16 results on '"Sze Wan Lo"'
Search Results
2. In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells
- Author
-
Baiying Li, Yonglun Zeng, Sze Wan Lo, Yusong Guo, and Liwen Jiang
- Subjects
General Biochemistry, Genetics and Molecular Biology - Abstract
Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7-8 h), in vitro COPII vesicle reconstitution and purification (4-5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18-20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.
- Published
- 2023
- Full Text
- View/download PDF
3. Ufmylation reconciles salt stress-induced unfolded protein responses via ER-phagy in Arabidopsis
- Author
-
Baiying Li, Fangfang Niu, Yonglun Zeng, Man Kei Tse, Cesi Deng, Liu Hong, Shengyu Gao, Sze Wan Lo, Wenhan Cao, Shuxian Huang, Yasin Dagdas, and Liwen Jiang
- Subjects
Multidisciplinary - Abstract
In plants, the endomembrane system is tightly regulated in response to environmental stresses for maintaining cellular homeostasis. Autophagosomes, the double membrane organelles forming upon nutrient deprivation or stress induction, degrade bulky cytosolic materials for nutrient turnover. Though abiotic stresses have been reported to induce plant autophagy, few receptors or regulators for selective autophagy have been characterized for specific stresses. Here, we have applied immunoprecipitation followed by tandem mass spectrometry using the autophagosome marker protein ATG8 as bait and have identified the E3 ligase of the ufmylation system Ufl1 as a bona fide ATG8 interactor under salt stress. Notably, core components in the ufmylation cascade, Ufl1 and Ufm1, interact with the autophagy kinase complexes proteins ATG1 and ATG6. Cellular and genetic analysis showed that Ufl1 is important for endoplasmic reticulum (ER)-phagy under persisting salt stress. Loss-of-function mutants of Ufl1 display a salt stress hypersensitive phenotype and abnormal ER morphology. Prolonged ER stress responses are detected in ufl1 mutants that phenocopy the autophagy dysfunction atg5 mutants. Consistently, expression of ufmylation cascade components is up-regulated by salt stress. Taken together, our study demonstrates the role of ufmylation in regulating ER homeostasis under salt stress through ER-phagy.
- Published
- 2023
- Full Text
- View/download PDF
4. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies (1)([W])([OA])
- Author
-
Junqi, Wang, Yubing, Li, Sze Wan, Lo, Hillmer, Stefan, Sun, Samuel, Liwen, Jiang, Robinson, S.M., and G., David
- Subjects
Germination -- Research ,Proteolysis -- Research ,Beans -- Physiological aspects ,Beans -- Research ,Legumes -- Physiological aspects ,Legumes -- Research ,Mimosaceae -- Physiological aspects ,Mimosaceae -- Research ,Biological sciences ,Science and technology - Published
- 2007
5. Anin vivoexpression system for the identification of cargo proteins of vacuolar sorting receptors in Arabidopsis culture cells
- Author
-
Youshun Lin, Pui Kit Suen, Jinbo Shen, Xiangfeng Wang, Enrique Rojo, Liwen Jiang, and Sze Wan Lo
- Subjects
biology ,Arabidopsis Proteins ,Immunoprecipitation ,Transgene ,Arabidopsis ,macromolecular substances ,Cell Biology ,Plant Science ,Vacuole ,biology.organism_classification ,environment and public health ,Mass Spectrometry ,Protein Structure, Tertiary ,Cell biology ,Gene Expression Regulation, Plant ,Vacuolar transport ,Vacuoles ,Genetics ,Compartment (development) ,Secretion ,Carrier Proteins ,Receptor ,Cells, Cultured - Abstract
Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins that in plant cells are thought to recognize cargo proteins at the late Golgi or trans-Golgi network (TGN) for vacuolar transport via the pre-vacuolar compartment (PVC). However, little is known about VSR cargo proteins in plants. Here we developed and tested an in vivo expression system for the identification of VSR cargos which is based on the premise that the expressed N-terminus of VSRs will be secreted into the culture medium along with their corresponding cargo proteins. Indeed, transgenic Arabidopsis culture cell lines expressing VSR N-terminal binding domains (VSRNTs) were shown to secrete truncated VSRs (BP80NT, AtVSR1NT and AtVSR4NT) with attached cargo molecules into the culture medium. Putative cargo proteins were identified through mass spectrometry. Several identified cargo proteins were confirmed by localization studies and interaction analysis with VSRs. The screening strategy described here should be applicable to all VSRs and will help identify and study cargo proteins for individual VSR proteins. This method should be useful for both cargo identification and protein-protein interaction in vivo.
- Published
- 2013
- Full Text
- View/download PDF
6. The Golgi-Localized Arabidopsis Endomembrane Protein12 Contains Both Endoplasmic Reticulum Export and Golgi Retention Signals at Its C Terminus
- Author
-
Sze Wan Lo, Christine K.Y. Yu, Liwen Jiang, Song Qu, Caiji Gao, Melody Wan Yan San, and Kwun Yee Li
- Subjects
biology ,Arabidopsis Proteins ,Endoplasmic reticulum ,Arabidopsis ,Golgi Apparatus ,Cell Biology ,Plant Science ,COPI ,Golgi apparatus ,Endoplasmic Reticulum ,Subcellular localization ,biology.organism_classification ,Models, Biological ,Cell biology ,Protein Transport ,symbols.namesake ,Transmembrane domain ,Biochemistry ,symbols ,Endomembrane system ,COPII ,Research Articles - Abstract
Endomembrane proteins (EMPs), belonging to the evolutionarily conserved transmembrane nine superfamily in yeast and mammalian cells, are characterized by the presence of a large lumenal N terminus, nine transmembrane domains, and a short cytoplasmic tail. The Arabidopsis thaliana genome contains 12 EMP members (EMP1 to EMP12), but little is known about their protein subcellular localization and function. Here, we studied the subcellular localization and targeting mechanism of EMP12 in Arabidopsis and demonstrated that (1) both endogenous EMP12 (detected by EMP12 antibodies) and green fluorescent protein (GFP)-EMP12 fusion localized to the Golgi apparatus in transgenic Arabidopsis plants; (2) GFP fusion at the C terminus of EMP12 caused mislocalization of EMP12-GFP to reach post-Golgi compartments and vacuoles for degradation in Arabidopsis cells; (3) the EMP12 cytoplasmic tail contained dual sorting signals (i.e., an endoplasmic reticulum export motif and a Golgi retention signal that interacted with COPII and COPI subunits, respectively); and (4) the Golgi retention motif of EMP12 retained several post-Golgi membrane proteins within the Golgi apparatus in gain-of-function analysis. These sorting signals are highly conserved in all plant EMP isoforms and, thus, likely represent a general mechanism for EMP targeting in plant cells.
- Published
- 2012
- Full Text
- View/download PDF
7. EXPO, an Exocyst-Positive Organelle Distinct from Multivesicular Endosomes and Autophagosomes, Mediates Cytosol to Cell Wall Exocytosis inArabidopsisand Tobacco Cells
- Author
-
Liwen Jiang, Stefan Hillmer, Juan Wang, Sze Wan Lo, Yansong Miao, Yu Ding, Junqi Wang, David Robinson, and Xiangfeng Wang
- Subjects
Vesicle fusion ,Endosome ,Endocytic cycle ,Arabidopsis ,Exocyst ,Endosomes ,Cell Biology ,Plant Science ,Golgi apparatus ,Biology ,Exocytosis ,Cell biology ,symbols.namesake ,Phagosomes ,Tobacco ,symbols ,Multivesicular Body ,Research Articles ,Late endosome - Abstract
The exocyst protein complex mediates vesicle fusion with the plasma membrane. By expressing an (X)FP-tagged Arabidopsis thaliana homolog of the exocyst protein Exo70 in suspension-cultured Arabidopsis and tobacco (Nicotiana tabacum) BY-2 cells, and using antibodies specific for Exo70, we detected a compartment, which we term EXPO (for exocyst positive organelles). Standard markers for the Golgi apparatus, the trans-Golgi network/early endosome, and the multivesicular body/late endosome in plants do not colocalize with EXPO. Inhibitors of the secretory and endocytic pathways also do not affect EXPO. Exo70E2-(X)FP also locates to the plasma membrane (PM) as discrete punctae and is secreted outside of the cells. Immunogold labeling of sections cut from high-pressure frozen samples reveal EXPO to be spherical double membrane structures resembling autophagosomes. However, unlike autophagosomes, EXPOs are not induced by starvation and do not fuse with the lytic compartment or with endosomes. Instead, they fuse with the PM, releasing a single membrane vesicle into the cell wall. EXPOs are also found in other cell types, including root tips, root hair cells, and pollen grains. EXPOs therefore represent a form of unconventional secretion unique to plants.
- Published
- 2010
- Full Text
- View/download PDF
8. Production and characterization of soluble human lysosomal enzyme α-iduronidase with high activity from culture media of transgenic tobacco BY-2 cells
- Author
-
Sabine Clemens, Lai Hong Fu, Yansong Miao, Lorne A. Clarke, Tai Chi Seto, Sze Wan Lo, Liwen Jiang, Samuel S. M. Sun, Zeng-Fu Xu, and Allison R. Kermode
- Subjects
Tobacco BY-2 cells ,biology ,Transgene ,Chinese hamster ovary cell ,Plant Science ,General Medicine ,Enzyme replacement therapy ,medicine.disease ,Enzyme assay ,Biochemistry ,Cell culture ,Genetics ,biology.protein ,Lysosomal storage disease ,medicine ,Iduronidase ,Agronomy and Crop Science - Abstract
Lysosomal storage diseases (LSDs), that collectively represent over 50 disorders, are amenable to enzyme replacement therapies. However, the current methods used to commercially produce recombinant lysosomal enzymes for this purpose, most commonly Chinese Hamster Ovary cells and human fibroblasts, are prohibitively costly. Plant bioreactors hold great promise for economic production of functional human α- l -iduronidase (hIDUA; glycosaminoglycan α- l -iduronohydrolase; EC 3.2.1.76), the enzyme deficient in the human LSD, Mucopolysaccharidosis I. We have developed and tested an expression system using transgenic tobacco BY-2 cells to produce high amounts of active hIDUA. A plant signal peptide was essential for proper expression and secretion of the 78 kDa glycosylated hIDUA into the cultured media of transgenic BY-2 cells. The yield and activity of the secreted hIDUA from long-term cultures of transgenic BY-2 cell lines were as high as 10 μg/mL media and 53,000 pmol/min/mg proteins, respectively. Thus, this transgenic BY-2 cell line presents an attractive platform for economic production and easy downstream purification of hIDUA for enzyme replacement therapy. Furthermore, this system can be used for the production and purification of other human lysosomal enzymes or pharmaceuticals.
- Published
- 2009
- Full Text
- View/download PDF
9. Molecular Characterization of Plant Prevacuolar and Endosomal Compartments
- Author
-
Sze Wan Lo, Junqi Wang, Sheung Kwan Lam, Hong-Ye Li, Yansong Miao, Liwen Jiang, and Yu Chung Tse
- Subjects
Endosome ,fungi ,Endocytic cycle ,food and beverages ,Plant Science ,Vacuole ,Biology ,Plant cell ,Biochemistry ,General Biochemistry, Genetics and Molecular Biology ,Cell biology ,Prevacuolar compartment ,Organelle ,Biogenesis ,Protein trafficking - Abstract
Prevacuolar compartments (PVCs) and endosomal compartments are membrane-bound organelles mediating protein traffic to vacuoles in the secretory and endocytic pathways of plant cells. Over the years, great progress has been made towards our understanding in these two compartments in plant cells. In this review, we will summarize our contributions toward the identification and characterization of plant prevacuolar and endosomal compartments. Our studies will serve as important steps in future molecular characterization of PVC biogenesis and PVC-mediated protein trafficking in plant cells.
- Published
- 2007
- Full Text
- View/download PDF
10. Protein Mobilization in Germinating Mung Bean Seeds Involves Vacuolar Sorting Receptors and Multivesicular Bodies
- Author
-
Stefan Hillmer, Samuel S. M. Sun, David Robinson, Yubing Li, Junqi Wang, Liwen Jiang, and Sze Wan Lo
- Subjects
Proteases ,Physiology ,Molecular Sequence Data ,Fluorescent Antibody Technique ,Germination ,Receptors, Cell Surface ,Plant Science ,Vacuole ,Protein degradation ,Biology ,symbols.namesake ,Genetics ,Storage protein ,Amino Acid Sequence ,Plant Proteins ,chemistry.chemical_classification ,food and beverages ,Fabaceae ,Immunogold labelling ,Golgi apparatus ,Cysteine protease ,Cysteine Endopeptidases ,chemistry ,Biochemistry ,Seeds ,Vacuoles ,symbols ,Research Article - Abstract
Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.
- Published
- 2007
- Full Text
- View/download PDF
11. Dynamic Response of Prevacuolar Compartments to Brefeldin A in Plant Cells
- Author
-
Paul Dupree, Sze Wan Lo, Stefan Hillmer, Liwen Jiang, and Yu Chung Tse
- Subjects
Yellow fluorescent protein ,Physiology ,Recombinant Fusion Proteins ,Golgi Apparatus ,Plant Science ,Endoplasmic Reticulum ,Plant Roots ,symbols.namesake ,chemistry.chemical_compound ,Genes, Reporter ,Tobacco ,Organelle ,Genetics ,Endomembrane system ,Secretory pathway ,Plant Proteins ,Brefeldin A ,biology ,Endoplasmic reticulum ,food and beverages ,Immunogold labelling ,Golgi apparatus ,Plants, Genetically Modified ,Cell biology ,Luminescent Proteins ,chemistry ,Vacuoles ,symbols ,biology.protein ,Research Article - Abstract
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5–10 μg mL−1) induced YFP-marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and BFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50–100 μg mL−1) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immunofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells.
- Published
- 2006
- Full Text
- View/download PDF
12. The rice RMR1 associates with a distinct prevacuolar compartment for the protein storage vacuole pathway
- Author
-
Junqi Wang, Liwen Jiang, Yun Shen, Guillaume Gouzerh, Yu Ding, Sze Wan Lo, and Jean-Marc Neuhaus
- Subjects
Protein storage vacuole ,Molecular Sequence Data ,Vesicular Transport Proteins ,Golgi Apparatus ,Plant Science ,Vacuole ,Biology ,symbols.namesake ,Organelle ,Storage protein ,Amino Acid Sequence ,Multivesicular Body ,Cloning, Molecular ,Molecular Biology ,Plant Proteins ,chemistry.chemical_classification ,Organelles ,food and beverages ,Oryza ,Golgi apparatus ,Transport protein ,Cell biology ,Protein Transport ,chemistry ,Biochemistry ,Protein body ,Vacuoles ,symbols ,Sequence Alignment - Abstract
Transport of vacuolar proteins from Golgi apparatus or trans-Golgi network (TGN) to vacuoles is a receptor-mediated process via an intermediate membrane-bound prevacuolar compartment (PVC) in plant cells. Both vacuolar sorting receptor (VSR) and receptor homology region-transmembrane domain-RING-H2 (RMR) proteins have been shown to function in transporting storage proteins to protein storage vacuole (PSV), but little is known about the nature of the PVC for the PSV pathway. Here, we use the rice RMR1 (OsRMR1) as a probe to study the PSV pathway in plants. Immunogold electron microscopy (EM) with specific OsRMR1 antibodies showed that OsRMR1 proteins were found in the Golgi apparatus, TGN, and a distinct organelle with characteristics of PVC in both rice culture cells and developing rice seeds, as well as the protein body type II (PBII) or PSV in developing rice seeds. This organelle, also found in both tobacco BY-2 and Arabidopsis suspension cultured cells, is morphologically distinct from the VSR-positive multivesicular lytic PVC or multivesicular body (MVB) and thus represent a PVC for the PSV pathway that we name storage PVC (sPVC). Further in vivo and in vitro interaction studies using truncated OsRMR1 proteins secreted into the culture media of transgenic BY-2 suspension cells demonstrated that OsRMR1 functions as a sorting receptor in transporting vicilin-like storage proteins.
- Published
- 2011
13. Identification of Multivesicular Bodies as Prevacuolar Compartments in Nicotiana tabacum BY-2 CellsW⃞
- Author
-
David Robinson, Beixin Mo, Yu Chung Tse, Liwen Jiang, Sze Wan Lo, Stefan Hillmer, and Min Zhao
- Subjects
Yellow fluorescent protein ,Nicotiana tabacum ,Recombinant Fusion Proteins ,Protein storage vacuole ,Golgi Apparatus ,Pyridinium Compounds ,Plant Science ,macromolecular substances ,Biology ,Cell Fractionation ,symbols.namesake ,chemistry.chemical_compound ,Bacterial Proteins ,Genes, Reporter ,Organelle ,Tobacco ,Lytic vacuole ,Microscopy, Immunoelectron ,Research Articles ,Fluorescent Dyes ,Plant Proteins ,Brefeldin A ,Microscopy, Confocal ,fungi ,Cell Biology ,Immunogold labelling ,Golgi apparatus ,biology.organism_classification ,Plants, Genetically Modified ,Immunohistochemistry ,Endocytosis ,Cell biology ,Cell Compartmentation ,Androstadienes ,Quaternary Ammonium Compounds ,Luminescent Proteins ,Microscopy, Electron ,chemistry ,Vacuoles ,symbols ,biology.protein ,Wortmannin - Abstract
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells.
- Published
- 2004
14. Dynamic Response of Prevacuolar Compartments to Brefeldin A in Plant Cells.
- Author
-
Yu Chung Tse, Sze Wan Lo, Hilimer, Stefan, Dupree, Paul, and Liwen Jiang
- Subjects
- *
PLANT cells & tissues , *TOBACCO , *PROTEINS , *GOLGI apparatus , *CONFOCAL microscopy , *ELECTRON microscopy , *PLANT physiology research - Abstract
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs) in the secretory pathway. Using transgenic tobacco (Nicotiana tabacum) Bright-Yellow-2 (BY-2) cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi or PVCs, we have recently demonstrated that PVCs are mobile multivesicular bodies defined by vacuolar sorting receptor proteins. Here, we demonstrate that Golgi and PVCs have different sensitivity in response to brefeldin A (BFA) treatment in living tobacco BY-2 cells. BFA at low concentrations (5–10 μg mL-1) induced YFP- marked Golgi stacks to form both endoplasmic reticulum-Golgi hybrid structures and EFA-induced aggregates, but had little effect on YFP-marked PVCs in transgenic BY-2 cells at both confocal and immunogold electron microscopy levels. However, BFA at high concentrations (50–100 μg mL-1) caused both YFP-marked Golgi stacks and PVCs to form aggregates in a dose- and time-dependent manner. Normal Golgi or PVC signals can be recovered upon removal of BFA from the culture media. Confocal immimofluorescence and immunogold electron microscopy studies with specific organelle markers further demonstrate that the PVC aggregates are distinct, but physically associated, with Golgi aggregates in BFA-treated cells and that PVCs might lose their internal vesicle structures at high BFA concentration. In addition, vacuolar sorting receptor-marked PVCs in root-tip cells of tobacco, pea (Pisum sativum), mung bean (Vigna radiata), and Arabidopsis (Arabidopsis thaliana) upon BFA treatment are also induced to form similar aggregates. Thus, we have demonstrated that the effects of BFA are not limited to endoplasmic reticulum and Golgi, but extend to PVC in the endomembrane system, which might provide a quick tool for distinguishing Golgi from PVC for its identification and characterization, as well as a possible new tool in studying PVC-mediated protein traffic in plant cells. [ABSTRACT FROM AUTHOR]
- Published
- 2006
- Full Text
- View/download PDF
15. Identification of Multivesicular Bodies as Prevacuolar Compartments in Nicotiana tabacum BY-2 Cells.
- Author
-
Yu Chung Tse, Beixin Mo, Joseph J., Hillmer, Stefan, Min Zhao, Sze Wan Lo, Stefan, Robinson, David G., and Liwen Jiang
- Subjects
PROTEINS ,TRANSGENIC plants ,TOBACCO ,NICOTIANA ,ORGANELLES ,GOLGI apparatus - Abstract
Little is known about the dynamics and molecular components of plant prevacuolar compartments (PVCs). We have demonstrated recently that vacuolar sorting receptor (VSR) proteins are concentrated on PVCs. In this study, we generated transgenic Nicotiana tabacum (tobacco) BY-2 cell lines expressing two yellow fluorescent protein (YFP)-fusion reporters that mark PVC and Golgi organelles. Both transgenic cell lines exhibited typical punctate YFP signals corresponding to distinct PVC and Golgi organelles because the PVC reporter colocalized with VSR proteins, whereas the Golgi marker colocalized with mannosidase I in confocal immunofluorescence. Brefeldin A induced the YFP-labeled Golgi stacks but not the YFP-marked PVCs to form typical enlarged structures. By contrast, wortmannin caused YFP-labeled PVCs but not YFP-labeled Golgi stacks to vacuolate. VSR antibodies labeled multivesicular bodies (MVBs) on thin sections prepared from high-pressure frozen/freeze substituted samples, and the enlarged PVCs also were indentified as MVBs. MVBs were further purified from BY-2 cells and found to contain VSR proteins via immunogold negative staining. Similar to YFP-labeled Golgi stacks, YFP-labeled PVCs are mobile organelles in BY-2 cells. Thus, we have unequivocally identified MVBs as PVCs in N. tabacum BY-2 cells. Uptake studies with the styryl dye FM4-64 strongly indicate that PVCs also lie on the endocytic pathway of BY-2 cells. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
16. BP-80 and Homologs are Concentrated on Post-Golgi, Probable Lytic Prevacuolar Compartments.
- Author
-
Yu-Bing Li, Rogers, Sally W., Yu Chung Tse, Sze Wan Lo, Sun, Samuel S. M., Guang-Yuh Jauh, and Liwen Jiang
- Subjects
PEAS ,TOBACCO ,GOLGI apparatus ,CELL compartmentation ,ORGANELLES ,PLANT vacuoles - Abstract
Prevacuolar compartments (PVCs) are membrane-bound organelles that mediate protein traffic between Golgi and vacuoles in the plant secretory pathway. Here we identify and define organelles as the lytic prevacuolar compartments in pea and tobacco cells using confocal immunofluorescence. We use five different antibodies specific for a vacuolar sorting receptor (VSR) BP-80 and its homologs to detect the location of VSR proteins. In addition, we use well-established Golgi-markers to identify Golgi organelles. We further compare VSR-labeled organelles to Golgi organelles so that the relative proportion of VSR proteins in Golgi vs. PVCs can be quantitated. More than 90% of the BP-80-marked organelles are separate from Golgi organelles; thus, BP-80 and its homologs are predominantly concentrated on the lytic PVCs. Additionally, organelles marked by anti-AtPep12p (AtSYP21p) and anti-AtELP antibodies are also largely separate from Golgi apparatus, whereas VSR and AtPep12p (AtSYP21p) were largely colocalized. We have thus demonstrated in plant cells that VSR proteins are predominantly present in the lytic PVCs and have provided additional markers for defining plant PVCs using confocal immunofluorescence. Additionally, our approach will provide a rapid comparison between markers to quantitate protein distribution among various organelles. [ABSTRACT FROM PUBLISHER]
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.