerman, L.O. Barbato, D.L. Leu, J.I.J. Leung, H.Y. Levine, B. Lewis, P.A. Lezoualch, F. Li, C. Li, F. Li, F.-J. Li, J. Li, K. Li, L. Li, M. Li, Q. Li, R. Li, S. Li, W. Li, X. Li, Y. Lian, J. Liang, C. Liang, Q. Liao, Y. Liberal, J. Liberski, P.P. Lie, P. Lieberman, A.P. Lim, H.J. Lim, K.-L. Lim, K. Lima, R.T. Lin, C.-S. Lin, C.-F. Lin, F. Lin, F. Lin, F.-C. Lin, K. Lin, K.-H. Lin, P.-H. Lin, T. Lin, W.-W. Lin, Y.-S. Lin, Y. Linden, R. Lindholm, D. Lindqvist, L.M. Lingor, P. Linkermann, A. Liotta, L.A. Lipinski, M.M. Lira, V.A. Lisanti, M.P. Liton, P.B. Liu, B. Liu, C. Liu, C.-F. Liu, F. Liu, H.-J. Liu, J. Liu, J.-J. Liu, J.-L. Liu, K. Liu, L. Liu, L. Liu, Q. Liu, R.-Y. Liu, S. Liu, S. Liu, W. Liu, X.-D. Liu, X. Liu, X.-H. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liuzzi, J.P. Lizard, G. Ljujic, M. Lodhi, I.J. Logue, S.E. Lokeshwar, B.L. Long, Y.C. Lonial, S. Loos, B. López-Otín, C. López-Vicario, C. Lorente, M. Lorenzi, P.L. Lõrincz, P. Los, M. Lotze, M.T. Lovat, P.E. Lu, B. Lu, B. Lu, J. Lu, Q. Lu, S.-M. Lu, S. Lu, Y. Luciano, F. Luckhart, S. Lucocq, J.M. Ludovico, P. Lugea, A. Lukacs, N.W. Lum, J.J. Lund, A.H. Luo, H. Luo, J. Luo, S. Luparello, C. Lyons, T. Ma, J. Ma, Y. Ma, Y. Ma, Z. Machado, J. Machado-Santelli, G.M. Macian, F. MacIntosh, G.C. MacKeigan, J.P. Macleod, K.F. MacMicking, J.D. MacMillan-Crow, L.A. Madeo, F. Madesh, M. Madrigal-Matute, J. Maeda, A. Maeda, T. Maegawa, G. Maellaro, E. Maes, H. Magariños, M. Maiese, K. Maiti, T.K. Maiuri, L. Maiuri, M.C. Maki, C.G. Malli, R. Malorni, W. Maloyan, A. Mami-Chouaib, F. Man, N. Mancias, J.D. Mandelkow, E.-M. Mandell, M.A. Manfredi, A.A. Manié, S.N. Manzoni, C. Mao, K. Mao, Z. Mao, Z.-W. Marambaud, P. Marconi, A.M. Marelja, Z. Marfe, G. Margeta, M. Margittai, E. Mari, M. Mariani, F.V. Marin, C. Marinelli, S. Mariño, G. Markovic, I. Marquez, R. Martelli, A.M. Martens, S. Martin, K.R. Martin, S.J. Martin, S. Martin-Acebes, M.A. Martín-Sanz, P. Martinand-Mari, C. Martinet, W. Martinez, J. Martinez-Lopez, N. Martinez-Outschoorn, U. Martínez-Velázquez, M. Martinez-Vicente, M. Martins, W.K. Mashima, H. Mastrianni, J.A. Matarese, G. Matarrese, P. Mateo, R. Matoba, S. Matsumoto, N. Matsushita, T. Matsuura, A. Matsuzawa, T. Mattson, M.P. Matus, S. Maugeri, N. Mauvezin, C. Mayer, A. Maysinger, D. Mazzolini, G.D. McBrayer, M.K. McCall, K. McCormick, C. McInerney, G.M. McIver, S.C. McKenna, S. McMahon, J.J. McNeish, I.A. Mechta-Grigoriou, F. Medema, J.P. Medina, D.L. Megyeri, K. Mehrpour, M. Mehta, J.L. Mei, Y. Meier, U.-C. Meijer, A.J. Meléndez, A. Melino, G. Melino, S. de Melo, E.J.T. Mena, M.A. Meneghini, M.D. Menendez, J.A. Menezes, R. Meng, L. Meng, L.-H. Meng, S. Menghini, R. Menko, A.S. Menna-Barreto, R.F.S. Menon, M.B. Meraz-Ríos, M.A. Merla, G. Merlini, L. Merlot, A.M. Meryk, A. Meschini, S. Meyer, J.N. Mi, M.-T. Miao, C.-Y. Micale, L. Michaeli, S. Michiels, C. Migliaccio, A.R. Mihailidou, A.S. Mijaljica, D. Mikoshiba, K. Milan, E. Miller-Fleming, L. Mills, G.B. Mills, I.G. Minakaki, G. Minassian, B.A. Ming, X.-F. Minibayeva, F. Minina, E.A. Mintern, J.D. Minucci, S. Miranda-Vizuete, A. Mitchell, C.H. Miyamoto, S. Miyazawa, K. Mizushima, N. Mnich, K. Mograbi, B. Mohseni, S. Moita, L.F. Molinari, M. Molinari, M. Møller, A.B. Mollereau, B. Mollinedo, F. Mongillo, M. Monick, M.M. Montagnaro, S. Montell, C. Moore, D.J. Moore, M.N. Mora-Rodriguez, R. Moreira, P.I. Morel, E. Morelli, M.B. Moreno, S. Morgan, M.J. Moris, A. Moriyasu, Y. Morrison, J.L. Morrison, L.A. Morselli, E. Moscat, J. Moseley, P.L. Mostowy, S. Motori, E. Mottet, D. Mottram, J.C. Moussa, C.E.-H. Mpakou, V.E. Mukhtar, H. Levy, J.M.M. Muller, S. Muñoz-Moreno, R. Muñoz-Pinedo, C. Münz, C. Murphy, M.E. Murray, J.T. Murthy, A. Mysorekar, I.U. Nabi, I.R. Nabissi, M. Nader, G.A. Nagahara, Y. Nagai, Y. Nagata, K. Nagelkerke, A. Nagy, P. Naidu, S.R. Nair, S. Nakano, H. Nakatogawa, H. Nanjundan, M. Napolitano, G. Naqvi, N.I. Nardacci, R. Narendra, D.P. Narita, M. Nascimbeni, A.C. Natarajan, R. Navegantes, L.C. Nawrocki, S.T. Nazarko, T.Y. Nazarko, V.Y. Neill, T. Neri, L.M. Netea, M.G. Netea-Maier, R.T. Neves, B.M. Ney, P.A. Nezis, I.P. Nguyen, H.T.T. Nguyen, H.P. Nicot, A.-S. Nilsen, H. Nilsson, P. Nishimura, M. Nishino, I. Niso-Santano, M. Niu, H. Nixon, R.A. Njar, V.C.O. Noda, T. Noegel, A.A. Nolte, E.M. Norberg, E. Norga, K.K. Noureini, S.K. Notomi, S. Notterpek, L. Nowikovsky, K. Nukina, N. Nürnberger, T. O'donnell, V.B. O'donovan, T. O'dwyer, P.J. Oehme, I. Oeste, C.L. Ogawa, M. Ogretmen, B. Ogura, Y. Oh, Y.J. Ohmuraya, M. Ohshima, T. Ojha, R. Okamoto, K. Okazaki, T. Oliver, F.J. Ollinger, K. Olsson, S. Orban, D.P. Ordonez, P. Orhon, I. Orosz, L. O'rourke, E.J. Orozco, H. Ortega, A.L. Ortona, E. Osellame, L.D. Oshima, J. Oshima, S. Osiewacz, H.D. Otomo, T. Otsu, K. Ou, J.-H.J. Outeiro, T.F. Ouyang, D.-Y. Ouyang, H. Overholtzer, M. Ozbun, M.A. Ozdinler, P.H. Ozpolat, B. Pacelli, C. Paganetti, P. Page, G. Pages, G. Pagnini, U. Pajak, B. Pak, S.C. Pakos-Zebrucka, K. Pakpour, N. Palková, Z. Palladino, F. Pallauf, K. Pallet, N. Palmieri, M. Paludan, S.R. Palumbo, C. Palumbo, S. Pampliega, O. Pan, H. Pan, W. Panaretakis, T. Pandey, A. Pantazopoulou, A. Papackova, Z. Papademetrio, D.L. Papassideri, I. Papini, A. Parajuli, N. Pardo, J. Parekh, V.V. Parenti, G. Park, J.-I. Park, J. Park, O.K. Parker, R. Parlato, R. Parys, J.B. Parzych, K.R. Pasquet, J.-M. Pasquier, B. Pasumarthi, K.B.S. Patterson, C. Pattingre, S. Pattison, S. Pause, A. Pavenstädt, H. Pavone, F. Pedrozo, Z. Peña, F.J. Peñalva, M.A. Pende, M. Peng, J. Penna, F. Penninger, J.M. Pensalfini, A. Pepe, S. Pereira, G.J.S. Pereira, P.C. de la Cruz, V.P. Pérez-Pérez, M.E. Pérez-Rodríguez, D. Pérez-Sala, D. Perier, C. Perl, A. Perlmutter, D.H. Perrotta, I. Pervaiz, S. Pesonen, M. Pessin, J.E. Peters, G.J. Petersen, M. Petrache, I. Petrof, B.J. Petrovski, G. Phang, J.M. Piacentini, M. Pierdominici, M. Pierre, P. Pierrefite-Carle, V. Pietrocola, F. Pimentel-Muiños, F.X. Pinar, M. Pineda, B. Pinkas-Kramarski, R. Pinti, M. Pinton, P. Piperdi, B. Piret, J.M. Platanias, L.C. Platta, H.W. Plowey, E.D. Pöggeler, S. Poirot, M. Polčic, P. Poletti, A. Poon, A.H. Popelka, H. Popova, B. Poprawa, I. Poulose, S.M. Poulton, J. Powers, S.K. Powers, T. Pozuelo-Rubio, M. Prak, K. Prange, R. Prescott, M. Priault, M. Prince, S. Proia, R.L. Proikas-Cezanne, T. Prokisch, H. Promponas, V.J. Przyklenk, K. Puertollano, R. Pugazhenthi, S. Puglielli, L. Pujol, A. Puyal, J. Pyeon, D. Qi, X. Qian, W.-B. Qin, Z.-H. Qiu, Y. Qu, Z. Quadrilatero, J. Quinn, F. Raben, N. Rabinowich, H. Radogna, F. Ragusa, M.J. Rahmani, M. Raina, K. Ramanadham, S. Ramesh, R. Rami, A. Randall-Demllo, S. Randow, F. Rao, H. Rao, V.A. Rasmussen, B.B. Rasse, T.M. Ratovitski, E.A. Rautou, P.-E. Ray, S.K. Razani, B. Reed, B.H. Reggiori, F. Rehm, M. Reichert, A.S. Rein, T. Reiner, D.J. Reits, E. Ren, J. Ren, X. Renna, M. Reusch, J.E.B. Revuelta, J.L. Reyes, L. Rezaie, A.R. Richards, R.I. Richardson, R. Richetta, C. Riehle, M.A. Rihn, B.H. Rikihisa, Y. Riley, B.E. Rimbach, G. Rippo, M.R. Ritis, K. Rizzi, F. Rizzo, E. Roach, P.J. Robbins, J. Roberge, M. Roca, G. Roccheri, M.C. Rocha, S. Rodrigues, C.M.P. Rodríguez, C.I. de Cordoba, S.R. Rodriguez-Muela, N. Roelofs, J. Rogov, V.V. Rohn, T.T. Rohrer, B. Romanelli, D. Romani, L. Romano, P.S. Roncero, M.I.G. Rosa, J.L. Rosello, A. Rosen, K.V. Rosenstiel, P. Rost-Roszkowska, M. Roth, K.A. Roué, G. Rouis, M. Rouschop, K.M. Ruan, D.T. Ruano, D. Rubinsztein, D.C. Rucker, E.B., III Rudich, A. Rudolf, E. Rudolf, R. Ruegg, M.A. Ruiz-Roldan, C. Ruparelia, A.A. Rusmini, P. Russ, D.W. Russo, G.L. Russo, G. Russo, R. Rusten, T.E. Ryabovol, V. Ryan, K.M. Ryter, S.W. Sabatini, D.M. Sacher, M. Sachse, C. Sack, M.N. Sadoshima, J. Saftig, P. Sagi-Eisenberg, R. Sahni, S. Saikumar, P. Saito, T. Saitoh, T. Sakakura, K. Sakoh-Nakatogawa, M. Sakuraba, Y. Salazar-Roa, M. Salomoni, P. Saluja, A.K. Salvaterra, P.M. Salvioli, R. Samali, A. Sanchez, A.M.J. Sánchez-Alcázar, J.A. Sanchez-Prieto, R. Sandri, M. Sanjuan, M.A. Santaguida, S. Santambrogio, L. Santoni, G. Dos Santos, C.N. Saran, S. Sardiello, M. Sargent, G. Sarkar, P. Sarkar, S. Sarrias, M.R. Sarwal, M.M. Sasakawa, C. Sasaki, M. Sass, M. Sato, K. Sato, M. Satriano, J. Savaraj, N. Saveljeva, S. Schaefer, L. Schaible, U.E. Scharl, M. Schatzl, H.M. Schekman, R. Scheper, W. Schiavi, A. Schipper, H.M. Schmeisser, H. Schmidt, J. Schmitz, I. Schneider, B.E. Schneider, E.M. Schneider, J.L. Schon, E.A. Schönenberger, M.J. Schönthal, A.H. Schorderet, D.F. Schröder, B. Schuck, S. Schulze, R.J. Schwarten, M. Schwarz, T.L. Sciarretta, S. Scotto, K. Scovassi, A.I. Screaton, R.A. Screen, M. Seca, H. Sedej, S. Segatori, L. Segev, N. Seglen, P.O. Seguí-Simarro, J.M. Segura-Aguilar, J. Seiliez, I. Seki, E. Sell, C. Semenkovich, C.F. Semenza, G.L. Sen, U. Serra, A.L. Serrano-Puebla, A. Sesaki, H. Setoguchi, T. Settembre, C. Shacka, J.J. Shajahan-Haq, A.N. Shapiro, I.M. Sharma, S. She, H. Shen, C.-K.J. Shen, C.-C. Shen, H.-M. Shen, S. Shen, W. Sheng, R. Sheng, X. Sheng, Z.-H. Shepherd, T.G. Shi, J. Shi, Q. Shi, Q. Shi, Y. Shibutani, S. Shibuya, K. Shidoji, Y. Shieh, J.-J. Shih, C.-M. Shimada, Y. Shimizu, S. Shin, D.W. Shinohara, M.L. Shintani, M. Shintani, T. Shioi, T. Shirabe, K. Shiri-Sverdlov, R. Shirihai, O. Shore, G.C. Shu, C.-W. Shukla, D. Sibirny, A.A. Sica, V. Sigurdson, C.J. Sigurdsson, E.M. Sijwali, P.S. Sikorska, B. Silveira, W.A. Silvente-Poirot, S. Silverman, G.A. Simak, J. Simmet, T. Simon, A.K. Simon, H.-U. Simone, C. Simons, M. Simonsen, A. Singh, R. Singh, S.V. Singh, S.K. Sinha, D. Sinha, S. Sinicrope, F.A. Sirko, A. Sirohi, K. Sishi, B.J.N. Sittler, A. Siu, P.M. Sivridis, E. Skwarska, A. Slack, R. Slaninová, I. Slavov, N. Smaili, S.S. Smalley, K.S.M. Smith, D.R. Soenen, S.J. Soleimanpour, S.A. Solhaug, A. Somasundaram, K. Son, J.H. Sonawane, A. Song, C. Song, F. Song, H.K. Song, J.-X. Song, W. Soo, K.Y. Sood, A.K. Soong, T.W. Soontornniyomkij, V. Sorice, M. Sotgia, F. Soto-Pantoja, D.R. Sotthibundhu, A. Sousa, M.J. Spaink, H.P. Span, P.N. Spang, A. Sparks, J.D. Speck, P.G. Spector, S.A. Spies, C.D. Springer, W. Clair, D.S. Stacchiotti, A. Staels, B. Stang, M.T. Starczynowski, D.T. Starokadomskyy, P. Steegborn, C. Steele, J.W. Stefanis, L. Steffan, J. Stellrecht, C.M. Stenmark, H. Stepkowski, T.M. Stern, S.T. Stevens, C. Stockwell, B.R. Stoka, V. Storchova, Z. Stork, B. Stratoulias, V. Stravopodis, D.J. Strnad, P. Strohecker, A.M. Ström, A.-L. Stromhaug, P. Stulik, J. Su, Y.-X. Su, Z. Subauste, C.S. Subramaniam, S. Sue, C.M. Suh, S.W. Sui, X. Sukseree, S. Sulzer, D. Sun, F.-L. Sun, J. Sun, J. Sun, S.-Y. Sun, Y. Sun, Y. Sun, Y. Sundaramoorthy, V. Sung, J. Suzuki, H. Suzuki, K. Suzuki, N. Suzuki, T. Suzuki, Y.J. Swanson, M.S. Swanton, C. Swärd, K. Swarup, G. Sweeney, S.T. Sylvester, P.W. Szatmari, Z. Szegezdi, E. Szlosarek, P.W. Taegtmeyer, H. Tafani, M. Taillebourg, E. Tait, S.W.G. Takacs-Vellai, K. Takahashi, Y. Takáts, S. Takemura, G. Takigawa, N. Talbot, N.J. Tamagno, E. Tamburini, J. Tan, C.-P. Tan, L. Tan, M.L. Tan, M. Tan, Y.-J. Tanaka, K. Tanaka, M. Tang, D. Tang, D. Tang, G. Tanida, I. Tanji, K. Tannous, B.A. Tapia, J.A. Tasset-Cuevas, I. Tatar, M. Tavassoly, I. Tavernarakis, N. Taylor, A. Taylor, G.S. Taylor, G.A. Taylor, J.P. Taylor, M.J. Tchetina, E.V. Tee, A.R. Teixeira-Clerc, F. Telang, S. Tencomnao, T. Teng, B.-B. Teng, R.-J. Terro, F. Tettamanti, G. Theiss, A.L. Theron, A.E. Thomas, K.J. Thomé, M.P. Thomes, P.G. Thorburn, A. Thorner, J. Thum, T. Thumm, M. Thurston, T.L.M. Tian, L. Till, A. Ting, J.P.-Y. Ting, J.P.Y. Titorenko, V.I. Toker, L. Toldo, S. Tooze, S.A. Topisirovic, I. Torgersen, M.L. Torosantucci, L. Torriglia, A. Torrisi, M.R. Tournier, C. Towns, R. Trajkovic, V. Travassos, L.H. Triola, G. Tripathi, D.N. Trisciuoglio, D. Troncoso, R. Trougakos, I.P. Truttmann, A.C. Tsai, K.-J. Tschan, M.P. Tseng, Y.-H. Tsukuba, T. Tsung, A. Tsvetkov, A.S. Tu, S. Tuan, H.-Y. Tucci, M. Tumbarello, D.A. Turk, B. Turk, V. Turner, R.F.B. Tveita, A.A. Tyagi, S.C. Ubukata, M. Uchiyama, Y. Udelnow, A. Ueno, T. Umekawa, M. Umemiya-Shirafuji, R. Underwood, B.R. Ungermann, C. Ureshino, R.P. Ushioda, R. Uversky, V.N. Uzcátegui, N.L. Vaccari, T. Vaccaro, M.I. Váchová, L. Vakifahmetoglu-Norberg, H. Valdor, R. Valente, E.M. Vallette, F. Valverde, A.M. Van den Berghe, G. Van Den Bosch, L. van den Brink, G.R. van der Goot, F.G. van der Klei, I.J. van der Laan, L.J.W. van Doorn, W.G. van Egmond, M. van Golen, K.L. Van Kaer, L. Campagne, M.L. Vandenabeele, P. Vandenberghe, W. Vanhorebeek, I. Varela-Nieto, I. Vasconcelos, M.H. Vasko, R. Vavvas, D.G. Vega-Naredo, I. Velasco, G. Velentzas, A.D. Velentzas, P.D. Vellai, T. Vellenga, E. Vendelbo, M.H. Venkatachalam, K. Ventura, N. Ventura, S. Veras, P.S.T. Verdier, M. Vertessy, B.G. Viale, A. Vidal, M. Vieira, H.L.A. Vierstra, R.D. Vigneswaran, N. Vij, N. Vila, M. Villar, M. Villar, V.H. Villarroya, J. Vindis, C. Viola, G. Viscomi, M.T. Vitale, G. Vogl, D.T. Voitsekhovskaja, O.V. von Haefen, C. von Schwarzenberg, K. Voth, D.E. Vouret-Craviari, V. Vuori, K. Vyas, J.M. Waeber, C. Walker, C.L. Walker, M.J. Walter, J. Wan, L. Wan, X. Wang, B. Wang, C. Wang, C.-Y. Wang, C. Wang, C. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H.-J. Wang, H. Wang, H.-G. Wang, H. Wang, H.-D. Wang, J. Wang, J. Wang, M. Wang, M.-Q. Wang, P.-Y. Wang, P. Wang, R.C. Wang, S. Wang, T.-F. Wang, X. Wang, X.-J. Wang, X.-W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y.-J. Wang, Y. Wang, Y. Wang, Y.T. Wang, Y. Wang, Z.-N. Wappner, P. Ward, C. Ward, D.M.V. Warnes, G. Watada, H. Watanabe, Y. Watase, K. Weaver, T.E. Weekes, C.D. Wei, J. Weide, T. Weihl, C.C. Weindl, G. Weis, S.N. Wen, L. Wen, X. Wen, Y. Westermann, B. Weyand, C.M. White, A.R. White, E. Whitton, J.L. Whitworth, A.J. Wiels, J. Wild, F. Wildenberg, M.E. Wileman, T. Wilkinson, D.S. Wilkinson, S. Willbold, D. Williams, C. Williams, K. Williamson, P.R. Winklhofer, K.F. Witkin, S.S. Wohlgemuth, S.E. Wollert, T. Wolvetang, E.J. Wong, E. Wong, G.W. Wong, R.W. Wong, V.K.W. Woodcock, E.A. Wright, K.L. Wu, C. Wu, D. Wu, G.S. Wu, J. Wu, J. Wu, M. Wu, M. Wu, S. Wu, W.K.K. Wu, Y. Wu, Z. Xavier, C.P.R. Xavier, R.J. Xia, G.-X. Xia, T. Xia, W. Xia, Y. Xiao, H. Xiao, J. Xiao, S. Xiao, W. Xie, C.-M. Xie, Z. Xie, Z. Xilouri, M. Xiong, Y. Xu, C. Xu, C. Xu, F. Xu, H. Xu, H. Xu, J. Xu, J. Xu, J. Xu, L. Xu, X. Xu, Y. Xu, Y. Xu, Z.-X. Xu, Z. Xue, Y. Yamada, T. Yamamoto, A. Yamanaka, K. Yamashina, S. Yamashiro, S. Yan, B. Yan, B. Yan, X. Yan, Z. Yanagi, Y. Yang, D.-S. Yang, J.-M. Yang, L. Yang, M. Yang, P.-M. Yang, P. Yang, Q. Yang, W. Yang, W.Y. Yang, X. Yang, Y. Yang, Y. Yang, Z. Yang, Z. Yao, M.-C. Yao, P.J. Yao, X. Yao, Z. Yao, Z. Yasui, L.S. Ye, M. Yedvobnick, B. Yeganeh, B. Yeh, E.S. Yeyati, P.L. Yi, F. Yi, L. Yin, X.-M. Yip, C.K. Yoo, Y.-M. Yoo, Y.H. Yoon, S.-Y. Yoshida, K.-I. Yoshimori, T. Young, K.H. Yu, H. Yu, J.J. Yu, J.-T. Yu, J. Yu, L. Yu, W.H. Yu, X.-F. Yu, Z. Yuan, J. Yuan, Z.-M. Yue, B.Y.J.T. Yue, J. Yue, Z. Zacks, D.N. Zacksenhaus, E. Zaffaroni, N. Zaglia, T. Zakeri, Z. Zecchini, V. Zeng, J. Zeng, M. Zeng, Q. Zervos, A.S. Zhang, D.D. Zhang, F. Zhang, G. Zhang, G.-C. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, J.-P. Zhang, L. Zhang, L. Zhang, L. Zhang, M.-Y. Zhang, X. Zhang, X.D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhao, M. Zhao, W.-L. Zhao, X. Zhao, Y.G. Zhao, Y. Zhao, Y. Zhao, Y.-X. Zhao, Z. Zhao, Z.J. Zheng, D. Zheng, X.-L. Zheng, X. Zhivotovsky, B. Zhong, Q. Zhou, G.-Z. Zhou, G. Zhou, H. Zhou, S.-F. Zhou, X.-J. Zhu, H. Zhu, H. Zhu, W.-G. Zhu, W. Zhu, X.-F. Zhu, Y. Zhuang, S.-M. Zhuang, X. Ziparo, E. Zois, C.E. Zoladek, T. Zong, W.-X. Zorzano, A. Zughaier, S.M.
- Published
- 2016
21. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
- Author
-
Klionsky, D.J. Abdelmohsen, K. Abe, A. Abedin, M.J. Abeliovich, H. Arozena, A.A. Adachi, H. Adams, C.M. Adams, P.D. Adeli, K. Adhihetty, P.J. Adler, S.G. Agam, G. Agarwal, R. Aghi, M.K. Agnello, M. Agostinis, P. Aguilar, P.V. Aguirre-Ghiso, J. Airoldi, E.M. Ait-Si-Ali, S. Akematsu, T. Akporiaye, E.T. Al-Rubeai, M. Albaiceta, G.M. Albanese, C. Albani, D. Albert, M.L. Aldudo, J. Algül, H. Alirezaei, M. Alloza, I. Almasan, A. Almonte-Beceril, M. Alnemri, E.S. Alonso, C. Altan-Bonnet, N. Altieri, D.C. Alvarez, S. Alvarez-Erviti, L. Alves, S. Amadoro, G. Amano, A. Amantini, C. Ambrosio, S. Amelio, I. Amer, A.O. Amessou, M. Amon, A. An, Z. Anania, F.A. Andersen, S.U. Andley, U.P. Andreadi, C.K. Andrieu-Abadie, N. Anel, A. Ann, D.K. Anoopkumar-Dukie, S. Antonioli, M. Aoki, H. Apostolova, N. Aquila, S. Aquilano, K. Araki, K. Arama, E. Aranda, A. Araya, J. Arcaro, A. Arias, E. Arimoto, H. Ariosa, A.R. Armstrong, J.L. Arnould, T. Arsov, I. Asanuma, K. Askanas, V. Asselin, E. Atarashi, R. Atherton, S.S. Atkin, J.D. Attardi, L.D. Auberger, P. Auburger, G. Aurelian, L. Autelli, R. Avagliano, L. Avantaggiati, M.L. Avrahami, L. Azad, N. Awale, S. Bachetti, T. Backer, J.M. Bae, D.-H. Bae, J.-S. Bae, O.-N. Bae, S.H. Baehrecke, E.H. Baek, S.-H. Baghdiguian, S. Bagniewska-Zadworna, A. Bai, H. Bai, J. Bai, X.-Y. Bailly, Y. Balaji, K.N. Balduini, W. Ballabio, A. Balzan, R. Banerjee, R. Bánhegyi, G. Bao, H. Barbeau, B. Barrachina, M.D. Barreiro, E. Bartel, B. Bartolomé, A. Bassham, D.C. Bassi, M.T. Bast, R.C., Jr. Basu, A. Batista, M.T. Batoko, H. Battino, M. Bauckman, K. Baumgarner, B.L. Bayer, K.U. Beale, R. Beaulieu, J.-F. Beck, G.R., Jr. Becker, C. Beckham, J.D. Bédard, P.-A. Bednarski, P.J. Begley, T.J. Behl, C. Behrends, C. Behrens, G.M.N. Behrns, K.E. Bejarano, E. Belaid, A. Belleudi, F. Bénard, G. Berchem, G. Bergamaschi, D. Bergami, M. Berkhout, B. Berliocchi, L. Bernard, A. Bernard, M. Bernassola, F. Bertolotti, A. Bess, A.S. Besteiro, S. Bettuzzi, S. Bhalla, S. Bhattacharyya, S. Bhutia, S.K. Biagosch, C. Bianchi, M.W. Biard-Piechaczyk, M. Billes, V. Bincoletto, C. Bingol, B. Bird, S.W. Bitoun, M. Bjedov, I. Blackstone, C. Blanc, L. Blanco, G.A. Blomhoff, H.K. Boada-Romero, E. Böckler, S. Boes, M. Boesze-Battaglia, K. Boise, L.H. Bolino, A. Boman, A. Bonaldo, P. Bordi, M. Bosch, J. Botana, L.M. Botti, J. Bou, G. Bouché, M. Bouchecareilh, M. Boucher, M.-J. Boulton, M.E. Bouret, S.G. Boya, P. Boyer-Guittaut, M. Bozhkov, P.V. Brady, N. Braga, V.M.M. Brancolini, C. Braus, G.H. Bravo-San-Pedro, J.M. Brennan, L.A. Bresnick, E.H. Brest, P. Bridges, D. Bringer, M.-A. Brini, M. Brito, G.C. Brodin, B. Brookes, P.S. Brown, E.J. Brown, K. Broxmeyer, H.E. Bruhat, A. Brum, P.C. Brumell, J.H. Brunetti-Pierri, N. Bryson-Richardson, R.J. Buch, S. Buchan, A.M. Budak, H. Bulavin, D.V. Bultman, S.J. Bultynck, G. Bumbasirevic, V. Burelle, Y. Burke, R.E. Burmeister, M. Bütikofer, P. Caberlotto, L. Cadwell, K. Cahova, M. Cai, D. Cai, J. Cai, Q. Calatayud, S. Camougrand, N. Campanella, M. Campbell, G.R. Campbell, M. Campello, S. Candau, R. Caniggia, I. Cantoni, L. Cao, L. Caplan, A.B. Caraglia, M. Cardinali, C. Cardoso, S.M. Carew, J.S. Carleton, L.A. Carlin, C.R. Carloni, S. Carlsson, S.R. Carmona-Gutierrez, D. Carneiro, L.A.M. Carnevali, O. Carra, S. Carrier, A. Carroll, B. Casas, C. Casas, J. Cassinelli, G. Castets, P. Castro-Obregon, S. Cavallini, G. Ceccherini, I. Cecconi, F. Cederbaum, A.I. Ceña, V. Cenci, S. Cerella, C. Cervia, D. Cetrullo, S. Chaachouay, H. Chae, H.-J. Chagin, A.S. Chai, C.-Y. Chakrabarti, G. Chamilos, G. Chan, E.Y.W. Chan, M.T.V. Chandra, D. Chandra, P. Chang, C.-P. Chang, R.C.-C. Chang, T.Y. Chatham, J.C. Chatterjee, S. Chauhan, S. Che, Y. Cheetham, M.E. Cheluvappa, R. Chen, C.-J. Chen, G. Chen, G.-C. Chen, G. Chen, H. Chen, J.W. Chen, J.-K. Chen, M. Chen, M. Chen, P. Chen, Q. Chen, Q. Chen, S.-D. Chen, S. Chen, S.S.-L. Chen, W. Chen, W.-J. Chen, W.Q. Chen, W. Chen, X. Chen, Y.-H. Chen, Y.-G. Chen, Y. Chen, Y. Chen, Y. Chen, Y.-J. Chen, Y.-Q. Chen, Y. Chen, Z. Chen, Z. Cheng, A. Cheng, C.H.K. Cheng, H. Cheong, H. Cherry, S. Chesney, J. Cheung, C.H.A. Chevet, E. Chi, H.C. Chi, S.-G. Chiacchiera, F. Chiang, H.-L. Chiarelli, R. Chiariello, M. Chieppa, M. Chin, L.-S. Chiong, M. Chiu, G.N.C. Cho, D.-H. Cho, S.-G. Cho, W.C. Cho, Y.-Y. Cho, Y.-S. Choi, A.M.K. Choi, E.-J. Choi, E.-K. Choi, J. Choi, M.E. Choi, S.-I. Chou, T.-F. Chouaib, S. Choubey, D. Choubey, V. Chow, K.-C. Chowdhury, K. Chu, C.T. Chuang, T.-H. Chun, T. Chung, H. Chung, T. Chung, Y.-L. Chwae, Y.-J. Cianfanelli, V. Ciarcia, R. Ciechomska, I.A. Ciriolo, M.R. Cirone, M. Claerhout, S. Clague, M.J. Clària, J. Clarke, P.G.H. Clarke, R. Clementi, E. Cleyrat, C. Cnop, M. Coccia, E.M. Cocco, T. Codogno, P. Coers, J. Cohen, E.E.W. Colecchia, D. Coletto, L. Coll, N.S. Colucci-Guyon, E. Comincini, S. Condello, M. Cook, K.L. Coombs, G.H. Cooper, C.D. Cooper, J.M. Coppens, I. Corasaniti, M.T. Corazzari, M. Corbalan, R. Corcelle-Termeau, E. Cordero, M.D. Corral-Ramos, C. Corti, O. Cossarizza, A. Costelli, P. Costes, S. Cotman, S.L. Coto-Montes, A. Cottet, S. Couve, E. Covey, L.R. Cowart, L.A. Cox, J.S. Coxon, F.P. Coyne, C.B. Cragg, M.S. Craven, R.J. Crepaldi, T. Crespo, J.L. Criollo, A. Crippa, V. Cruz, M.T. Cuervo, A.M. Cuezva, J.M. Cui, T. Cutillas, P.R. Czaja, M.J. Czyzyk-Krzeska, M.F. Dagda, R.K. Dahmen, U. Dai, C. Dai, W. Dai, Y. Dalby, K.N. Valle, L.D. Dalmasso, G. D'amelio, M. Damme, M. Darfeuille-Michaud, A. Dargemont, C. Darley-Usmar, V.M. Dasarathy, S. Dasgupta, B. Dash, S. Dass, C.R. Davey, H.M. Davids, L.M. Dávila, D. Davis, R.J. Dawson, T.M. Dawson, V.L. Daza, P. de Belleroche, J. de Figueiredo, P. de Figueiredo, R.C.B.Q. de la Fuente, J. De Martino, L. De Matteis, A. De Meyer, G.R.Y. De Milito, A. De Santi, M. de Souza, W. De Tata, V. De Zio, D. Debnath, J. Dechant, R. Decuypere, J.-P. Deegan, S. Dehay, B. Del Bello, B. Del Re, D.P. Delage-Mourroux, R. Delbridge, L.M.D. Deldicque, L. Delorme-Axford, E. Deng, Y. Dengjel, J. Denizot, M. Dent, P. Der, C.J. Deretic, V. Derrien, B. Deutsch, E. Devarenne, T.P. Devenish, R.J. Di Bartolomeo, S. Di Daniele, N. Di Domenico, F. Di Nardo, A. Di Paola, S. Di Pietro, A. Di Renzo, L. Di Antonio, A. Díaz-Araya, G. Díaz-Laviada, I. Diaz-Meco, M.T. Diaz-Nido, J. Dickey, C.A. Dickson, R.C. Diederich, M. Digard, P. Dikic, I. Dinesh-Kumar, S.P. Ding, C. Ding, W.-X. Ding, Z. Dini, L. Distler, J.H.W. Diwan, A. Djavaheri-Mergny, M. Dmytruk, K. Dobson, R.C.J. Doetsch, V. Dokladny, K. Dokudovskaya, S. Donadelli, M. Dong, X.C. Dong, X. Dong, Z. Donohue, T.M., Jr. Donohue-Jr, T.M. Doran, K.S. D'orazi, G. Dorn, G.W., II Dosenko, V. Dridi, S. Drucker, L. Du, J. Du, L.-L. Du, L. du Toit, A. Dua, P. Duan, L. Duann, P. Dubey, V.K. Duchen, M.R. Duchosal, M.A. Duez, H. Dugail, I. Dumit, V.I. Duncan, M.C. Dunlop, E.A. Dunn, W.A., Jr. Dupont, N. Dupuis, L. Durán, R.V. Durcan, T.M. Duvezin-Caubet, S. Duvvuri, U. Eapen, V. Ebrahimi-Fakhari, D. Echard, A. Eckhart, L. Edelstein, C.L. Edinger, A.L. Eichinger, L. Eisenberg, T. Eisenberg-Lerner, A. Eissa, N.T. El-Deiry, W.S. El-Khoury, V. Elazar, Z. Eldar-Finkelman, H. Elliott, C.J.H. Emanuele, E. Emmenegger, U. Engedal, N. Engelbrecht, A.-M. Engelender, S. Enserink, J.M. Erdmann, R. Erenpreisa, J. Eri, R. Eriksen, J.L. Erman, A. Escalante, R. Eskelinen, E.-L. Espert, L. Esteban-Martínez, L. Evans, T.J. Fabri, M. Fabrias, G. Fabrizi, C. Facchiano, A. Færgeman, N.J. Faggioni, A. Fairlie, W.D. Fan, C. Fan, D. Fan, J. Fang, S. Fanto, M. Fanzani, A. Farkas, T. Faure, M. Favier, F.B. Fearnhead, H. Federici, M. Fei, E. Felizardo, T.C. Feng, H. Feng, Y. Feng, Y. Ferguson, T.A. Fernández, Á.F. Fernandez-Barrena, M.G. Fernandez-Checa, J.C. Fernández-López, A. Fernandez-Zapico, M.E. Feron, O. Ferraro, E. Ferreira-Halder, C.V. Fesus, L. Feuer, R. Fiesel, F.C. Filippi-Chiela, E.C. Filomeni, G. Fimia, G.M. Fingert, J.H. Finkbeiner, S. Finkel, T. Fiorito, F. Fisher, P.B. Flajolet, M. Flamigni, F. Florey, O. Florio, S. Floto, R.A. Folini, M. Follo, C. Fon, E.A. Fornai, F. Fortunato, F. Fraldi, A. Franco, R. Francois, A. François, A. Frankel, L.B. Fraser, I.D.C. Frey, N. Freyssenet, D.G. Frezza, C. Friedman, S.L. Frigo, D.E. Fu, D. Fuentes, J.M. Fueyo, J. Fujitani, Y. Fujiwara, Y. Fujiya, M. Fukuda, M. Fulda, S. Fusco, C. Gabryel, B. Gaestel, M. Gailly, P. Gajewska, M. Galadari, S. Galili, G. Galindo, I. Galindo, M.F. Galliciotti, G. Galluzzi, L. Galluzzi, L. Galy, V. Gammoh, N. Gandy, S. Ganesan, A.K. Ganesan, S. Ganley, I.G. Gannagé, M. Gao, F.-B. Gao, F. Gao, J.-X. Nannig, L.G. Véscovi, E.G. Garcia-Macía, M. Garcia-Ruiz, C. Garg, A.D. Garg, P.K. Gargini, R. Gassen, N.C. Gatica, D. Gatti, E. Gavard, J. Gavathiotis, E. Ge, L. Ge, P. Ge, S. Gean, P.-W. Gelmetti, V. Genazzani, A.A. Geng, J. Genschik, P. Gerner, L. Gestwicki, J.E. Gewirtz, D.A. Ghavami, S. Ghigo, E. Ghosh, D. Giammarioli, A.M. Giampieri, F. Giampietri, C. Giatromanolaki, A. Gibbings, D.J. Gibellini, L. Gibson, S.B. Ginet, V. Giordano, A. Giorgini, F. Giovannetti, E. Girardin, S.E. Gispert, S. Giuliano, S. Gladson, C.L. Glavic, A. Gleave, M. Godefroy, N. Gogal, R.M., Jr. Gokulan, K. Goldman, G.H. Goletti, D. Goligorsky, M.S. Gomes, A.V. Gomes, L.C. Gomez, H. Gomez-Manzano, C. Gómez-Sánchez, R. Gonçalves, D.A.P. Goncu, E. Gong, Q. Gongora, C. Gonzalez, C.B. Gonzalez-Alegre, P. Gonzalez-Cabo, P. González-Polo, R.A. Goping, I.S. Gorbea, C. Gorbunov, N.V. Goring, D.R. Gorman, A.M. Gorski, S.M. Goruppi, S. Goto-Yamada, S. Gotor, C. Gottlieb, R.A. Gozes, I. Gozuacik, D. Graba, Y. Graef, M. Granato, G.E. Grant, G.D. Grant, S. Gravina, G.L. Green, D.R. Greenhough, A. Greenwood, M.T. Grimaldi, B. Gros, F. Grose, C. Groulx, J.-F. Gruber, F. Grumati, P. Grune, T. Guan, J.-L. Guan, K.-L. Guerra, B. Guillen, C. Gulshan, K. Gunst, J. Guo, C. Guo, L. Guo, M. Guo, W. Guo, X.-G. Gust, A.A. Gustafsson, Å.B. Gutierrez, E. Gutierrez, M.G. Gwak, H.-S. Haas, A. Haber, J.E. Hadano, S. Hagedorn, M. Hahn, D.R. Halayko, A.J. Hamacher-Brady, A. Hamada, K. Hamai, A. Hamann, A. Hamasaki, M. Hamer, I. Hamid, Q. Hammond, E.M. Han, F. Han, W. Handa, J.T. Hanover, J.A. Hansen, M. Harada, M. Harhaji-Trajkovic, L. Harper, J.W. Harrath, A.H. Harris, A.L. Harris, J. Hasler, U. Hasselblatt, P. Hasui, K. Hawley, R.G. Hawley, T.S. He, C. He, C.Y. He, F. He, G. He, R.-R. He, X.-H. He, Y.-W. He, Y.-Y. Heath, J.K. Hébert, M.-J. Heinzen, R.A. Helgason, G.V. Hensel, M. Henske, E.P. Her, C. Herman, P.K. Hernández, A. Hernandez, C. Hernández-Tiedra, S. Hetz, C. Hiesinger, P.R. Higaki, K. Hilfiker, S. Hill, B.G. Hill, J.A. Hill, W.D. Hino, K. Hofius, D. Hofman, P. Höglinger, G.U. Höhfeld, J. Holz, M.K. Hong, Y. Hood, D.A. Hoozemans, J.J.M. Hoppe, T. Hsu, C. Hsu, C.-Y. Hsu, L.-C. Hu, D. Hu, G. Hu, H.-M. Hu, H. Hu, M.C. Hu, Y.-C. Hu, Z.-W. Hua, F. Hua, Y. Huang, C. Huang, H.-L. Huang, K.-H. Huang, K.-Y. Huang, S. Huang, S. Huang, W.-P. Huang, Y.-R. Huang, Y. Huang, Y. Huber, T.B. Huebbe, P. Huh, W.-K. Hulmi, J.J. Hur, G.M. Hurley, J.H. Husak, Z. Hussain, S.N.A. Hussain, S. Hwang, J.J. Hwang, S. Hwang, T.I.S. Ichihara, A. Imai, Y. Imbriano, C. Inomata, M. Into, T. Iovane, V. Iovanna, J.L. Iozzo, R.V. Ip, N.Y. Irazoqui, J.E. Iribarren, P. Isaka, Y. Isakovic, A.J. Ischiropoulos, H. Isenberg, J.S. Ishaq, M. Ishida, H. Ishii, I. Ishmael, J.E. Isidoro, C. Isobe, K.-I. Isono, E. Issazadeh-Navikas, S. Itahana, K. Itakura, E. Ivanov, A.I. Iyer, A.K.V. Izquierdo, J.M. Izumi, Y. Izzo, V. Jäättelä, M. Jaber, N. Jackson, D.J. Jackson, W.T. Jacob, T.G. Jacques, T.S. Jagannath, C. Jain, A. Jana, N.R. Jang, B.K. Jani, A. Janji, B. Jannig, P.R. Jansson, P.J. Jean, S. Jendrach, M. Jeon, J.-H. Jessen, N. Jeung, E.-B. Jia, K. Jia, L. Jiang, H. Jiang, H. Jiang, L. Jiang, T. Jiang, X. Jiang, X. Jiang, Y. Jiang, Y. Jiménez, A. Jin, C. Jin, H. Jin, L. Jin, M. Jin, S. Jinwal, U.K. Jo, E.-K. Johansen, T. Johnson, D.E. Johnson, G.V.W. Johnson, J.D. Jonasch, E. Jones, C. Joosten, L.A.B. Jordan, J. Joseph, A.-M. Joseph, B. Joubert, A.M. Ju, D. Ju, J. Juan, H.-F. Juenemann, K. Juhász, G. Jung, H.S. Jung, J.U. Jung, Y.-K. Jungbluth, H. Justice, M.J. Jutten, B. Kaakoush, N.O. Kaarniranta, K. Kaasik, A. Kabuta, T. Kaeffer, B. Kågedal, K. Kahana, A. Kajimura, S. Kakhlon, O. Kalia, M. Kalvakolanu, D.V. Kamada, Y. Kambas, K. Kaminskyy, V.O. Kampinga, H.H. Kandouz, M. Kang, C. Kang, R. Kang, T.-C. Kanki, T. Kanneganti, T.-D. Kanno, H. Kanthasamy, A.G. Kantorow, M. Kaparakis-Liaskos, M. Kapuy, O. Karantza, V. Karim, M.R. Karmakar, P. Kaser, A. Kaushik, S. Kawula, T. Kaynar, A.M. Ke, P.-Y. Ke, Z.-J. Kehrl, J.H. Keller, K.E. Kemper, J.K. Kenworthy, A.K. Kepp, O. Kern, A. Kesari, S. Kessel, D. Ketteler, R. Kettelhut, I.C. Khambu, B. Khan, M.M. Khandelwal, V.K.M. Khare, S. Kiang, J.G. Kiger, A.A. Kihara, A. Kim, A.L. Kim, C.H. Kim, D.R. Kim, D.-H. Kim, E.K. Kim, H.Y. Kim, H.-R. Kim, J.-S. Kim, J.H. Kim, J.C. Kim, J.H. Kim, K.W. Kim, M.D. Kim, M.-M. Kim, P.K. Kim, S.W. Kim, S.-Y. Kim, Y.-S. Kim, Y. Kimchi, A. Kimmelman, A.C. Kimura, T. King, J.S. Kirkegaard, K. Kirkin, V. Kirshenbaum, L.A. Kishi, S. Kitajima, Y. Kitamoto, K. Kitaoka, Y. Kitazato, K. Kley, R.A. Klimecki, W.T. Klinkenberg, M. Klucken, J. Knævelsrud, H. Knecht, E. Knuppertz, L. Ko, J.-L. Kobayashi, S. Koch, J.C. Koechlin-Ramonatxo, C. Koenig, U. Koh, Y.H. Köhler, K. Kohlwein, S.D. Koike, M. Komatsu, M. Kominami, E. Kong, D. Kong, H.J. Konstantakou, E.G. Kopp, B.T. Korcsmaros, T. Korhonen, L. Korolchuk, V.I. Koshkina, N.V. Kou, Y. Koukourakis, M.I. Koumenis, C. Kovács, A.L. Kovács, T. Kovacs, W.J. Koya, D. Kraft, C. Krainc, D. Kramer, H. Kravic-Stevovic, T. Krek, W. Kretz-Remy, C. Krick, R. Krishnamurthy, M. Kriston-Vizi, J. Kroemer, G. Kruer, M.C. Kruger, R. Ktistakis, N.T. Kuchitsu, K. Kuhn, C. Kumar, A.P. Kumar, A. Kumar, A. Kumar, D. Kumar, D. Kumar, R. Kumar, S. Kundu, M. Kung, H.-J. Kuno, A. Kuo, S.-H. Kuret, J. Kurz, T. Kwok, T. Kwon, T.K. Kwon, Y.T. Kyrmizi, I. La Spada, A.R. Lafont, F. Lahm, T. Lakkaraju, A. Lam, T. Lamark, T. Lancel, S. Landowski, T.H. Lane, D.J.R. Lane, J.D. Lanzi, C. Lapaquette, P. Lapierre, L.R. Laporte, J. Laukkarinen, J. Laurie, G.W. Lavandero, S. Lavie, L. Lavoie, M.J. Law, B.Y.K. Law, H.K.-W. Law, K.B. Layfield, R. Lazo, P.A. Le Cam, L. Le Roch, K.G. Le Stunff, H. Leardkamolkarn, V. Lecuit, M. Lee, B.-H. Lee, C.-H. Lee, E.F. Lee, G.M. Lee, H.-J. Lee, H. Lee, J.K. Lee, J. Lee, J.-H. Lee, J.H. Lee, M. Lee, M.-S. Lee, P.J. Lee, S.W. Lee, S.-J. Lee, S.-J. Lee, S.Y. Lee, S.H. Lee, S.S. Lee, S.-J. Lee, S. Lee, Y.-R. Lee, Y.J. Lee, Y.H. Leeuwenburgh, C. Lefort, S. Legouis, R. Lei, J. Lei, Q.-Y. Leib, D.A. Leibowitz, G. Lekli, I. Lemaire, S.D. Lemasters, J.J. Lemberg, M.K. Lemoine, A. Leng, S. Lenz, G. Lenzi, P. Lerman, L.O. Barbato, D.L. Leu, J.I.J. Leung, H.Y. Levine, B. Lewis, P.A. Lezoualch, F. Li, C. Li, F. Li, F.-J. Li, J. Li, K. Li, L. Li, M. Li, Q. Li, R. Li, S. Li, W. Li, X. Li, Y. Lian, J. Liang, C. Liang, Q. Liao, Y. Liberal, J. Liberski, P.P. Lie, P. Lieberman, A.P. Lim, H.J. Lim, K.-L. Lim, K. Lima, R.T. Lin, C.-S. Lin, C.-F. Lin, F. Lin, F. Lin, F.-C. Lin, K. Lin, K.-H. Lin, P.-H. Lin, T. Lin, W.-W. Lin, Y.-S. Lin, Y. Linden, R. Lindholm, D. Lindqvist, L.M. Lingor, P. Linkermann, A. Liotta, L.A. Lipinski, M.M. Lira, V.A. Lisanti, M.P. Liton, P.B. Liu, B. Liu, C. Liu, C.-F. Liu, F. Liu, H.-J. Liu, J. Liu, J.-J. Liu, J.-L. Liu, K. Liu, L. Liu, L. Liu, Q. Liu, R.-Y. Liu, S. Liu, S. Liu, W. Liu, X.-D. Liu, X. Liu, X.-H. Liu, X. Liu, X. Liu, X. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liuzzi, J.P. Lizard, G. Ljujic, M. Lodhi, I.J. Logue, S.E. Lokeshwar, B.L. Long, Y.C. Lonial, S. Loos, B. López-Otín, C. López-Vicario, C. Lorente, M. Lorenzi, P.L. Lõrincz, P. Los, M. Lotze, M.T. Lovat, P.E. Lu, B. Lu, B. Lu, J. Lu, Q. Lu, S.-M. Lu, S. Lu, Y. Luciano, F. Luckhart, S. Lucocq, J.M. Ludovico, P. Lugea, A. Lukacs, N.W. Lum, J.J. Lund, A.H. Luo, H. Luo, J. Luo, S. Luparello, C. Lyons, T. Ma, J. Ma, Y. Ma, Y. Ma, Z. Machado, J. Machado-Santelli, G.M. Macian, F. MacIntosh, G.C. MacKeigan, J.P. Macleod, K.F. MacMicking, J.D. MacMillan-Crow, L.A. Madeo, F. Madesh, M. Madrigal-Matute, J. Maeda, A. Maeda, T. Maegawa, G. Maellaro, E. Maes, H. Magariños, M. Maiese, K. Maiti, T.K. Maiuri, L. Maiuri, M.C. Maki, C.G. Malli, R. Malorni, W. Maloyan, A. Mami-Chouaib, F. Man, N. Mancias, J.D. Mandelkow, E.-M. Mandell, M.A. Manfredi, A.A. Manié, S.N. Manzoni, C. Mao, K. Mao, Z. Mao, Z.-W. Marambaud, P. Marconi, A.M. Marelja, Z. Marfe, G. Margeta, M. Margittai, E. Mari, M. Mariani, F.V. Marin, C. Marinelli, S. Mariño, G. Markovic, I. Marquez, R. Martelli, A.M. Martens, S. Martin, K.R. Martin, S.J. Martin, S. Martin-Acebes, M.A. Martín-Sanz, P. Martinand-Mari, C. Martinet, W. Martinez, J. Martinez-Lopez, N. Martinez-Outschoorn, U. Martínez-Velázquez, M. Martinez-Vicente, M. Martins, W.K. Mashima, H. Mastrianni, J.A. Matarese, G. Matarrese, P. Mateo, R. Matoba, S. Matsumoto, N. Matsushita, T. Matsuura, A. Matsuzawa, T. Mattson, M.P. Matus, S. Maugeri, N. Mauvezin, C. Mayer, A. Maysinger, D. Mazzolini, G.D. McBrayer, M.K. McCall, K. McCormick, C. McInerney, G.M. McIver, S.C. McKenna, S. McMahon, J.J. McNeish, I.A. Mechta-Grigoriou, F. Medema, J.P. Medina, D.L. Megyeri, K. Mehrpour, M. Mehta, J.L. Mei, Y. Meier, U.-C. Meijer, A.J. Meléndez, A. Melino, G. Melino, S. de Melo, E.J.T. Mena, M.A. Meneghini, M.D. Menendez, J.A. Menezes, R. Meng, L. Meng, L.-H. Meng, S. Menghini, R. Menko, A.S. Menna-Barreto, R.F.S. Menon, M.B. Meraz-Ríos, M.A. Merla, G. Merlini, L. Merlot, A.M. Meryk, A. Meschini, S. Meyer, J.N. Mi, M.-T. Miao, C.-Y. Micale, L. Michaeli, S. Michiels, C. Migliaccio, A.R. Mihailidou, A.S. Mijaljica, D. Mikoshiba, K. Milan, E. Miller-Fleming, L. Mills, G.B. Mills, I.G. Minakaki, G. Minassian, B.A. Ming, X.-F. Minibayeva, F. Minina, E.A. Mintern, J.D. Minucci, S. Miranda-Vizuete, A. Mitchell, C.H. Miyamoto, S. Miyazawa, K. Mizushima, N. Mnich, K. Mograbi, B. Mohseni, S. Moita, L.F. Molinari, M. Molinari, M. Møller, A.B. Mollereau, B. Mollinedo, F. Mongillo, M. Monick, M.M. Montagnaro, S. Montell, C. Moore, D.J. Moore, M.N. Mora-Rodriguez, R. Moreira, P.I. Morel, E. Morelli, M.B. Moreno, S. Morgan, M.J. Moris, A. Moriyasu, Y. Morrison, J.L. Morrison, L.A. Morselli, E. Moscat, J. Moseley, P.L. Mostowy, S. Motori, E. Mottet, D. Mottram, J.C. Moussa, C.E.-H. Mpakou, V.E. Mukhtar, H. Levy, J.M.M. Muller, S. Muñoz-Moreno, R. Muñoz-Pinedo, C. Münz, C. Murphy, M.E. Murray, J.T. Murthy, A. Mysorekar, I.U. Nabi, I.R. Nabissi, M. Nader, G.A. Nagahara, Y. Nagai, Y. Nagata, K. Nagelkerke, A. Nagy, P. Naidu, S.R. Nair, S. Nakano, H. Nakatogawa, H. Nanjundan, M. Napolitano, G. Naqvi, N.I. Nardacci, R. Narendra, D.P. Narita, M. Nascimbeni, A.C. Natarajan, R. Navegantes, L.C. Nawrocki, S.T. Nazarko, T.Y. Nazarko, V.Y. Neill, T. Neri, L.M. Netea, M.G. Netea-Maier, R.T. Neves, B.M. Ney, P.A. Nezis, I.P. Nguyen, H.T.T. Nguyen, H.P. Nicot, A.-S. Nilsen, H. Nilsson, P. Nishimura, M. Nishino, I. Niso-Santano, M. Niu, H. Nixon, R.A. Njar, V.C.O. Noda, T. Noegel, A.A. Nolte, E.M. Norberg, E. Norga, K.K. Noureini, S.K. Notomi, S. Notterpek, L. Nowikovsky, K. Nukina, N. Nürnberger, T. O'donnell, V.B. O'donovan, T. O'dwyer, P.J. Oehme, I. Oeste, C.L. Ogawa, M. Ogretmen, B. Ogura, Y. Oh, Y.J. Ohmuraya, M. Ohshima, T. Ojha, R. Okamoto, K. Okazaki, T. Oliver, F.J. Ollinger, K. Olsson, S. Orban, D.P. Ordonez, P. Orhon, I. Orosz, L. O'rourke, E.J. Orozco, H. Ortega, A.L. Ortona, E. Osellame, L.D. Oshima, J. Oshima, S. Osiewacz, H.D. Otomo, T. Otsu, K. Ou, J.-H.J. Outeiro, T.F. Ouyang, D.-Y. Ouyang, H. Overholtzer, M. Ozbun, M.A. Ozdinler, P.H. Ozpolat, B. Pacelli, C. Paganetti, P. Page, G. Pages, G. Pagnini, U. Pajak, B. Pak, S.C. Pakos-Zebrucka, K. Pakpour, N. Palková, Z. Palladino, F. Pallauf, K. Pallet, N. Palmieri, M. Paludan, S.R. Palumbo, C. Palumbo, S. Pampliega, O. Pan, H. Pan, W. Panaretakis, T. Pandey, A. Pantazopoulou, A. Papackova, Z. Papademetrio, D.L. Papassideri, I. Papini, A. Parajuli, N. Pardo, J. Parekh, V.V. Parenti, G. Park, J.-I. Park, J. Park, O.K. Parker, R. Parlato, R. Parys, J.B. Parzych, K.R. Pasquet, J.-M. Pasquier, B. Pasumarthi, K.B.S. Patterson, C. Pattingre, S. Pattison, S. Pause, A. Pavenstädt, H. Pavone, F. Pedrozo, Z. Peña, F.J. Peñalva, M.A. Pende, M. Peng, J. Penna, F. Penninger, J.M. Pensalfini, A. Pepe, S. Pereira, G.J.S. Pereira, P.C. de la Cruz, V.P. Pérez-Pérez, M.E. Pérez-Rodríguez, D. Pérez-Sala, D. Perier, C. Perl, A. Perlmutter, D.H. Perrotta, I. Pervaiz, S. Pesonen, M. Pessin, J.E. Peters, G.J. Petersen, M. Petrache, I. Petrof, B.J. Petrovski, G. Phang, J.M. Piacentini, M. Pierdominici, M. Pierre, P. Pierrefite-Carle, V. Pietrocola, F. Pimentel-Muiños, F.X. Pinar, M. Pineda, B. Pinkas-Kramarski, R. Pinti, M. Pinton, P. Piperdi, B. Piret, J.M. Platanias, L.C. Platta, H.W. Plowey, E.D. Pöggeler, S. Poirot, M. Polčic, P. Poletti, A. Poon, A.H. Popelka, H. Popova, B. Poprawa, I. Poulose, S.M. Poulton, J. Powers, S.K. Powers, T. Pozuelo-Rubio, M. Prak, K. Prange, R. Prescott, M. Priault, M. Prince, S. Proia, R.L. Proikas-Cezanne, T. Prokisch, H. Promponas, V.J. Przyklenk, K. Puertollano, R. Pugazhenthi, S. Puglielli, L. Pujol, A. Puyal, J. Pyeon, D. Qi, X. Qian, W.-B. Qin, Z.-H. Qiu, Y. Qu, Z. Quadrilatero, J. Quinn, F. Raben, N. Rabinowich, H. Radogna, F. Ragusa, M.J. Rahmani, M. Raina, K. Ramanadham, S. Ramesh, R. Rami, A. Randall-Demllo, S. Randow, F. Rao, H. Rao, V.A. Rasmussen, B.B. Rasse, T.M. Ratovitski, E.A. Rautou, P.-E. Ray, S.K. Razani, B. Reed, B.H. Reggiori, F. Rehm, M. Reichert, A.S. Rein, T. Reiner, D.J. Reits, E. Ren, J. Ren, X. Renna, M. Reusch, J.E.B. Revuelta, J.L. Reyes, L. Rezaie, A.R. Richards, R.I. Richardson, R. Richetta, C. Riehle, M.A. Rihn, B.H. Rikihisa, Y. Riley, B.E. Rimbach, G. Rippo, M.R. Ritis, K. Rizzi, F. Rizzo, E. Roach, P.J. Robbins, J. Roberge, M. Roca, G. Roccheri, M.C. Rocha, S. Rodrigues, C.M.P. Rodríguez, C.I. de Cordoba, S.R. Rodriguez-Muela, N. Roelofs, J. Rogov, V.V. Rohn, T.T. Rohrer, B. Romanelli, D. Romani, L. Romano, P.S. Roncero, M.I.G. Rosa, J.L. Rosello, A. Rosen, K.V. Rosenstiel, P. Rost-Roszkowska, M. Roth, K.A. Roué, G. Rouis, M. Rouschop, K.M. Ruan, D.T. Ruano, D. Rubinsztein, D.C. Rucker, E.B., III Rudich, A. Rudolf, E. Rudolf, R. Ruegg, M.A. Ruiz-Roldan, C. Ruparelia, A.A. Rusmini, P. Russ, D.W. Russo, G.L. Russo, G. Russo, R. Rusten, T.E. Ryabovol, V. Ryan, K.M. Ryter, S.W. Sabatini, D.M. Sacher, M. Sachse, C. Sack, M.N. Sadoshima, J. Saftig, P. Sagi-Eisenberg, R. Sahni, S. Saikumar, P. Saito, T. Saitoh, T. Sakakura, K. Sakoh-Nakatogawa, M. Sakuraba, Y. Salazar-Roa, M. Salomoni, P. Saluja, A.K. Salvaterra, P.M. Salvioli, R. Samali, A. Sanchez, A.M.J. Sánchez-Alcázar, J.A. Sanchez-Prieto, R. Sandri, M. Sanjuan, M.A. Santaguida, S. Santambrogio, L. Santoni, G. Dos Santos, C.N. Saran, S. Sardiello, M. Sargent, G. Sarkar, P. Sarkar, S. Sarrias, M.R. Sarwal, M.M. Sasakawa, C. Sasaki, M. Sass, M. Sato, K. Sato, M. Satriano, J. Savaraj, N. Saveljeva, S. Schaefer, L. Schaible, U.E. Scharl, M. Schatzl, H.M. Schekman, R. Scheper, W. Schiavi, A. Schipper, H.M. Schmeisser, H. Schmidt, J. Schmitz, I. Schneider, B.E. Schneider, E.M. Schneider, J.L. Schon, E.A. Schönenberger, M.J. Schönthal, A.H. Schorderet, D.F. Schröder, B. Schuck, S. Schulze, R.J. Schwarten, M. Schwarz, T.L. Sciarretta, S. Scotto, K. Scovassi, A.I. Screaton, R.A. Screen, M. Seca, H. Sedej, S. Segatori, L. Segev, N. Seglen, P.O. Seguí-Simarro, J.M. Segura-Aguilar, J. Seiliez, I. Seki, E. Sell, C. Semenkovich, C.F. Semenza, G.L. Sen, U. Serra, A.L. Serrano-Puebla, A. Sesaki, H. Setoguchi, T. Settembre, C. Shacka, J.J. Shajahan-Haq, A.N. Shapiro, I.M. Sharma, S. She, H. Shen, C.-K.J. Shen, C.-C. Shen, H.-M. Shen, S. Shen, W. Sheng, R. Sheng, X. Sheng, Z.-H. Shepherd, T.G. Shi, J. Shi, Q. Shi, Q. Shi, Y. Shibutani, S. Shibuya, K. Shidoji, Y. Shieh, J.-J. Shih, C.-M. Shimada, Y. Shimizu, S. Shin, D.W. Shinohara, M.L. Shintani, M. Shintani, T. Shioi, T. Shirabe, K. Shiri-Sverdlov, R. Shirihai, O. Shore, G.C. Shu, C.-W. Shukla, D. Sibirny, A.A. Sica, V. Sigurdson, C.J. Sigurdsson, E.M. Sijwali, P.S. Sikorska, B. Silveira, W.A. Silvente-Poirot, S. Silverman, G.A. Simak, J. Simmet, T. Simon, A.K. Simon, H.-U. Simone, C. Simons, M. Simonsen, A. Singh, R. Singh, S.V. Singh, S.K. Sinha, D. Sinha, S. Sinicrope, F.A. Sirko, A. Sirohi, K. Sishi, B.J.N. Sittler, A. Siu, P.M. Sivridis, E. Skwarska, A. Slack, R. Slaninová, I. Slavov, N. Smaili, S.S. Smalley, K.S.M. Smith, D.R. Soenen, S.J. Soleimanpour, S.A. Solhaug, A. Somasundaram, K. Son, J.H. Sonawane, A. Song, C. Song, F. Song, H.K. Song, J.-X. Song, W. Soo, K.Y. Sood, A.K. Soong, T.W. Soontornniyomkij, V. Sorice, M. Sotgia, F. Soto-Pantoja, D.R. Sotthibundhu, A. Sousa, M.J. Spaink, H.P. Span, P.N. Spang, A. Sparks, J.D. Speck, P.G. Spector, S.A. Spies, C.D. Springer, W. Clair, D.S. Stacchiotti, A. Staels, B. Stang, M.T. Starczynowski, D.T. Starokadomskyy, P. Steegborn, C. Steele, J.W. Stefanis, L. Steffan, J. Stellrecht, C.M. Stenmark, H. Stepkowski, T.M. Stern, S.T. Stevens, C. Stockwell, B.R. Stoka, V. Storchova, Z. Stork, B. Stratoulias, V. Stravopodis, D.J. Strnad, P. Strohecker, A.M. Ström, A.-L. Stromhaug, P. Stulik, J. Su, Y.-X. Su, Z. Subauste, C.S. Subramaniam, S. Sue, C.M. Suh, S.W. Sui, X. Sukseree, S. Sulzer, D. Sun, F.-L. Sun, J. Sun, J. Sun, S.-Y. Sun, Y. Sun, Y. Sun, Y. Sundaramoorthy, V. Sung, J. Suzuki, H. Suzuki, K. Suzuki, N. Suzuki, T. Suzuki, Y.J. Swanson, M.S. Swanton, C. Swärd, K. Swarup, G. Sweeney, S.T. Sylvester, P.W. Szatmari, Z. Szegezdi, E. Szlosarek, P.W. Taegtmeyer, H. Tafani, M. Taillebourg, E. Tait, S.W.G. Takacs-Vellai, K. Takahashi, Y. Takáts, S. Takemura, G. Takigawa, N. Talbot, N.J. Tamagno, E. Tamburini, J. Tan, C.-P. Tan, L. Tan, M.L. Tan, M. Tan, Y.-J. Tanaka, K. Tanaka, M. Tang, D. Tang, D. Tang, G. Tanida, I. Tanji, K. Tannous, B.A. Tapia, J.A. Tasset-Cuevas, I. Tatar, M. Tavassoly, I. Tavernarakis, N. Taylor, A. Taylor, G.S. Taylor, G.A. Taylor, J.P. Taylor, M.J. Tchetina, E.V. Tee, A.R. Teixeira-Clerc, F. Telang, S. Tencomnao, T. Teng, B.-B. Teng, R.-J. Terro, F. Tettamanti, G. Theiss, A.L. Theron, A.E. Thomas, K.J. Thomé, M.P. Thomes, P.G. Thorburn, A. Thorner, J. Thum, T. Thumm, M. Thurston, T.L.M. Tian, L. Till, A. Ting, J.P.-Y. Ting, J.P.Y. Titorenko, V.I. Toker, L. Toldo, S. Tooze, S.A. Topisirovic, I. Torgersen, M.L. Torosantucci, L. Torriglia, A. Torrisi, M.R. Tournier, C. Towns, R. Trajkovic, V. Travassos, L.H. Triola, G. Tripathi, D.N. Trisciuoglio, D. Troncoso, R. Trougakos, I.P. Truttmann, A.C. Tsai, K.-J. Tschan, M.P. Tseng, Y.-H. Tsukuba, T. Tsung, A. Tsvetkov, A.S. Tu, S. Tuan, H.-Y. Tucci, M. Tumbarello, D.A. Turk, B. Turk, V. Turner, R.F.B. Tveita, A.A. Tyagi, S.C. Ubukata, M. Uchiyama, Y. Udelnow, A. Ueno, T. Umekawa, M. Umemiya-Shirafuji, R. Underwood, B.R. Ungermann, C. Ureshino, R.P. Ushioda, R. Uversky, V.N. Uzcátegui, N.L. Vaccari, T. Vaccaro, M.I. Váchová, L. Vakifahmetoglu-Norberg, H. Valdor, R. Valente, E.M. Vallette, F. Valverde, A.M. Van den Berghe, G. Van Den Bosch, L. van den Brink, G.R. van der Goot, F.G. van der Klei, I.J. van der Laan, L.J.W. van Doorn, W.G. van Egmond, M. van Golen, K.L. Van Kaer, L. Campagne, M.L. Vandenabeele, P. Vandenberghe, W. Vanhorebeek, I. Varela-Nieto, I. Vasconcelos, M.H. Vasko, R. Vavvas, D.G. Vega-Naredo, I. Velasco, G. Velentzas, A.D. Velentzas, P.D. Vellai, T. Vellenga, E. Vendelbo, M.H. Venkatachalam, K. Ventura, N. Ventura, S. Veras, P.S.T. Verdier, M. Vertessy, B.G. Viale, A. Vidal, M. Vieira, H.L.A. Vierstra, R.D. Vigneswaran, N. Vij, N. Vila, M. Villar, M. Villar, V.H. Villarroya, J. Vindis, C. Viola, G. Viscomi, M.T. Vitale, G. Vogl, D.T. Voitsekhovskaja, O.V. von Haefen, C. von Schwarzenberg, K. Voth, D.E. Vouret-Craviari, V. Vuori, K. Vyas, J.M. Waeber, C. Walker, C.L. Walker, M.J. Walter, J. Wan, L. Wan, X. Wang, B. Wang, C. Wang, C.-Y. Wang, C. Wang, C. Wang, C. Wang, D. Wang, F. Wang, F. Wang, G. Wang, H.-J. Wang, H. Wang, H.-G. Wang, H. Wang, H.-D. Wang, J. Wang, J. Wang, M. Wang, M.-Q. Wang, P.-Y. Wang, P. Wang, R.C. Wang, S. Wang, T.-F. Wang, X. Wang, X.-J. Wang, X.-W. Wang, X. Wang, X. Wang, Y. Wang, Y. Wang, Y. Wang, Y.-J. Wang, Y. Wang, Y. Wang, Y.T. Wang, Y. Wang, Z.-N. Wappner, P. Ward, C. Ward, D.M.V. Warnes, G. Watada, H. Watanabe, Y. Watase, K. Weaver, T.E. Weekes, C.D. Wei, J. Weide, T. Weihl, C.C. Weindl, G. Weis, S.N. Wen, L. Wen, X. Wen, Y. Westermann, B. Weyand, C.M. White, A.R. White, E. Whitton, J.L. Whitworth, A.J. Wiels, J. Wild, F. Wildenberg, M.E. Wileman, T. Wilkinson, D.S. Wilkinson, S. Willbold, D. Williams, C. Williams, K. Williamson, P.R. Winklhofer, K.F. Witkin, S.S. Wohlgemuth, S.E. Wollert, T. Wolvetang, E.J. Wong, E. Wong, G.W. Wong, R.W. Wong, V.K.W. Woodcock, E.A. Wright, K.L. Wu, C. Wu, D. Wu, G.S. Wu, J. Wu, J. Wu, M. Wu, M. Wu, S. Wu, W.K.K. Wu, Y. Wu, Z. Xavier, C.P.R. Xavier, R.J. Xia, G.-X. Xia, T. Xia, W. Xia, Y. Xiao, H. Xiao, J. Xiao, S. Xiao, W. Xie, C.-M. Xie, Z. Xie, Z. Xilouri, M. Xiong, Y. Xu, C. Xu, C. Xu, F. Xu, H. Xu, H. Xu, J. Xu, J. Xu, J. Xu, L. Xu, X. Xu, Y. Xu, Y. Xu, Z.-X. Xu, Z. Xue, Y. Yamada, T. Yamamoto, A. Yamanaka, K. Yamashina, S. Yamashiro, S. Yan, B. Yan, B. Yan, X. Yan, Z. Yanagi, Y. Yang, D.-S. Yang, J.-M. Yang, L. Yang, M. Yang, P.-M. Yang, P. Yang, Q. Yang, W. Yang, W.Y. Yang, X. Yang, Y. Yang, Y. Yang, Z. Yang, Z. Yao, M.-C. Yao, P.J. Yao, X. Yao, Z. Yao, Z. Yasui, L.S. Ye, M. Yedvobnick, B. Yeganeh, B. Yeh, E.S. Yeyati, P.L. Yi, F. Yi, L. Yin, X.-M. Yip, C.K. Yoo, Y.-M. Yoo, Y.H. Yoon, S.-Y. Yoshida, K.-I. Yoshimori, T. Young, K.H. Yu, H. Yu, J.J. Yu, J.-T. Yu, J. Yu, L. Yu, W.H. Yu, X.-F. Yu, Z. Yuan, J. Yuan, Z.-M. Yue, B.Y.J.T. Yue, J. Yue, Z. Zacks, D.N. Zacksenhaus, E. Zaffaroni, N. Zaglia, T. Zakeri, Z. Zecchini, V. Zeng, J. Zeng, M. Zeng, Q. Zervos, A.S. Zhang, D.D. Zhang, F. Zhang, G. Zhang, G.-C. Zhang, H. Zhang, H. Zhang, H. Zhang, J. Zhang, J. Zhang, J. Zhang, J.-P. Zhang, L. Zhang, L. Zhang, L. Zhang, M.-Y. Zhang, X. Zhang, X.D. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhang, Y. Zhao, M. Zhao, W.-L. Zhao, X. Zhao, Y.G. Zhao, Y. Zhao, Y. Zhao, Y.-X. Zhao, Z. Zhao, Z.J. Zheng, D. Zheng, X.-L. Zheng, X. Zhivotovsky, B. Zhong, Q. Zhou, G.-Z. Zhou, G. Zhou, H. Zhou, S.-F. Zhou, X.-J. Zhu, H. Zhu, H. Zhu, W.-G. Zhu, W. Zhu, X.-F. Zhu, Y. Zhuang, S.-M. Zhuang, X. Ziparo, E. Zois, C.E. Zoladek, T. Zong, W.-X. Zorzano, A. Zughaier, S.M.
- Published
- 2016
22. Advanced development of IBAD/PLD coated conductors at FUJIKURA
- Author
-
Yasuhiro Iijima, M. Igarashi, R. Kikutake, R. Suzuki, Kazuomi Kakimoto, Hiroshi Fuji, Y. Sutoh, Masanori Daibo, M. Itoh, S. Hanyu, H. Kutami, and T. Saitoh
- Subjects
Materials science ,RE123 coated conductor ,Rare earth ,cricical current ,in-field performance ,Development (differential geometry) ,Physics and Astronomy(all) ,Composite material ,Ic × L value ,Electrical conductor ,unifromity ,Longitudinal direction - Abstract
We have developed an ion-beam-assisted-deposition (IBAD) and a pulsed-laser-deposition (PLD) technique to produce REBa 2 Cu 3 O x (RE123, RE: rare earth) coated conductors with high performances. Distributions of critical currents ( I c ) in the longitudinal direction were improved in most wires routinely fabricated under optimized process. A typical wire showed I c of 460 A/cm at 77 K and self-field, about 200 A/cm at 65 K and 3 T and about 300 A/cm at 50 K and 5 T. In addition, further high I c values over 800 A/cm were also obtained in thick films. Finally, we succeeded in fabricating an 816.4 m long wire with end-to-end I c of 572 A/cm, corresponding to the new world record I c × L value of 466,981 Am/cm.
- Published
- 2012
23. Experiences of High-Dose Mizoribine as Antimetabolite Immunosuppressants for Kidney Transplantation
- Author
-
Hirofumi Matsuoka, Y. Sasatomi, T. Saitoh, Y. Abe, Nobuyuki Nakamura, Hiroshi Mikami, Masatoshi Tanaka, S. Ogawara, and Shinichiro Irie
- Subjects
Adult ,Graft Rejection ,Male ,medicine.medical_specialty ,Adolescent ,medicine.drug_class ,Pharmacology ,Mycophenolate ,Herpes Zoster ,Gastroenterology ,Antimetabolite ,Young Adult ,Japan ,Maintenance therapy ,Internal medicine ,High doses ,Humans ,Medicine ,Child ,Kidney transplantation ,Retrospective Studies ,Polyomavirus Infections ,Transplantation ,Mizoribine ,business.industry ,Graft Survival ,Significant difference ,Middle Aged ,Mycophenolic Acid ,medicine.disease ,Kidney Transplantation ,Treatment Outcome ,BK Virus ,Cytomegalovirus Infections ,Cohort ,Female ,Surgery ,Ribonucleosides ,business ,Immunosuppressive Agents ,medicine.drug - Abstract
We have used low doses of mizoribine (MZ) or mycophenolate mofetil (MMF) as induction and maintenance immunosuppressants, but since 2009 have employed a high dose of MZ. We reviewed the efficacy and side effects of MZ compared with MMF. It is difficult to compare graft survivals between these periods because of different patient demographics, though the high dose of MZ cohort showed no significant difference from MMF. High doses of MZ serum to prevent acute rejection episodes as the induction and maintenance therapy. MZ controlled with blood concentrations showed less side effects, suggesting that high MZ doses could be safely used for an induction and maintenance antimetabolite.
- Published
- 2012
24. Characteristics of cryocooled racetrack magnet fabricated using REBCO coated conductor
- Author
-
Masashi Haraguchi, Shinji Fujita, T. Saitoh, Masanori Daibo, K. Kikuchi, and Yasuhiro Iijima
- Subjects
Superconductivity ,Materials science ,Energy Engineering and Power Technology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Conductor ,Nuclear magnetic resonance ,Electromagnetic coil ,Magnet ,Inner diameter ,Electrical and Electronic Engineering ,Composite material ,Current (fluid) ,Electrical conductor - Abstract
In the last few years, REBCO coated conductors having a performance greater than a few hundred amperes per cm at 77 K have been developed for superconducting applications. Coils that use REBCO coated conductors are expected to have the high operating current ( I op ) against the critical current ( I c ) of the coil. In this paper we report the experimental results of a small cryocooled racetrack magnet (70 × 150 mm in inner diameter, 100 × 180 mm in outer diameter, 27 mm in height, 50 m (12.5 m × 4 coils) in total length) fabricated using a REBCO coated conductor, formed by IBAD/PLD method. We measured the critical current of the magnet from 50 K to 20 K under cryocooled conditions. The critical current was found to be 450 A at 20 K. The magnetic field of 0.54 T was generated at the center of the magnet. We also investigated the stability of the racetrack magnet, at the current of 382.5 A, and I op / I c ratio of approximately 85%, for 1 h at 20 K.
- Published
- 2011
25. Development of a REBCO Superconducting Transformer With Current Limiting Function
- Author
-
Yasuhiro Iijima, T. Otonari, T. Saitoh, Yuh Shiohara, T. Ogata, Yoshihiro Gosho, Hidemi Hayashi, Takayo Hasegawa, Yutaka Yamada, Tsutomu Koizumi, Akira Tomioka, Hiroshi Okamoto, Masataka Iwakuma, Y. Aoki, S. Sato, T. Ohkuma, Tomoaki Tsutsumi, and T. Izumi
- Subjects
Superconductivity ,Leakage inductance ,Materials science ,Mechanics ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Current limiting ,Electromagnetic coil ,law ,Electrical and Electronic Engineering ,Transformer ,Short circuit ,Short-circuit test ,Voltage - Abstract
A single-phase 10 kVA transformer was designed and fabricated with RE1Ba2Cu30O7-δ (REBCO, RE: Rare Earth) superconducting tapes to quantitatively investigate the transition phenomenon of REBCO superconducting tapes to normal state due to a fault excess current. The voltage ratio was 1:1 and the rated voltage was 393 V. It had four windings. The primary and secondary windings had auxiliary windings in addition to main ones respectively. The main and auxiliary windings were connected in parallel in the both sides. The addition of the auxiliary windings made it possible to observe the induced normal resistances in the respective main ones individually. First usual performance tests were carried out and a stable operation as designed was confirmed. In steady state almost all of the current flowed in the main windings due to the small leakage reactance between them. At a sudden short-circuit test, the main windings quenched due to excess current over the critical current and the current was reduced to one fortieth as compared with the case of no current limiting function. It was clarified the whole of the main windings did not shift to normal state though the current exceeded the critical current all over the length and the induced normal zone was almost proportional to the primary voltage.
- Published
- 2011
26. Evaluation of the Normal-Zone Propagation Characteristics of REBCO Coated Conductors With Laminated Cu Tape
- Author
-
Shinji Fujita, Masashi Haraguchi, Masanori Daibo, T. Saitoh, and Yasuhiro Iijima
- Subjects
Superconductivity ,High-temperature superconductivity ,Materials science ,Superconducting magnet ,Condensed Matter Physics ,Temperature measurement ,Electronic, Optical and Magnetic Materials ,law.invention ,Magnetic field ,Normal zone ,Safe operation ,law ,Electrical and Electronic Engineering ,Composite material ,Electrical conductor - Abstract
The quench characteristics, particularly the normal-zone propagation and increase in hot-spot temperature, of REBa2Cu3Ox (REBCO) coated conductors are important issues for safe operation in the superconducting applications. Although experimental data on the quench characteristics of REBCO coated conductors have been reported only limited data is available specifically on REBCO coated conductors laminated with Cu tape of thickness no less than 0.1 mm, which are expected to be used for high-current operation in future superconducting applications. Here we reported experimental measurements of the normal-zone propagation velocity (NZPV) in REBCO coated conductors laminated with Cu tape of 0.1 mm thickness at 77, 65 and 50 K in a background magnetic field. We also compared these results with the NZPV at 77 K of REBCO coated conductors laminated with Cu stabilizer tape of thickness 0.05 and 0.3 mm.
- Published
- 2011
27. In-Field Current Transport Properties of 600 A-Class ${\rm GdBa}_{2}{\rm Cu}_{3}{\rm O}_{7-\delta}$ Coated Conductor Utilizing IBAD Template
- Author
-
Satoshi Awaji, T. Saitoh, Toru Izumi, K. Watanabe, M. Namba, Masayoshi Inoue, Yasuhiro Iijima, Kohei Higashikawa, Takanobu Kiss, and R Fuger
- Subjects
Superconductivity ,Materials science ,Condensed matter physics ,Electromagnetic coil ,Magnet ,Electric field ,Superconducting magnet ,Electrical and Electronic Engineering ,Condensed Matter Physics ,Current density ,Electrical conductor ,Electronic, Optical and Magnetic Materials ,Pulsed laser deposition - Abstract
We have investigated critical current Ic properties of 600 A/cm-class GdBa2Cu3O7-δ (GdBCO) coated conductor (CC) deposited on IBAD template. 2.5 μm thick GdBCO layer has been obtained by pulse laser deposition without degradation of critical current density by an improved heating condition in reel-to-reel deposition process. This enables stable production of long length CC with Ic (77 K, self-field) of 600 A/cm-w. In-filed Ic has also shown high value e.g., Ic@77 K, 3 T=33 A/cm-w, Ic@20 K, 27 T=107 A/cm-w. These experimental results obtained in a wide range of bias conditions of temperature T, magnetic field B and field angle θ are useful as a fundamental data for design of superconducting devices such as coil winding and magnet. Furthermore, we have also shown that our proposed analytical expression of electric field vs. current density (E-J) characteristics agrees well with the experimental results. This analytical expression allows us to predictIc-B-T property as well as E-J characteristics at arbitrary conditions of B and T.
- Published
- 2011
28. Model Cable Tests for a 275 kV 3 kA HTS Power Cable
- Author
-
Y Ichikawa, Masashi Yagi, Shinichi Mukoyama, Y. Aoki, T Yonemura, N Fujiwara, Naoyuki Amemiya, Atsushi Ishiyama, T. Nomura, T. Saitoh, and Naoki Hayakawa
- Subjects
Materials science ,business.industry ,Superconducting wire ,Electrical engineering ,High-voltage cable ,High voltage ,engineering.material ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Transmission line ,Power electronics ,engineering ,Power cable ,Electrical and Electronic Engineering ,business ,Electrical conductor ,Overhead line - Abstract
High-temperature superconducting (HTS) cables are considered the next generation transmission line because they are compact, lightweight, and demonstrate large capacity and low loss compared to conventional cables. In particular, since a coated conductor (YBCO wire) provides high critical current, high magnetic-field property, low AC loss, and low cost, it is expected to make the HTS cable more attractive than other superconducting wire. In Japan, 66/77 kV HTS cables have developed for about 20 years. We started developing 275 kV class HTS cables three years ago based on 66/77 kV HTS cables. The goal is a 275 kV 3 kA cable with a capacity of 1.5 GVA, the same capacity as a typical overhead transmission line, which serves as the backbone of Japanese power networks. The following technical developments will be carried out: high current and low AC loss cable conductors and high voltage insulation and low dielectric loss cables. Regarding high current and low AC loss cable conductors, 3-kA cables have been fabricated, and AC losses have been measured. We found that using thin YBCO wire reduced AC losses in experiments.
- Published
- 2011
29. High-speed deposition of RE123 film with large current capacity by hot-wall type PLD system
- Author
-
Yasuhiro Iijima, Shinji Fujita, Y. Sutoh, Y. Hanada, M. Igarashi, T. Hayashida, N. Nakamura, Katsuhiro Morita, Kazuomi Kakimoto, T. Saitoh, H. Kutami, and S. Hanyu
- Subjects
Materials science ,High-temperature superconductivity ,Scanning electron microscope ,Energy Engineering and Power Technology ,Substrate (electronics) ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Pulsed laser deposition ,law.invention ,Nuclear magnetic resonance ,law ,Laser power scaling ,Critical current ,Electrical and Electronic Engineering ,Composite material ,Current (fluid) ,Deposition (law) - Abstract
We have studied a hot-wall heating system to produce GdBa 2 Cu 3 O y (GdBCO) films with large critical currents ( I c ) at a high production rate by a pulsed-laser-deposition (PLD) method. GdBCO films fabricated at a production rate of 30 m/h under the optimized conditions, especially a distance of 95 mm between the target and the substrate (T–S), exhibited high critical current densities ( J c ) of about 3 MA/cm 2 and I c over 300 A at a thickness of 1–2 μm. Furthermore, long GdBCO tapes prepared by repeated depositions at each tape-passing speed of 80 m/h showed uniform I c distribution along the longitudinal direction, because the hot-wall system enabled to stabilize temperature within a few degrees at 800 °C. A 170 m long tape with I c over 600 A was successfully fabricated at a production rate of 16 m/h using a laser power of 360 W.
- Published
- 2010
30. Computer simulation of fault current characteristics in 275kV class YBCO power cable
- Author
-
Y. Aoki, Atsushi Ishiyama, Masashi Yagi, N. Fujiwara, Xudong Wang, Shinichi Mukoyama, Hiroshi Ueda, S. Sato, and T. Saitoh
- Subjects
Materials science ,Computer simulation ,Energy Engineering and Power Technology ,Mechanical engineering ,Insulator (electricity) ,Condensed Matter Physics ,Fault (power engineering) ,Thermal diffusivity ,Finite element method ,Electronic, Optical and Magnetic Materials ,Overcurrent ,Thermal conductivity ,Power cable ,Electrical and Electronic Engineering - Abstract
In Japan, the development of a 275 kV class YBCO power cable was started in 2008 with the support of the New Energy and Industrial Technology Development Organization (NEDO). In the designing of 275 kV YBCO power cable, the thickness of insulator is required to be 26 mm. Thus, in order to design the 275 kV YBCO power cable, it is important to estimate the thermal diffusion through the electrical insulation layer for designing the high-voltage YBCO power cable. Furthermore, YBCO power cables might be subjected to short-circuit fault currents that are 10–30 times a normal operating current. Therefore, in order to ensure stability and feasibility of superconducting power cables, we need to investigate the thermal characteristics and current distribution in the cable in the normal and fault conditions. The objective of this study is to investigate the thermal characteristics and dielectric performance in 275 kV class power cables. We carried out experiments on dummy cables in a steady state to clarify the distribution of temperature. In order to estimate the thermal conductivity and the heat capacity of the insulation layer, we performed numerical simulations using a developed computer program on the basis of the 3D finite element method. We also measured a tanδ and permittivity of an insulation layer in order to investigate the dielectrical performance.
- Published
- 2010
31. Signalling in pattern recognition (PP-057)
- Author
-
M. Matsumoto, M. Felonato, H. Yamamoto, A. Pina, A. Takeishi, S. Niida, A. Miyazato, C. Ferioti, A. Veide, H. Chen, V. L. G. Calich, H. Kumar, A. Szabo, M. Nakamoto, W. Coulter, Z. Guo, J. Kiyoshima-Shibata, E. Rajnavolgyi, V. V. Sumbayev, M. Inomata, H. Lall, M. Ming, Y. Chen, T. Into, F. V. Loures, M. Adib-Conquy, S. Nishikawa, N. Jounai, O. Takeuchi, R. E. Varga, P. Gogolak, R. Saar, M. Nanno, J. Yang, K. Kobiyama, H. Oshiumi, K. Coughlan, K. Shida, K. Kawakami, I. Yasinska, K. Matsushita, J. Shibata, T. Kawai, D. Tanno, S. Nicholas, C. Taggart, M. Tanaka, K. Suzuki, M. Jang, K. Shibata, M. Nagaoka, K. Bene, J. Cavaillon, D. Ori, T. Tsuchida, C. Shelburne, S. Rüütel-Boudinot, S. Rüütel Boudinot, H. Iwasaki, T. Saitoh, K. J. Ishii, T. Miyasaka, M. Nomura, E. Kuranaga, M. Tatematsu, J. Suurväli, Y. Kumagai, F. Takeshita, Y. Tao, K. Ishii, T. Seya, T. Satoh, R. Kaji, F. Tani, Y. Abe, C. Jin, J. M. Cavaillon, Y. Wu, M. Miura, S. Zaric, S. Akira, P. A. Koenig, I. Yokoyama, N. Kitabatake, M. Pahtma, S. Tsujibe, K. Hashimoto, and S. Lin
- Subjects
Signalling ,Immunology ,Pattern recognition (psychology) ,Immunology and Allergy ,General Medicine ,Biology ,Neuroscience - Published
- 2010
32. Increase of production rate of RE-123 film by PLD system with the hot-wall type heating
- Author
-
C. Tashita, T. Hayashida, Kazuomi Kakimoto, Hiroshi Fuji, Y. Hanada, Yasuhiro Iijima, M. Igarashi, S. Hanyu, T. Saitoh, and H. Kutami
- Subjects
Materials science ,Ion plating ,Energy Engineering and Power Technology ,Texture (crystalline) ,Critical current ,Electrical and Electronic Engineering ,Composite material ,Condensed Matter Physics ,System structure ,Evaporation (deposition) ,Electronic, Optical and Magnetic Materials ,Pulsed laser deposition ,Production rate - Abstract
We have studied two types of heating systems to produce thick GdBa2Cu3O7−X (Gd123) films with high critical current (Ic) stably at a high speed by the PLD method. Material yields of both PLD systems reached about 50–60% by optimization of evaporation condition. Hot-wall heating type (type 2) could fabricate the thicker Gd123 film with the higher Ic compared to contact heating type (type 1) and maximum Ic reached 1040 A at about 6 μm thick. Furthermore, it was estimated that type 2 could fabricate Gd123 film with an Ic of about 700 A at about twice speed compared to type 1. Finally, it was considered that the hot-wall heating type was very advantageous to prepare thick Gd123 film with high Ic at a high speed from the system structure.
- Published
- 2009
33. Visualization of non-uniform current flow in coated conductors by scanning Hall-probe magnetic microscopy
- Author
-
K. Abiru, Yasuhiro Iijima, Y. Honda, Y. Shiohara, Kazuomi Kakimoto, Masayoshi Inoue, K. Nakao, T. Saitoh, and Takanobu Kiss
- Subjects
Scanning Hall probe microscope ,Materials science ,Condensed matter physics ,business.industry ,Energy Engineering and Power Technology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Biot–Savart law ,Optics ,Magnetic field imaging ,Microscopy ,Electrical and Electronic Engineering ,Current (fluid) ,business ,Current density ,Electrical conductor - Abstract
We have visualized non-uniform current flow in RE123 coated conductors by using a scanning Hall-probe magnetic microscopy (SHPM). Newly developed SHPM system allows us to measure two-dimensional magnetic field distribution with high spatial resolution in micro-meter scale. Corresponding current density distribution can be obtained from the magnetic field image by solving inverted Biot–Savart’s law. One of the most important advantages of the present system is to visualize the current density distribution in practical high transport current and also in wide scanning area. For example, the system has current leads with large capacity up to 500 A, and the operating distance can be 15 cm by 15 cm with a micro-meter step distance. Using the SHPM system, we have successfully visualized current density distributions in the coated conductor, and clarified different kinds of non-uniform current flow. Those insights are very useful to identify local defects as well as non-uniform tape quality. These results indicate that the SHPM system is a powerful diagnostic tool not only to observe spatial inhomogeneities of transport property but also to understand their reason in practical coated conductors.
- Published
- 2009
34. Development of 6.6kV/600A superconducting fault current limiter using coated conductors
- Author
-
Naoyuki Amemiya, Masami Urata, Kei Koyanagi, Takashi Yazawa, Y. Shiohara, K. Toba, Yasuhiro Iijima, Takahashi Masahiko, T. Ito, T. Saitoh, and H. Takigami
- Subjects
Materials science ,business.industry ,Electrical engineering ,Energy Engineering and Power Technology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Generator (circuit theory) ,Current limiting ,Electromagnetic coil ,Fault current limiter ,Electrical and Electronic Engineering ,business ,Short circuit ,Electrical conductor ,Circuit breaker ,Voltage - Abstract
As one of the programs in the Ministry of Economy, Trade and Industry (METI) project regarding R&D on superconducting coated conductor, three-phase superconducting fault current limiter (SFCL) for 6.6 kV application was developed and successfully tested. The developed SFCL was mainly comprised three-phase set of current limiting coils installed in a sub-cooled nitrogen cryostat with a GM cryocooler, circuit breakers and a sequence circuit. The whole system was installed in a cubicle. Two tapes of coated conductor were wound in parallel in each coil to obtain the rated current of 72 A rms. After developing the whole SFCL system, short circuit experiments were implemented with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted the prospected short circuit current over 1.6 kA to about 800 A by the applied voltage of 6.6 kV. The SFCL was installed in a user field and connected with a gas engine generator, followed by a consecutive operation. In this program, 600 A class FCL coil, with which four coated conductor tapes were wound, was also developed. The coil showed sufficiently low AC loss at the rated current. With these results, the program attained the planned target of the fundamentals for the 6.6 kV/600 A SFCL.
- Published
- 2009
35. Progress in research and development on long length coated conductors in Fujikura
- Author
-
Y. Hanada, H. Kutami, M. Igarashi, Yasuhiro Iijima, S. Hanyu, Kazuomi Kakimoto, T. Saitoh, C. Tashita, Hiroshi Fuji, and T. Hayashida
- Subjects
Superconductivity ,Fabrication ,Materials science ,Ion plating ,Energy Engineering and Power Technology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Pulsed laser deposition ,Conductor ,Electrical and Electronic Engineering ,Composite material ,Ion beam-assisted deposition ,Layer (electronics) ,Electrical conductor - Abstract
This paper describes a process for the fabrication of coated conductor (CC) wires, which is developed by Fujikura, and discusses their properties. These wires are composed of a buffer layer, which is formed by the ion beam assisted deposition (IBAD) technique, and a superconducting layer, which is formed by the pulsed laser deposition (PLD) process. In order to increase the I c × L which means the product of critical current ( I c ) and the length ( L ) of the CC wires the I c value and I c distribution along the length of CC wires have been improved by using a new PLD pilot plant. The I c value increases approximately linearly with the thickness of the superconducting layer, and it continues to increase up to a thickness of approximately 4 μm or 5 μm. The I c × L value of our fabricated CC wire is 176,023 Am. The I c value of a short sample is 972 A/cm. The process rate of IBAD is enhanced up to 100 m/h and that of PLD is enhanced up to 20 m/h. A 40-m long CC tape, which has an average I c of 300 A, is fabricated by the improved IBAD and PLD techniques.
- Published
- 2009
36. Production and Test of a REBCO Superconducting Synchronous Motor
- Author
-
Toru Izumi, Y. Hase, T. Saitoh, Masataka Iwakuma, A. Tomioka, M. Konno, Y. Shiohara, Yutaka Yamada, Yasuhiro Iijima, and T. Satou
- Subjects
Electric motor ,Superconductivity ,Materials science ,Squirrel-cage rotor ,Condensed Matter Physics ,Field coil ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Nuclear magnetic resonance ,Magnetic core ,Electrical and Electronic Engineering ,Composite material ,Synchronous motor ,Excitation - Abstract
We designed and fabricated a 7.5 kW-360 rpm synchronous motor with a superconducting rotor. The rotor was 6-pole type and has no iron core. The armature winding was wound with copper wires. 6 pieces of racetrack-shaped field coils were wound with 5 mm wide RE1Ba2Cu3O7-delta (REBCO, RE:Rare Earth) superconducting tapes produced by an ion beam assisted deposition method and a pulsed laser deposition method. The total length of REBCO tape was 400 m per a field coil. We confirmed the good transport properties of the respective field coils up to 80 A at 40 to 50 K before and also after the assembly to a motor. The maximum magnetic field in the field coils was 0.67 T. The superconducting rotor was cooled down to around 40 K by forced-flowed helium gas and the completed motor was tested in a similar way to conventional motors. As a result of a load test, the designed operation of 7.5 kW at 360 rpm was verified for the rated field current of 60 A. Even when the field current was increased up to 70 A at 40 K, the temperature at each part of the superconducting rotor was held constant and the quite stable operation up to 11 kW at 360 rpm was also achieved.
- Published
- 2009
37. Observation of Current Distribution in High-$T_{\rm c}$ Superconducting Tape Using Scanning Hall-Probe Microscope
- Author
-
Yasuhiro Iijima, Y. Honda, Y. Shiohara, T. Saitoh, K. Abiru, Masayoshi Inoue, K. Nakao, Kazuomi Kakimoto, and Takanobu Kiss
- Subjects
Superconductivity ,Scanning Hall probe microscope ,Microscope ,Materials science ,Condensed matter physics ,business.industry ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Scanning probe microscopy ,law ,Hall effect ,Microscopy ,Optoelectronics ,Electrical and Electronic Engineering ,Alternating current ,business ,Electrical conductor - Abstract
We have carried out observations of current flow in processed RE123 coated conductors using a scanning Hall-probe microscope. Using this system, the position of defects and the resulting disturbed current flow could be observed. The two-dimensional current distribution in a 10-filament formed coated conductor (400 mum width and 100 mum space) was also investigated. Current sharing and the current distribution in each filament were quantitatively estimated. Furthermore, current penetration in quasi-static AC current mode was also measured.
- Published
- 2009
38. Design and Experimental Results of Three-Phase Superconducting Fault Current Limiter Using Highly-Resistive YBCO Tapes
- Author
-
Takahashi Masahiko, Naoyuki Amemiya, Yasuhiro Iijima, Masami Urata, M. Sakai, Takashi Yazawa, T. Saitoh, H. Takigami, Kei Koyanagi, M. Ono, K. Toba, and Y. Shiohara
- Subjects
Materials science ,business.industry ,Electrical engineering ,Cryocooler ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Generator (circuit theory) ,Three-phase ,Electromagnetic coil ,Fault current limiter ,Electrical and Electronic Engineering ,business ,Short circuit ,Circuit breaker ,Voltage - Abstract
As one of the programs in the Ministry of Economy, Trade and Industry (METI) R&D project on coated conductors, we developed a three-phase 6.6 kV superconducting fault current limiter (SFCL) and conducted some evaluation tests. The developed SFCL mainly comprised a set of three-phase current-limiting coils installed in a sub-cooled nitrogen cryostat with a Gifford-McMahon (GM) cryocooler, circuit breakers, and a sequence control circuit. Two tapes were wound in parallel in each limiting coil to obtain a rated current of 72 A rms. AC characteristics of each coil were measured, and relevant performance metrics were obtained. The whole system was installed in a cubicle. Short circuit experiments were then conducted with a short circuit generator. In a three-line ground fault test, the SFCL successfully restricted a short circuit current of over 1.56 kA to about 840 A with an applied voltage of 6.6 kV. The system integration ability and the obtained data show the promise of this approach for practical implementation. The SFCL was ready for user field tests.
- Published
- 2009
39. Progress in Scale-Up of RE-123 Coated Conductors With $I_{c}$ of 300 A/cm by IBAD/PLD Process
- Author
-
Kazuomi Kakimoto, C. Tashita, T. Hayashida, Hiroshi Fuji, Yasuhiro Iijima, Y. Hanada, T. Saitoh, H. Kutami, T Kato, M. Igarashi, T Hirayama, and S. Hanyu
- Subjects
Materials science ,High-temperature superconductivity ,business.industry ,Condensed Matter Physics ,Ion source ,Electronic, Optical and Magnetic Materials ,Pulsed laser deposition ,law.invention ,Conductor ,law ,Physical vapor deposition ,Reel-to-reel audio tape recording ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Ion beam-assisted deposition ,Electrical conductor - Abstract
By an IBAD/PLD method, a 500 m-length high-performance GdBa2Cu3Ox (GdBCO) coated conductor with BaZrO3 (BZO) was fabricated. End-to-end Ic of the 503.5 m tape was 349.6 A/cm at 77 K, corresponding Ic times L value of 176,023 Am. New approaches to decrease the thickness of IBAD buffer layers were developed by combination of IBAD-MgO(111) and IBAD-Gd2Zr2O7 (GZO). The maximum Jc of the GdBCO on the buffer layer was 550 A/cm. We also started to investigate IBAD-MgO(OOl) by using a large IBAD system with a 110 cm times 15 cm ion source. A 50 m-length IBAD-MgO tape with DeltaPhi of 13deg was fabricated at a 100 m/h-1 pass. Insulated REBCO wires with Cu or Ni-Cr lamination were developed using 5 mm-wide conductors sliced from 10 mm-wide IBAD/PLD tapes. Practical long insulated wires were supplied for several prototypes of motors, transformers and fault current limiters in fiscal 2007.
- Published
- 2009
40. Long Gd-123 coated conductor by PLD method
- Author
-
M. Igarashi, Yasuhiro Iijima, Y. Hanada, Kazuomi Kakimoto, Hiroshi Fuji, T. Saitoh, T. Miura, and S. Hanyu
- Subjects
Materials science ,Instrumentation ,Analytical chemistry ,Energy Engineering and Power Technology ,Condensed Matter Physics ,Ion source ,Electronic, Optical and Magnetic Materials ,Pulsed laser deposition ,Magnetic field ,Conductor ,Nuclear magnetic resonance ,Perpendicular ,Electrical and Electronic Engineering ,Electrical conductor ,Deposition (law) - Abstract
We have developed long Gd-123 coated conductors by ion-beam-assisted deposition (IBAD) and pulsed-laser-deposition (PLD) method. Recently, large-scale reel-to-reel apparatus with the 110 cm × 15 cm assisting ion source was introduced to IBAD system. It was enable to produce 500 m-class IBAD–Gd 2 Zr 2 O 7 (GZO) tapes with Δ ϕ of below 15° and high throughputs of 3 m/h. Furthermore, apparatus with multi-lane and laser scanning was introduced to PLD system. As a result, end to end I c of 318 A were obtained for a 201.5 m long tape, and I c × L values were 64,077 Am. Furthermore, 500 m-class deposition was carried out by improving PLD conditions. As a result, I c × L values of 112,166 Am was obtained and it’s a world record on August 2007. In the short samples, I c of over 500 A was obtained with Gd-123 thickness of 2.0 μm and over 100 A was obtained in magnetic field of 3 T, perpendicular to c -axis.
- Published
- 2008
41. Development of a 7.5 kW YBCO Superconducting Synchronous Motor
- Author
-
Y. Hase, T. Satou, Yutaka Yamada, Toru Izumi, Yasuhiro Iijima, Y. Shiohara, T. Saitoh, Akira Tomioka, M. Konno, and Masataka Iwakuma
- Subjects
Electric motor ,Superconductivity ,Materials science ,Nuclear engineering ,Yttrium barium copper oxide ,Cryogenics ,Cryocooler ,Condensed Matter Physics ,Field coil ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Nuclear magnetic resonance ,Magnetic core ,chemistry ,Condensed Matter::Superconductivity ,Electrical and Electronic Engineering ,Synchronous motor - Abstract
We are developing a 7.5 kW-360 rpm synchronous motor with a superconducting rotor. The rotor is 6-pole type and has no iron core. The armature winding is wound with copper. The designed operating temperature is 40 K. It will be cooled by forced-flowed helium gas. We have finished the winding of the first superconducting field coil with YBCO superconducting tapes fabricated by IBAD-PLD method. It is a 62-layer solenoidal coil. The total length of YBCO tape is 400 m. The magnetic field in the field winding is about 0.4 T at maximum and that in the gap is 0.2 T. We cooled it down to 20 K by G-M type cryocooler and investigate the transport properties in advance of the winding of the other field coils. We verified the stable operation up to 100 A at 40 K against the rated current of 50 A. In addition we prepared the cryogenic rotor system and installed 6 pieces of dummy copper coils instead of superconducting coils. We cooled it down to 30 K by forced-flowing helium gas and tested it by rotating up to 360 rpm. We verified the satisfactory good mechanical and thermal operation.
- Published
- 2008
42. Prognostic role of immunosuppressive acidic protein in patients with esophageal cancer
- Author
-
Satoshi Ohtani, Seigo Kashimura, Tomiyoshi Saito, Y. Odashima, Z. Saze, Nobutoshi Soeta, Masanori Terashima, Fumihiko Osuka, Michihiko Kogure, Sinya Terashima, Mitsukazu Gotoh, T. Saitoh, Shinichi Matsuyama, and Yutaka Hoshino
- Subjects
Adult ,medicine.medical_specialty ,Esophageal Neoplasms ,Lymphovascular invasion ,Gastroenterology ,Immune system ,Immunosuppressive acidic protein ,In vivo ,Immunity ,Internal medicine ,Biomarkers, Tumor ,Humans ,Medicine ,In patient ,Survival rate ,Aged ,business.industry ,General Medicine ,Middle Aged ,Esophageal cancer ,Prognosis ,medicine.disease ,Neoplasm Proteins ,Surgery ,Survival Rate ,body regions ,business - Abstract
SUMMARY. Immunosuppressive acidic protein (IAP) suppresses several immune responses in vivo and in vitro , and high preoperative IAP levels could predict the impairment of the host's immunity. In this study prognostic significance of preoperative IAP levels was investigated in 68 esophageal cancer patients with curative resection and eight with non-curative resection. The curative group had significantly lower levels than the non-curative group (432 ± 183 mg/mL vs. 739 ± 235 mg/mL, P < 0.0001). The IAP levels were associated with T-status (P < 0.0001), lymphatic invasion (P < 0.05), and p-stages (P < 0.0001). When 5-year survival rate of patients with curative resection was compared by setting various cutoff values of IAP between high and low IAP groups, several cutoff points (400-580 mg/mL) were revealed to be significantly associated with survival. Setting cutoff value of IAP to 560 mg/mL resulted in a most significant difference of 5-year survival rate of patients between the high and low IAP groups (13.9% and 61.5%, P < 0.0001). These data indicate that pre-operative IAP level is a useful parameter to predict the prognosis of esophageal cancer patients after curative resection.
- Published
- 2008
43. Bladder Reconstruction with Nerve Sparing Cystectomy
- Author
-
S. Kiyotaki, K. Okada, Toshio Yoshida, T. Saitoh, and J. Nogaki
- Subjects
Cystectomy ,medicine.medical_specialty ,Nerve sparing ,Bladder reconstruction ,business.industry ,Urology ,medicine.medical_treatment ,medicine ,business ,Surgery - Published
- 2008
44. Progress in development of advanced TFA-MOD process for coated conductors
- Author
-
A. Nakai, Y. Sutoh, Y. Shiohara, Kenji Suzuki, T. Saitoh, Y. Kitoh, K. Nakaoka, Toru Izumi, Masaaki Yoshizumi, Junko Matsuda, Yoshiteru Yamada, Akimasa Yajima, and T. Nakanishi
- Subjects
Materials science ,Barium oxide ,High-temperature superconductivity ,Annealing (metallurgy) ,Energy Engineering and Power Technology ,engineering.material ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Volumetric flow rate ,law.invention ,Reaction rate ,chemistry.chemical_compound ,chemistry ,Coating ,law ,engineering ,Calcination ,Electrical and Electronic Engineering ,Composite material ,Crystallization - Abstract
Recent progresses in R&D of the TFA-MOD process for coated conductors are reviewed. On the efforts for high I c tapes, the new process to prevent the crack formation in the thick film, which is the intermediate annealing between the calcination and the crystallization steps, was developed. Additionally, control of the starting composition, especially for the Ba-poor composition from the Y:Ba:Cu = 1:2:3 stoichiometric one, is found to be effective to improve the J c value of the films. Consequently, the extremely high I c value of 735 A was obtained. On the other hand, a reel-to-reel system has been applied to fabricate long tapes. A reasonable long tape of 25 m with 100 A was obtained by the increase of the gas flow rate which assists to enhance the conversion reaction rate. Additionally, it was found that the rigorous humidity control in the coating chamber is important to obtain the uniform characteristics in long tapes. The idea was applied to fabricate long tapes and a 56 m tape with the end-to-end I c value of 250 A was realized.
- Published
- 2007
45. Preparation of conduction-cooled HTS coils using Y-123 coated conductors by IBAD/PLD process
- Author
-
T. Saitoh, Kazuomi Kakimoto, Hiroshi Fuji, S. Hanyu, and Yasuhiro Iijima
- Subjects
Superconductivity ,Materials science ,High-temperature superconductivity ,business.industry ,Energy Engineering and Power Technology ,Solenoid ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetic field ,law.invention ,Nuclear magnetic resonance ,law ,Electromagnetic coil ,Magnet ,Water cooling ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Electrical conductor - Abstract
We have developed a long Y-123 coated conductors by ion-beam-assisted deposition (IBAD) and pulsed-laser-deposition (PLD) method. Now, we can routinely obtained 100 m class Y-123 tapes with over 100 A at 77 K. For power applications using Y-123 conductors, coiling and cooling techniques are important elements. From 2004, we have developed and demonstrated a solenoid type coil that is the most suitable for practical application because it has advantage such as (1) uniformity of magnetic field (2) no joint. In this paper, we describe the development of conduction-cooled HTS test coil that has 14 turn × 22 layers using 100 m Y-123 conductors. In order to use the conduction cooling system, the Y-123 conductors were stabilized for 0.1 mm thick Cu tapes and spacers between the layers consisted of aluminum nitride in the coils. In the demonstration of this coil at 30 K, 40 K, 50 K, 60 K and 77 K by cryo-cooling system, the good cooling and superconducting performances were observed. The central magnetic fields of over 1 T were successfully obtained with operating currents of over 400 A and under 40 K. Furthermore, this coil was operated on additional magnetic fields of 3 T by combination of LTS magnets. The central magnetic fields of 0.5 T were generated from the cooled HTS coils with operating current of 190 A on additional magnetic fields of 3 T by LTS magnets at 30 K. Total magnetic fields were exceeded 3.5 T at 30 K.
- Published
- 2007
46. Total AC Loss Characteristics in a Stacked YBCO Conductor
- Author
-
Naoyuki Amemiya, Kazuomi Kakimoto, Yasuhiro Iijima, T. Saitoh, K. Suzuki, Y. Shiohara, and Jiang Zhenan
- Subjects
High-temperature superconductivity ,Materials science ,Condensed matter physics ,Yttrium barium copper oxide ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,law.invention ,Magnetic field ,Conductor ,Magnetization ,chemistry.chemical_compound ,chemistry ,Stack (abstract data type) ,law ,Critical current ,Electrical and Electronic Engineering ,Electrical conductor - Abstract
Four 5 mm-wide YBCO conductors with identical critical current were assembled face to face to obtain a stacked YBCO conductor. The magnetization losses without transport current, the transport losses without external magnetic field, and the total AC losses of the stacked YBCO conductor as well as a single YBCO conductor carrying various transport currents in transverse magnetic fields with various orientations were measured. The difference between the AC loss characteristics of the stacked YBCO conductor and those of the single YBCO conductor was clarified.
- Published
- 2007
47. Development of a 15 kW Motor With a Fixed YBCO Superconducting Field Winding
- Author
-
T. Satou, Toru Izumi, Y. Hase, Akira Tomioka, Y. Shiohara, Masataka Iwakuma, M. Konno, Yasuhiro Iijima, Yutaka Yamada, and T. Saitoh
- Subjects
Electric motor ,Materials science ,Mechanical engineering ,Propulsion ,Flange ,Condensed Matter Physics ,Field coil ,Electronic, Optical and Magnetic Materials ,law.invention ,Magnetic core ,law ,Electromagnetic coil ,Electrical and Electronic Engineering ,Synchronous motor ,Armature (electrical engineering) - Abstract
We developed a 15 kW synchronous motor with a fixed superconducting field winding. It was 8-pole type. Each field coil was a racetrack-shaped single pancake wound with a YBCO superconducting tape. It was fabricated by IBAD-PLD method and 10 mm in width. The rotating armature was composed of a copper winding and an iron core. The field coils were conduction-cooled down to 20 to 30 K through a copper pipe attached to the copper coil flange, in which helium gas was forced-flowed. The completed motor was first tested in the Suzuka factory of Japan motor and Generator Co. Ltd. before shipping as usual. Then it was moved to the test site of the Nagasaki shipyard of Mitsubishi Heavy Industry Ltd. and installed into a ship propulsion test system, which had a propeller with a diameter of 0.5 m. We verified the quite stable underwater operation and the output power of 15 kW-360 rpm as designed.
- Published
- 2007
48. AC Transport Current Loss Characteristics of YBCO Coated Conductors Subjected to Bending Strains
- Author
-
A.. Kataoka, O.. Tsukamoto, S.. Sekizawa, Y.. Kawano, N.. Kashima, S.. Nagaya, Y.. Iijima, and T.. Saitoh
- Subjects
Electrical and Electronic Engineering ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials - Published
- 2007
49. Degradation of YBCO Coated Conductors Due to Over-Current Pulse
- Author
-
Takato Machi, Shigeo Nagaya, M. Mori, Tomonori Watanabe, Naoji Kashima, Yasuhiro Iijima, T. Saitoh, Y. Shiohara, Y. Tanaka, Hiroshi Ueda, and Atsushi Ishiyama
- Subjects
Superconductivity ,High-temperature superconductivity ,Materials science ,business.industry ,Yttrium barium copper oxide ,Cryocooler ,Condensed Matter Physics ,Fault (power engineering) ,Temperature measurement ,Electronic, Optical and Magnetic Materials ,law.invention ,chemistry.chemical_compound ,chemistry ,law ,Water cooling ,Optoelectronics ,Electrical and Electronic Engineering ,business ,Electrical conductor - Abstract
For HTS (high-temperature superconductor) applications to electric power devices, superconductors are subjected to short-circuit fault currents 10 to 30 times the normal operating current. These over-currents will drive the HTS conductors normal and degrade or burn-out the HTS conductors. Therefore it is important to establish a novel thermal stability criterion for over-current pulse drive. In this study, we carried out preliminary experiments on the damage caused by over-current pulse drive focusing on the limitation of the temperature rise without degradation. We prepared five YBCO sample tapes fabricated with IBAD/PLD and IBAD/ MOCVD methods. Measurements were performed at 60 K and 80 K (conduction cooling with Gifford-McMahon cryocooler was adopted) in self-field. The experimental results indicated that the degradation of the sample tapes for the over-current pulse with a duration of 1 second depended on not the initial critical current Ic, but the peak temperature Tpeak. The permissible peak temperature without degradation existed at about 400-600 K. The sample tapes were also observed before and after the experiments by magneto-optic (MO) imaging to find the distribution of degradation area.
- Published
- 2007
50. High Aspect Ratio Sio2 Capillary Based On Silicon Etching And Thermal Oxidation Process For Optical Modulator
- Author
-
N. V. Toan, S. Sangu, T. Saitoh, N. Inomata, and T. Ono
- Subjects
image sensor ,optical window ,light transmittance ,liquid penetration ,Thermal oxidation process ,SiO2 capillaries - Abstract
This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm)., {"references":["G.D. Antoio, L.P. Jose, N. Manuel, P. Antonio, R. Santiago and O. Luis,\n\"Locating moving object in car-driving sequences\", J. Image and video\nprocessing, 24, pp. 1-23, 2014.","H. Karaoguz, O. Erkent and H. I. Bozma, \"RGB-D based place\nrepresentation in topological maps\", J. Machine Vision and applications,\n25, pp. 1913-1927, 2014.","J. Han, D. Wang, L. Shao, X. Qian, G. Cheng and J. Han, \"Image visual\nattention computation and application via the learning of object\natributes\", J. Machine Vision and applications, 25, pp. 1671-1683, 2014.","F. Liang, S.Tang, Y. Zhang, Z. Xu and J. Li, \"Pedestrian detection based\non sparse coding and transfer learning\", J. Machine Vision and\napplications, 25, pp. 1697-1709, 2014.","Ng. Ren, L. Marc, B. Mathieu, D. Gene, H. Mark, H. Pat, D. Duval,\n\"Light field photography with a hand held plenoptic camera\", Stanford\nTech Report CTSR 2005-2.","Ph. Nussbaum, R. Volkel, M. Eisner and S. Haselbeck, \" Design,\nfabrication and testing of microlens arrays for sensors and\nmicrosystems\", Pure and applied optics: Journal of the European\noptical society part A, 6, pp. 617-636, 1997.","A. Levin, R. Fergus, F. Durand, B. Freeman, \"Image and Depth from a\nConventional Camera with a Coded Aperture\", in Proceedings of\nSIGGRAPH, 2009.","J. Heikenfeld, K. Zhou, E. Kreit, B. Raji, S. Yang, B. Sun, A. Milarcik,\nL. Clapp and R. Schwartz, \"Electrofluidic displays using Young-Laplace transposition of brilliant pigment dispersions\" J. Nature photon, 3, pp.\n292-296 2009.","G. Beni and S. Hackwood, \"Electro-wetting displays\", J. Appl. Phys.\nLett. 38, 207, 1981.\n[10] A Szekeres and P Danesh, \"Mechanical stress in SiO2/Si structures\nformed by thermal oxidation of amorphous and crystalline silicon\",\nJournal of Semicond. Sci. Technol, 11, pp. 1225-1230, 1996.\n[11] N.I. Morimoto, and J.W. Swart, \"Development of a cluster tool and\nanalysis of deposition of silicon oxide by TEOS O2 PECVD\", MRS\nproceedings, p. 263, 1996.\n[12] N.V. Toan, T. Kubota, H. Sekhar, S. Samukawa and T. Ono,\n\"Mechanical quality factor enhancement in a silicon micromechanical\nresonator by low-damage process using neutral beam etching\ntechnology\", J. Micromech. Microeng, 24, 085005, 2014.\n[13] H. Ohtake, H. Ishihara, T. Fuse, A. Koshiishi and S. Samukawa, \"Highly\nselective and high rate SiO2 etching using argon-added C2F4/CF3I\nplasma\", Journal of vacuum science & technology B, 21, p. 2142, 2003.\n[14] C. Chang, T. Abe and M. Esashi, \"Trench filling characteristics of low\nstress TEOS/ozone oxide deposited by PECVD and SACVD\", J.\nMicrosystem Technologies, 10, pp. 97-102, 2004.\n[15] N.V. Toan, M. Toda, Y. Kawai and T. Ono, \"A capacitive silicon\nresonator with a movable electrode structure for gap width reduction\", J.\nMicromech. Microeng, 24, 025006, 2014.\n[16] N.V. Toan, H. Miyashita, M. Toda, Y. Kawai and T. Ono, \"Fabrication\nof an hermetically packaged silicon resonator on LTCC substrate\", J.\nMicrosystem Technologies, 19, pp. 1165-1175, 2013.\n[17] D. Andriukaitis and R. Anilionis, \"Oxidation process and different\ncrystallographic plane orientation dependence simulation in micro and\nnano strucutre\", In proceedings of conf. on information technology and\ninterfaces, pp. 573-578, 2007.\n[18] Y. Suzuki, K. Totsu, M. Moriyama, M. Esashi and S. Tanaka,\n\"Free-standing subwavelength grid infrared rejection filter of 90 mm\ndiameter for EUV light source\", In proceedings of the 27th IEEE\ninternational conference on micro electro mechanical systems, pp.\n482-485, 2014.\n[19] C. Con, J. Zhang and B. Cui, \"Nanofabrication of high aspect ratio\nstructures using an evaporated reisist containing metal\", J.\nNanotechnology, 25, p. 17531, 2014.\n[20] S.Y. Chou, P.R. Krauss and P.J. Renstrom, \"Imprint lithography with\n25-nanometer resolution\", Science, 272, pp. 85-87, 1996.\n[21] J. Heikenfeld, K. Zhou, E. Kreit, B. Raji, S. Yang, B. Sun, A. Milarcik,\nL. Clapp and R. Schwartz, \"Electrofluidic displays using Young-Laplace\ntransposition of brilliant pigment dispersions\" J. Nature photon, 3, pp.\n292-296 2009.\n[22] B. Berge and J. Peseux, \"Variable focal lens controlled by an external\nvoltage: an application of electrowetting\", Eur. Phys. J. E, 3, pp.\n159-163, 2000.\n[23] J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.J. Kim,\n\"Electrowetting and electrowetting on dielectric for micrscale liquid\nhandling\", J. Sensor Actuator A, 95, pp. 259-268, 2002."]}
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.