77 results on '"Szathmary, Laszlo"'
Search Results
2. A one-dimensional convolutional neural network-based deep learning approach for predicting cardiovascular diseases
- Author
-
Honi, Dhafer G. and Szathmary, Laszlo
- Published
- 2024
- Full Text
- View/download PDF
3. Coron : Plate-forme d'extraction de connaissances dans les bases de donn\'ees
- Author
-
Ducatel, Baptiste, Kaytoue, Mehdi, Marcuola, Florent, Napoli, Amedeo, and Szathmary, Laszlo
- Subjects
Computer Science - Databases - Abstract
Coron is a domain and platform independent, multi-purposed data mining toolkit, which incorporates not only a rich collection of data mining algorithms, but also allows a number of auxiliary operations. To the best of our knowledge, a data mining toolkit designed specifically for itemset extraction and association rule generation like Coron does not exist elsewhere. Coron also provides support for preparing and filtering data, and for interpreting the extracted units of knowledge.
- Published
- 2011
4. The Coron System
- Author
-
Kaytoue, Mehdi, Marcuola, Florent, Napoli, Amedeo, Szathmary, Laszlo, and Villerd, Jean
- Subjects
Computer Science - Databases - Abstract
Coron is a domain and platform independent, multi-purposed data mining toolkit, which incorporates not only a rich collection of data mining algorithms, but also allows a number of auxiliary operations. To the best of our knowledge, a data mining toolkit designed specifically for itemset extraction and association rule generation like Coron does not exist elsewhere. Coron also provides support for preparing and filtering data, and for interpreting the extracted units of knowledge.
- Published
- 2011
5. Case Base Mining for Adaptation Knowledge Acquisition
- Author
-
D'Aquin, Mathieu, Badra, Fadi, Lafrogne, Sandrine, Lieber, Jean, Napoli, Amedeo, and Szathmary, Laszlo
- Subjects
Computer Science - Artificial Intelligence - Abstract
In case-based reasoning, the adaptation of a source case in order to solve the target problem is at the same time crucial and difficult to implement. The reason for this difficulty is that, in general, adaptation strongly depends on domain-dependent knowledge. This fact motivates research on adaptation knowledge acquisition (AKA). This paper presents an approach to AKA based on the principles and techniques of knowledge discovery from databases and data-mining. It is implemented in CABAMAKA, a system that explores the variations within the case base to elicit adaptation knowledge. This system has been successfully tested in an application of case-based reasoning to decision support in the domain of breast cancer treatment.
- Published
- 2007
6. Adaptation Knowledge Discovery from a Case Base
- Author
-
D'Aquin, Mathieu, Badra, Fadi, Lafrogne, Sandrine, Lieber, Jean, Napoli, Amedeo, and Szathmary, Laszlo
- Subjects
Computer Science - Artificial Intelligence - Abstract
In case-based reasoning, the adaptation step depends in general on domain-dependent knowledge, which motivates studies on adaptation knowledge acquisition (AKA). CABAMAKA is an AKA system based on principles of knowledge discovery from databases. This system explores the variations within the case base to elicit adaptation knowledge. It has been successfully tested in an application of case-based decision support to breast cancer treatment.
- Published
- 2006
7. E-Tourism Portal: A Case Study in Ontology-Driven Development
- Author
-
Mili, Hafedh, Valtchev, Petko, Charif, Yasmine, Szathmary, Laszlo, Daghrir, Nidhal, Béland, Marjolaine, Boubaker, Anis, Martin, Louis, Bédard, François, Caid-Essebsi, Sabeh, Leshob, Abdel, van der Aalst, Will, Series editor, Mylopoulos, John, Series editor, Sadeh, Norman M., Series editor, Shaw, Michael J., Series editor, Szyperski, Clemens, Series editor, Babin, Gilbert, editor, Stanoevska-Slabeva, Katarina, editor, and Kropf, Peter, editor
- Published
- 2011
- Full Text
- View/download PDF
8. Finding Minimal Rare Itemsets and Rare Association Rules
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Sudan, Madhu, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Vardi, Moshe Y., editor, Weikum, Gerhard, editor, Goebel, Randy, editor, Siekmann, Jörg, editor, Wahlster, Wolfgang, editor, Bi, Yaxin, editor, and Williams, Mary-Anne, editor
- Published
- 2010
- Full Text
- View/download PDF
9. Efficient Vertical Mining of Frequent Closures and Generators
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Godin, Robert, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Adams, Niall M., editor, Robardet, Céline, editor, Siebes, Arno, editor, and Boulicaut, Jean-François, editor
- Published
- 2009
- Full Text
- View/download PDF
10. Yet a Faster Algorithm for Building the Hasse Diagram of a Concept Lattice
- Author
-
Baixeries, Jaume, Szathmary, Laszlo, Valtchev, Petko, Godin, Robert, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Doug, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Goebel, Randy, editor, Siekmann, Jörg, editor, Wahlster, Wolfgang, editor, Ferré, Sébastien, editor, and Rudolph, Sebastian, editor
- Published
- 2009
- Full Text
- View/download PDF
11. Constructing Iceberg Lattices from Frequent Closures Using Generators
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Godin, Robert, Hutchison, David, editor, Kanade, Takeo, editor, Kittler, Josef, editor, Kleinberg, Jon M., editor, Mattern, Friedemann, editor, Mitchell, John C., editor, Naor, Moni, editor, Nierstrasz, Oscar, editor, Pandu Rangan, C., editor, Steffen, Bernhard, editor, Sudan, Madhu, editor, Terzopoulos, Demetri, editor, Tygar, Doug, editor, Vardi, Moshe Y., editor, Weikum, Gerhard, editor, Goebel, Randy, editor, Siekmann, Jörg, editor, Wahlster, Wolfgang, editor, Jean-Fran, Jean-François, editor, Berthold, Michael R., editor, and Horváth, Tamás, editor
- Published
- 2008
- Full Text
- View/download PDF
12. First Elements on Knowledge Discovery Guided by Domain Knowledge (KDDK)
- Author
-
Lieber, Jean, Napoli, Amedeo, Szathmary, Laszlo, Toussaint, Yannick, Carbonell, Jaime G., editor, Siekmann, J\'org, editor, Yahia, Sadok Ben, editor, Nguifo, Engelbert Mephu, editor, and Belohlavek, Radim, editor
- Published
- 2008
- Full Text
- View/download PDF
13. Linear Measurements of the Neurocranium Are Better Indicators of Population Differences than Those of the Facial Skeleton: Comparative Study of 1,961 Skulls
- Author
-
HOLLÓ, GÁBOR, SZATHMÁRY, LÁSZLÓ, MARCSIK, ANTÓNIA, and BARTA, ZOLTÁN
- Published
- 2010
14. History of the Peoples of the Great Hungarian Plain in the First Millennium: A Craniometric Point of View
- Author
-
HOLLÓ, GÁBOR, SZATHMÁRY, LÁSZLÓ, MARCSIK, ANTÓNIA, and BARTA, ZOLTÁN
- Published
- 2008
15. An incremental algorithm for computing the transversal hypergraph.
- Author
-
Szathmary, Laszlo
- Subjects
- *
HYPERGRAPHS , *TRANSVERSAL lines , *ALGORITHMS - Abstract
In this paper we present an incremental algorithm for computing the transversal hypergraph. Our algorithm is an optimized version of Berge's algorithm [2] for solving the transversal hypergraph problem. The original algorithm of Berge is the simplest and most direct scheme for generating all minimal transversals of a hypergraph. Here we present an optimized version of Berge's algorithm that we call BergeOpt. We show that BergeOpt can significantly reduce the number of expensive inclusion tests. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
16. SERIOUS PATHOLOGICAL LESIONS IN A SMALL OSTEOARCHAEOLOGICAL SAMPLE FROM 8th–9th CENTURIES IN HUNGARY
- Author
-
MARCSIK, ANTÓNIA, HEGYI, ANDREA, SZATHMÁRY, LÁSZLÓ, GUBA, ZSUZSANNA, and FINNEGAN, MICHAEL
- Published
- 2001
17. A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Godin, Robert, Boc, Alix, and Makarenkov, Vladimir
- Published
- 2014
- Full Text
- View/download PDF
18. Knowledge Organisation and Information Retrieval with Galois Lattices
- Author
-
Szathmary, Laszlo, Napoli, Amedeo, Hutchison, David, Series editor, Kanade, Takeo, Series editor, Kittler, Josef, Series editor, Kleinberg, Jon M., Series editor, Mattern, Friedemann, Series editor, Mitchell, John C., Series editor, Naor, Moni, Series editor, Nierstrasz, Oscar, Series editor, Pandu Rangan, C., Series editor, Steffen, Bernhard, Series editor, Sudan, Madhu, Series editor, Terzopoulos, Demetri, Series editor, Tygar, Dough, Series editor, Vardi, Moshe Y., Series editor, Weikum, Gerhard, Series editor, Carbonell, Jaime G., editor, Siekmann, Jörg, editor, Motta, Enrico, editor, Shadbolt, Nigel R, editor, Stutt, Arthur, editor, and Gibbins, Nick, editor
- Published
- 2004
- Full Text
- View/download PDF
19. Finding Minimal Rare Itemsets and Rare Association Rules
- Author
-
Szathmary, Laszlo, primary, Valtchev, Petko, additional, and Napoli, Amedeo, additional
- Published
- 2010
- Full Text
- View/download PDF
20. Yet a Faster Algorithm for Building the Hasse Diagram of a Concept Lattice
- Author
-
Baixeries, Jaume, primary, Szathmary, Laszlo, additional, Valtchev, Petko, additional, and Godin, Robert, additional
- Published
- 2009
- Full Text
- View/download PDF
21. Efficient Vertical Mining of Frequent Closures and Generators
- Author
-
Szathmary, Laszlo, primary, Valtchev, Petko, additional, Napoli, Amedeo, additional, and Godin, Robert, additional
- Published
- 2009
- Full Text
- View/download PDF
22. Constructing Iceberg Lattices from Frequent Closures Using Generators
- Author
-
Szathmary, Laszlo, primary, Valtchev, Petko, additional, Napoli, Amedeo, additional, and Godin, Robert, additional
- Published
- 2008
- Full Text
- View/download PDF
23. Impact of Feature Selection on Non-technical Loss Detection
- Author
-
Ghori, Khawaja MoyeezUllah, primary, Rabeeh Ayaz, Abbasi, additional, Awais, Muhammad, additional, Imran, Muhammad, additional, Ullah, Atta, additional, and Szathmary, Laszlo, additional
- Published
- 2020
- Full Text
- View/download PDF
24. Knowledge Organisation and Information Retrieval with Galois Lattices
- Author
-
Szathmary, Laszlo, primary and Napoli, Amedeo, additional
- Published
- 2004
- Full Text
- View/download PDF
25. Performance Analysis of Different Types of Machine Learning Classifiers for Non-Technical Loss Detection
- Author
-
Ghori, Khawaja Moyeezullah, Abbasi, Rabeeh Ayaz, Awais, Muhammad, Imran, Muhammad, Ullah, Ata, Szathmary, Laszlo, Ghori, Khawaja Moyeezullah, Abbasi, Rabeeh Ayaz, Awais, Muhammad, Imran, Muhammad, Ullah, Ata, and Szathmary, Laszlo
- Abstract
With the ever-growing demand of electric power, it is quite challenging to detect and prevent Non-Technical Loss (NTL) in power industries. NTL is committed by meter bypassing, hooking from the main lines, reversing and tampering the meters. Manual on-site checking and reporting of NTL remains an unattractive strategy due to the required manpower and associated cost. The use of machine learning classifiers has been an attractive option for NTL detection. It enhances data-oriented analysis and high hit ratio along with less cost and manpower requirements. However, there is still a need to explore the results across multiple types of classifiers on a real-world dataset. This paper considers a real dataset from a power supply company in Pakistan to identify NTL. We have evaluated 15 existing machine learning classifiers across 9 types which also include the recently developed CatBoost, LGBoost and XGBoost classifiers. Our work is validated using extensive simulations. Results elucidate that ensemble methods and Artificial Neural Network (ANN) outperform the other types of classifiers for NTL detection in our real dataset. Moreover, we have also derived a procedure to identify the top-14 features out of a total of 71 features, which are contributing 77% in predicting NTL. We conclude that including more features beyond this threshold does not improve performance and thus limiting to the selected feature set reduces the computation time required by the classifiers. Last but not least, the paper also analyzes the results of the classifiers with respect to their types, which has opened a new area of research in NTL detection.
- Published
- 2020
26. Preface to the special issue on concept lattices and their applications—CLA 2012
- Author
-
Priss, Uta and Szathmary, Laszlo
- Published
- 2014
- Full Text
- View/download PDF
27. Performance analysis of machine learning classifiers for non-technical loss detection
- Author
-
Ghori, Khawaja MoyeezUllah, primary, Imran, Muhammad, additional, Nawaz, Asad, additional, Abbasi, Rabeeh Ayaz, additional, Ullah, Ata, additional, and Szathmary, Laszlo, additional
- Published
- 2020
- Full Text
- View/download PDF
28. Performance Analysis of Different Types of Machine Learning Classifiers for Non-Technical Loss Detection
- Author
-
Ghori, Khawaja Moyeezullah, primary, Abbasi, Rabeeh Ayaz, additional, Awais, Muhammad, additional, Imran, Muhammad, additional, Ullah, Ata, additional, and Szathmary, Laszlo, additional
- Published
- 2020
- Full Text
- View/download PDF
29. Ontology-based model-driven development of a destination management portal: Experience and lessons learned
- Author
-
Mili, Hafedh, primary, Valtchev, Petko, additional, Szathmary, Laszlo, additional, Boubaker, Anis, additional, Leshob, Abderrahmane, additional, Charif, Yasmine, additional, and Martin, Louis, additional
- Published
- 2018
- Full Text
- View/download PDF
30. Closed Association Rules.
- Author
-
Szathmary, Laszlo
- Abstract
In this paper we present a new basis for association rules called Closed Association Rules (CR). This basis contains all valid association rules that can be generated from frequent closed itemsets. CR is a lossless representation of all association rules. Regarding the number of rules, our basis is between all association rules (AR) and minimal non-redundant association rules (MNR), filling a gap between them. The new basis provides a framework for some other bases and we show that MNR is a subset of CR. Our experiments show that CR is a good alternative for all association rules. The number of generated rules can be much less, and beside frequent closed itemsets nothing else is required. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
31. Coron : Plate-forme d'extraction de connaissances dans les bases de données
- Author
-
Ducatel, Baptiste, Kaytoue, Mehdi, Marcuola, Florent, Napoli, Amedeo, Szathmary, Laszlo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Computer Science - Databases ,extraction de connaissances ,motifs fréquents et rares ,Physics::Space Physics ,Astrophysics::Solar and Stellar Astrophysics ,Computer Science::Databases ,règles d'association ,fouille de données - Abstract
National audience; Coron is a domain and platform independent, multi-purposed data mining toolkit, which incorporates not only a rich collection of data mining algorithms, but also allows a number of auxiliary operations. To the best of our knowledge, a data mining toolkit designed specifically for itemset extraction and association rule generation like Coron does not exist elsewhere. Coron also provides support for preparing and filtering data, and for interpreting the extracted units of knowledge.; Conçu à l'origine pour une étude de cohorte, Coron est devenu une plate-forme de fouille de données à part entière, qui incorpore une riche collection d'algorithmes pour l'extraction de motifs (fréquents, fermés, générateurs, etc.) et la génération de règles d'association à partir de données binaires, ainsi que divers outils de pré- et post- traitements.
- Published
- 2010
32. Generating Rare Association Rules Using the Minimal Rare Itemsets Family
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Laboratory for Research on Technology for ECommerce (LATECE Laboratory - UQAM Montreal), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Département de Mathématiques et de statistique [UdeM- Montréal] (DMS), Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,itemset extraction ,data mining ,rare itemsets ,rare item problem ,rare association rules ,knowledge discovery in databases (kdd) - Abstract
International audience; Rare association rules correspond to rare, or infrequent, itemsets, as opposed to frequent ones that are targeted by conventional pattern miners. Rare rules reflect regularities of local, rather than global, scope that can nevertheless provide valuable insights to an expert, especially in areas such as genetics and medical diagnosis where some specific deviations/illnesses occur only in a small number of cases. The work presented here is motivated by the long-standing open question of efficiently mining strong rare rules, i.e., rules with high confidence and low support. We also propose an efficient solution for finding the set of minimal rare itemsets. This set serves as a basis for generating rare association rules.
- Published
- 2010
33. Efficient Vertical Mining of Frequent Closed Itemsets and Generators
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Laboratory for Research on Technology for ECommerce (LATECE Laboratory - UQAM Montreal), Université du Québec à Montréal = University of Québec in Montréal (UQAM), Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
association rules ,closed itemsets ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,formal concept analysis (FCA) ,frequent itemset mining ,data mining ,algorithms ,generators ,knowledge discovery in databases (KDD) - Abstract
The effective construction of many association rule bases require the computation of both frequent closed and frequent generator itemsets (FCIs/FGs). However, these two tasks are rarely combined. Most of the existing solutions apply levelwise breadth-first traversal, though depth-first traversal is knowingly superior. Hence, we address here the depth-first FCI/FG-mining. The proposed algorithm, Touch, deals with both tasks separately, i.e., uses a well-known vertical method, Charm, to extract FCIs and a novel one called Talky-G, to extract FGs. The respective outputs are matched in a post-processing step. Experimental results indicate that Touch is highly efficient and outperforms its levelwise competitors.
- Published
- 2009
34. Efficient Mining of Frequent Closures with Precedence Links and Associated Generators
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP), Laboratory for Research on Technology for ECommerce (LATECE Laboratory - UQAM Montreal), Université du Québec à Montréal = University of Québec in Montréal (UQAM), INRIA, and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
ACM: H.: Information Systems/H.3: INFORMATION STORAGE AND RETRIEVAL/H.3.3: Information Search and Retrieval ,motifs fermés ,algorithm ,data mining ,itemset search ,association rule bases ,closed itemsets ,generators ,concept lattice ,iceberg lattice ,treillis de concepts ,treillis iceberg ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,motifs fréquents ,bases ,algorithmes pour la fouille de données ,motifs générateurs ,règles d'association - Abstract
The effective construction of many association rule bases require the computation of frequent closures, generators, and precedence links between closures. However, these tasks are rarely combined, and no scalable algorithm exists at present for their joint computation. We propose here a method that solves this challenging problem in two separated steps. First, we introduce a new algorithm called Touch for finding frequent closed itemsets (FCIs) and their generators (FGs). Touch applies depth-first traversal, and experimental results indicate that this algorithm is highly efficient and outperforms its levelwise competitors. Second, we propose another algorithm called Snow for extracting efficiently the precedence from the output of Touch. To do so, we apply hypergraph theory. Snow is a generic algorithm that can be used with any FCI/FG-miner. The two algorithms, Touch and Snow, provide a complete solution for constructing iceberg lattices. Furthermore, due to their modular design, parts of the algorithms can also be used independently.
- Published
- 2008
35. Symbolic Data Mining Methods with the Coron Platform
- Author
-
Szathmary, Laszlo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP), Université Henri Poincaré - Nancy 1, and Amedeo NAPOLI (napoli@loria.fr)
- Subjects
association rule generation ,motifs rares ,itemset extraction ,l'extraction de connaissances dans les bases de données (ECBD) ,motifs fréquents ,règles d'associations ,data mining ,rare item problem ,[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE] ,knowledge discovery in databases (KDD) ,fouille de données - Abstract
I have implemented all the algorithms presented in my thesis in a unified software platform called Coron. The software is available at http://coron.loria.fr/ .; The main topic of this thesis is knowledge discovery in databases (KDD). More precisely, we have investigated two of the most important tasks of KDD today, namely itemset extraction and association rule generation. Throughout our work we have borne in mind that our goal is to find interesting association rules from various points of view: for efficient mining purposes, for minimizing the set of extracted rules and for finding intelligible (and easily interpretable) knowledge units. We have developed and adapted specific algorithms in order to achieve this goal. The main contributions of this thesis are: (1) We have developed and adapted algorithms for finding minimal non-redundant association rules; (2) We have defined a new basis for association rules called Closed Rules; (3) We have investigated an important but relatively unexplored field of KDD namely the extraction of rare itemsets and rare association rules; (4) We have packaged our algorithms and a collection of other algorithms along with other auxiliary operations for KDD into a unified software toolkit called Coron.; Le sujet principal de cette thèse est l'extraction de connaissances dans les bases de données (ECBD). Plus précisément, nous avons étudié deux des plus importantes tâches d'ECBD actuelles, qui sont l'extraction de motifs et la génération de règles d'association. Tout au long de notre travail, notre objectif a été de trouver des règles d'associations intéressantes selon plusieurs points de vue : dans un but de fouille efficace, pour réduire au minimum l'ensemble des règles extraites et pour trouver des unités de connaissances intelligibles (et facilement interprétables). Pour atteindre ce but, nous avons développé et adapté des algorithmes spécifiques. Les contributions principales de cette thèse sont : (1) nous avons développé et adapté des algorithmes pour trouver les règles d'association minimales non-redondantes ; (2) nous avons défini une nouvelle base pour les règles d'associations appelée “règles fermées” ; (3) nous avons étudié un champ de l'ECBD important mais relativement peu étudié, à savoir l'extraction des motifs rares et des règles d'association rares ; (4) nous avons regroupé nos algorithmes et une collection d'autres algorithmes ainsi que d'autres opérations auxiliaires d'ECBD dans une boîte à outils logicielle appelée Coron.
- Published
- 2006
36. Méthodes symboliques de fouille de données avec la plate-forme Coron
- Author
-
Szathmary, Laszlo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Université Henri Poincaré - Nancy 1, Amedeo NAPOLI (napoli@loria.fr), and Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
- Subjects
association rule generation ,motifs rares ,itemset extraction ,l'extraction de connaissances dans les bases de données (ECBD) ,motifs fréquents ,règles d'associations ,data mining ,rare item problem ,[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE] ,knowledge discovery in databases (KDD) ,fouille de données - Abstract
I have implemented all the algorithms presented in my thesis in a unified software platform called Coron. The software is available at http://coron.loria.fr/ .; The main topic of this thesis is knowledge discovery in databases (KDD). More precisely, we have investigated two of the most important tasks of KDD today, namely itemset extraction and association rule generation. Throughout our work we have borne in mind that our goal is to find interesting association rules from various points of view: for efficient mining purposes, for minimizing the set of extracted rules and for finding intelligible (and easily interpretable) knowledge units. We have developed and adapted specific algorithms in order to achieve this goal. The main contributions of this thesis are: (1) We have developed and adapted algorithms for finding minimal non-redundant association rules; (2) We have defined a new basis for association rules called Closed Rules; (3) We have investigated an important but relatively unexplored field of KDD namely the extraction of rare itemsets and rare association rules; (4) We have packaged our algorithms and a collection of other algorithms along with other auxiliary operations for KDD into a unified software toolkit called Coron.; Le sujet principal de cette thèse est l'extraction de connaissances dans les bases de données (ECBD). Plus précisément, nous avons étudié deux des plus importantes tâches d'ECBD actuelles, qui sont l'extraction de motifs et la génération de règles d'association. Tout au long de notre travail, notre objectif a été de trouver des règles d'associations intéressantes selon plusieurs points de vue : dans un but de fouille efficace, pour réduire au minimum l'ensemble des règles extraites et pour trouver des unités de connaissances intelligibles (et facilement interprétables). Pour atteindre ce but, nous avons développé et adapté des algorithmes spécifiques. Les contributions principales de cette thèse sont : (1) nous avons développé et adapté des algorithmes pour trouver les règles d'association minimales non-redondantes ; (2) nous avons défini une nouvelle base pour les règles d'associations appelée “règles fermées” ; (3) nous avons étudié un champ de l'ECBD important mais relativement peu étudié, à savoir l'extraction des motifs rares et des règles d'association rares ; (4) nous avons regroupé nos algorithmes et une collection d'autres algorithmes ainsi que d'autres opérations auxiliaires d'ECBD dans une boîte à outils logicielle appelée Coron.
- Published
- 2006
37. Vers l'extraction de motifs rares
- Author
-
Szathmary, Laszlo, Maumus, Sandy, Pierre, Petronin, Toussaint, Yannick, Napoli, Amedeo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Génétique épidémiologique et moléculaire des pathologies cardiovasculaires, Université Pierre et Marie Curie - Paris 6 (UPMC)-IFR14-Institut National de la Santé et de la Recherche Médicale (INSERM), Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI), and Gilbert Ritschard, Chabane Djeraba
- Subjects
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,rare itemset search ,ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.6: Learning - Abstract
National audience; Un certain nombre de travaux en fouille de données se sont intéressés à l'extraction de motifs et à la génération de règles d'association à partir de ces motifs. Cependant, ces travaux se sont jusqu'à présent, centrés sur la notion de motifs fréquents. Le premier algorithme à avoir permis l'extraction de tous les motifs fréquents est Apriori mais d'autres ont été mis au point par la suite, certains n'extrayant que des sous-ensembles de ces motifs (motifs fermés fréquents, motifs fréquents maximaux, générateurs minimaux). Dans cet article, nous nous intéressons aux motifs rares qui peuvent également véhiculer des informations importantes. Les motifs rares correspondent au complémentaire des motifs fréquents. A notre connaissance, ces motifs n'ont pas encore été étudiés, malgré l'intérêt que certains domaines pourraient tirer de ce genre de modèle. C'est en particulier le cas de la médecine, où par exemple, il est important pour un praticien de repérer les symptômes non usuels ou les effets indésirables exceptionnels qui peuvent se déclarer chez un patient pour une pathologie ou un traitement donné.
- Published
- 2006
38. ZART: A Multifunctional Itemset Mining Algorithm
- Author
-
Szathmary, Laszlo, Napoli, Amedeo, Kuznetsov, Sergei, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Department of Applied Mathematics - State University Higher School of Economics, State University Higher School of Economics, and Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
- Subjects
association rules ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS] ,itemset extraction ,frequent generators ,data mining ,[INFO.INFO-SE]Computer Science [cs]/Software Engineering [cs.SE] ,itemset mining ,frequent closed itemsets ,ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.6: Learning - Abstract
Site de la conférence : http://www.lirmm.fr/cla07/; International audience; In this paper, we present and detail a multifunctional itemset mining algorithm called Zart, which is based on the Pascal algorithm. Zart shows a number of additional features and performs the following, usually independent, tasks: identify frequent closed itemsets and associate generators to their closures. This makes Zart a complete algorithm for computing classes of itemsets including generators and closed itemsets. These characteristics allow one to extract minimal non-redundant association rules, a useful and lossless representation of association rules. In addition, being based on the Pascal algorithm, Zart has a rather efficient behavior on weakly and strongly correlated data. Accordingly, Zart is at the heart of the Coron platform, which is a domain independent, multi-purposed data mining platform, incorporating a rich collection of data mining algorithms.
- Published
- 2006
39. Réflexions sur l'extraction de motifs rares
- Author
-
Maumus, Sandy, Napoli, Amedeo, Szathmary, Laszlo, Toussaint, Yannick, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), M. Nadif and F.-X. Jollois, and Napoli, Amedeo
- Subjects
[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,motifs fréquents et rares ,extraction de motifs ,fouille de données ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
National audience; Les études en fouille de données se sont surtout intéressées jusqu'à présent à l'extraction de motifs fréquents et à la génération de règles d'association à partir des motifs fréquents. L'algorithme le plus célèbre ayant permis d'atteindre ces objectifs est Apriori, qui a été suivi par toute une famille d'algorithmes mis au point par la suite et possédant tous la caractéristique d'extraire l'ensemble des motifs fréquents ou un sous-ensemble de ces motifs (motifs fermés fréquents, motifs fréquents maximaux, générateurs minimaux). Dans cet article, nous posons le problème de la recherche des motifs rares ou non fréquents, qui se trouvent dans le complémentaire de l'ensemble des motifs fréquents. Ce type de motif n'a jamais vraiment fait l'objet d'une étude systématique, malgré l'intérêt et la demande existant dans certains domaines d'application. Ainsi, en biologie ou en médecine, il peut se révéler très important pour un praticien de repérer des symptômes non habituels ou des effets indésirables exceptionnels se déclarant chez un patient pour une pathologie ou un traitement donnés.
- Published
- 2006
40. Mining Rare Association Rules
- Author
-
Szathmary, Laszlo, Maumus, Sandy, Napoli, Amedeo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP), and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
association rules ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,itemset extraction ,rare itemsets ,rare association rules - Abstract
In this paper, we address the problem of generating relevant rare association rules. In the literature, this problem has not yet been studied in detail, although rare association rules can also contain important information just as frequent association rules do. Our work is motivated by the long-standing open question of devising an efficient algorithm for finding rules with low support and very high confidence. In order to find such rules using conventional frequent itemset mining algorithms like Apriori, the minimum support must be set very low, which drastically increases the runtime of the algorithm. Moreover, when minimum support is set very low, Apriori produces a huge number of frequent itemsets. This is also known as the "rare item problem". For this long-existing problem we propose a solution. A particularly relevant field for rare itemsets and rare association rules is medical diagnosis. For example it may be that in a large group of patients diagnosed with the same sickness, a few patients exhibit unusual symptoms. It is important for the doctor to take this fact into consideration.
- Published
- 2006
41. Finding frequent closed itemsets with an extended version of the Eclat algorithm.
- Author
-
Szathmary, Laszlo
- Subjects
- *
ASSOCIATION rule mining , *APPROXIMATION algorithms , *STATISTICAL correlation , *NUMERICAL analysis , *SET theory - Abstract
Apriori is the most well-known algorithm for finding frequent itemsets (FIs) in a dataset. For generating interesting association rules, we also need the so-called frequent closed itemsets (FCIs) that form a subset of FIs. Apriori has a simple extension called Apriori-Close that can filter FCIs among FIs. However, it is known that vertical itemset mining algorithms outperform the Apriori-like levelwise algorithms. Eclat is another well-known vertical miner that can produce the same output as Apriori, i.e. it also finds the FIs in a dataset. Here we propose an extension of Eclat, called Eclat-Close that can filter FCIs among FIs. This way Eclat-Close can be used as an alternative of Apriori-Close. Experimental results show that Eclat-Close performs much better than Apriori-Close, especially on dense, highly-correlated datasets. [ABSTRACT FROM AUTHOR]
- Published
- 2018
42. CORON: A Framework for Levelwise Itemset Mining Algorithms
- Author
-
Szathmary, Laszlo, Napoli, Amedeo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Ganter, Bernhard and Godin, Robert and Mephu Nguifo, Engelbert, and Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
- Subjects
closed frequent itemsets ,association rules ,frequent itemsets ,data mining ,algorithms ,itemset mining ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
CORON is a framework for levelwise algorithms that are designed to find frequent and/or frequent closed itemsets in binary contexts. Datasets can be very different in size, number of objects, number of attributes, density, etc. As there is no one best algorithm for arbitrary datasets, we want to give a possibility for users to try different algorithms and choose the one that best suits their needs.
- Published
- 2005
43. Knowledge organisation and information retrieval based on Galois lattices
- Author
-
Szathmary, Laszlo, Napoli, Amedeo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP), Le Thi Hoai An and Pham Dinh Tao, and Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
organisation de connaissances ,galois lattices ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,kdd ,ecbd ,base multidimensionnelle ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,recherche d'informations ,analyse de concepts formels ,treillis de galois ,formal concept analysis ,extraction de connaissances de bases de données ,information retrieval ,ontology ,multidimensional basis ,ontologie ,knowledge organisation - Abstract
Colloque avec actes et comité de lecture. internationale.; International audience; In this paper we investigate the application of Galois (or concept) lattices on different data sources (e.g. web documents or bibliographical items) in order to organise knowledge that can be extracted from the data. This knowledge organisation can then be used for a number of purposes (e.g. knowledge management in an organisation, document retrieval on the Web, etc.). Galois lattices can be considered as classification tools for knowledge units in concept hierarchies that can be used within a knowledge-based system. Moreover, Galois lattices can be used in parallel with domain ontologies for building more precise and more concise concept ontologies, and for guiding the knowledge discovery process.
- Published
- 2004
44. Les treillis de Galois pour l'organisation et la gestion des connaissances
- Author
-
Szathmary, Laszlo, Napoli, Amedeo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Chavent, M. et Langlais, M., and Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)
- Subjects
treillis de galois ,knowledge organization ,galois lattices ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,organisation des connaissances ,ontologies ,knowledge management ,gestion des connaissances - Abstract
Colloque avec actes et comité de lecture. nationale.; National audience; Dans cet article, nous étudions la construction de treillis de Galois à partir de différentes sources d'information (par exemple des documents du Web ou des notices bibliographiques) afin d'organiser les connaissances qui peuvent en être extraites. L'organisation en treillis qui en résulte peut alors être utilisée pour satisfaire un certain nombre de buts, comme par exemple la gestion de la connaissance dans une organisation, la recherche documentaire sur le Web, etc. En outre, la classification par treillis peut également tirer parti d'une ontologie des propriétés du domaine considéré. Notre objectif global est de mettre en place un processus de classification par treillis pour enrichir une ontologie qui à son tour permet de guider le processus de découverte de connaissances dans les données.
- Published
- 2004
45. First Elements on Knowledge Discovery Guided by Domain Knowledge (KDDK)
- Author
-
Lieber, Jean, primary, Napoli, Amedeo, additional, Szathmary, Laszlo, additional, and Toussaint, Yannick, additional
- Full Text
- View/download PDF
46. A proposition for a multi-dimensional classification-based system for corporate knowledge management
- Author
-
Szathmary, Laszlo, Knowledge representation, reasonning (ORPAILLEUR), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), INRIA, and Loria, Publications
- Subjects
[INFO.INFO-OH] Computer Science [cs]/Other [cs.OH] ,multi-dimensional system ,système multi-dimensionnel ,management des connaissances ,semantic web ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,knowledge management ,web sémantique - Abstract
Colloque avec actes sans comité de lecture. internationale.; International audience; This paper presents an ongoing research work on knowledge management. The problem is to be able to design a "multidimensional portfolio", in order to organize and to index the different aspects of knowledge in an enterprise. We have chosen an object-oriented view for such a representation. Every piece of knowledge is represented within classes in an object-based representation system. The multidimensional organization is supported by a number of tangled hierarchies of classes, one hierarchy giving a particular point of view on the enterprise knowledge.
- Published
- 2002
47. A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes
- Author
-
Szathmary, Laszlo, primary, Valtchev, Petko, additional, Napoli, Amedeo, additional, Godin, Robert, additional, Boc, Alix, additional, and Makarenkov, Vladimir, additional
- Published
- 2013
- Full Text
- View/download PDF
48. Towards Rare Itemset Mining
- Author
-
Szathmary, Laszlo, primary, Napoli, Amedeo, additional, and Valtchev, Petko, additional
- Published
- 2007
- Full Text
- View/download PDF
49. History of the Peoples of the Great Hungarian Plain in the First Millennium: A Craniometric Point of View
- Author
-
Holló, Gábor, Szathmáry, László, Marcsik, Antónia, and Barta, Zoltán
- Published
- 2009
50. A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes
- Author
-
Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Godin, Robert, Boc, Alix, Makarenkov, Vladimir, Szathmary, Laszlo, Valtchev, Petko, Napoli, Amedeo, Godin, Robert, Boc, Alix, and Makarenkov, Vladimir
- Abstract
In pattern mining and association rule mining, there is a variety of algorithms for mining frequent closed itemsets (FCIs) and frequent generators (FGs), whereas a smaller part further involves the precedence relation between FCIs. The interplay of these three constructs and their joint computation have been studied within the formal concept analysis (FCA) field yet none of the proposed algorithms is scalable. In frequent pattern mining, at least one suite of efficient algorithms has been designed that exploits basically the same ideas and follows the same overall computational schema. Based on an in-depth analysis of the aforementioned interplay that is rooted in a fundamental duality from hypergraph theory, we propose a new schema that should enable for a more parsimonious computation. We exemplify the new schema in the design of Snow-Touch, a concrete FCI/FG/precedence miner that reuses an existing algorithm, Charm, for mining FCIs, and completes it with two original methods for mining FGs and precedence, respectively. The performance of Snow-Touch and of its closest competitor, Charm-L, were experimentally compared using a large variety of datasets. The outcome of the experimental study suggests that our method outperforms Charm-L on dense data while on sparse one the trend is reversed. Furthermore, we demonstrate the usefulness of our method and the new schema through an application to the analysis of a genome dataset. The initial results reported here confirm the capacity of the method to focus on significant associations.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.