Solving the problem of antibiotic resistance requires the development of new antimicrobial drugs and/or new therapeutic strategies. A promising strategy to combat resistant pathogens is to combine antimicrobials with different mechanisms of action, since it is more difficult for bacteria to develop resistance against several mechanisms at the same time. Of particular interest are antimicrobial peptides, resistance to which develops much more slowly than to conventional antibiotics. Most of the superbugs that pose a serious threat to human health today are gram-negative. Their outer membrane plays the role of a barrier for antimicrobial agents whose targets are located in the inner membrane or in the cytoplasm of bacteria. Review of research reports over the past seven years suggests that combining polymyxins with nisin results in a synergistic or additive antimicrobial effect. Polymyxin- nisin combinations have been shown to be effective against clinically significant gram-negative pathogens such as Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli. The probable mechanism of synergy consists in providing polymyxin due to the violation of the integrity of the outer membrane of nisin access to the target on the inner membrane (lipid II) with the subsequent realization of its antimicrobial potential. The synergistic interaction of an antibiotic with a lantibiotic allows to reduce the concentration of the antibiotic, thereby reducing the likelihood of developing toxic effects. The additive effect also has an important positive value, as it is accompanied by a decrease of antibiotic`s minimal inhibition concentration and indicates the possibility of restoring the sensitivity of bacteria to it. Therefore, synergistic polymyxin-nisin combinations deserve further study and application in clinical practice., {"references":["1. \tBreijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25 (6), 1340. https://doi.org/10.3390/molecules25061340.","2. \tChurch, N. A.; McKillip, J. L. Antibiotic Resistance Crisis: Challenges and Imperatives. Biologia (Bratisl.) 2021, 76 (5), 1535–1550. https://doi.org/10.1007/s11756-021-00697-x.","3. \tTacconelli, E.; Carrara, E.; Savoldi, A.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18 (3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3.","4. \tWHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics (WHO, 2017).","5. \tChahine, E. B.; Dougherty, J. A.; Thornby, K.-A.; et al. Antibiotic Approvals in the Last Decade: Are We Keeping Up With Resistance? Ann. Pharmacother. 2022, 56 (4), 441–462. https://doi.org/10.1177/10600280211031390.","6. \tLewies, A.; Plessis, L. H. D.; Wentzel, J. F. The Cytotoxic, Antimicrobial and Anticancer Properties of the Antimicrobial Peptide Nisin Z Alone and in Combination with Conventional Treatments. In Cytotoxicity; Çelik, T. A., Ed.; InTech, 2018. https://doi.org/10.5772/intechopen.71927.","7. \tSoltani, S.; Hammami, R.; Cotter, P. D.; et al. Bacteriocins as a New Generation of Antimicrobials: Toxicity Aspects and Regulations. FEMS Microbiol. Rev. 2021, 45 (1), fuaa039. https://doi.org/10.1093/femsre/fuaa039.","8. \tJahangiri, A.; Neshani, A.; Mirhosseini, S. A.; et al. Synergistic Effect of Two Antimicrobial Peptides, Nisin and P10 with Conventional Antibiotics against Extensively Drug-Resistant Acinetobacter Baumannii and Colistin-Resistant Pseudomonas Aeruginosa Isolates. Microb. Pathog. 2021, 150, 104700. https://doi.org/10.1016/j.micpath.2020.104700.","9. \tAl Atya, A. K.; Abriouel, H.; Kempf, I.; et al. Effects of Colistin and Bacteriocins Combinations on the In Vitro Growth of Escherichia Coli Strains from Swine Origin. Probiotics Antimicrob. Proteins 2016, 8 (4), 183–190. https://doi.org/10.1007/s12602-016-9227-9.","10. \tLewies, A.; Du Plessis, L. H.; Wentzel, J. F. Antimicrobial Peptides: The Achilles' Heel of Antibiotic Resistance? Probiotics Antimicrob. Proteins 2019, 11 (2), 370–381. https://doi.org/10.1007/s12602-018-9465-0.","11. \tLi, Q.; Cebrián, R.; Montalbán-López, M.; et al. Outer-Membrane-Acting Peptides and Lipid II-Targeting Antibiotics Cooperatively Kill Gram-Negative Pathogens. Commun. Biol. 2021, 4 (1), 31. https://doi.org/10.1038/s42003-020-01511-1.","12. \tChiu, S.; Hancock, A. M.; Schofner, B. W.; et al. Causes of Polymyxin Treatment Failure and New Derivatives to Fill the Gap. J. Antibiot. (Tokyo) 2022, 75 (11), 593–609. https://doi.org/10.1038/s41429-022-00561-3.","13. \tVaara, M. Polymyxins and Their Potential Next Generation as Therapeutic Antibiotics. Front. Microbiol. 2019, 10, 1689. https://doi.org/10.3389/fmicb.2019.01689.","14. \tAyoub Moubareck, C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. Membranes 2020, 10 (8), 181. https://doi.org/10.3390/membranes10080181.","15. \tManioglu, S.; Modaresi, S. M.; Ritzmann, N.; et al. Antibiotic Polymyxin Arranges Lipopolysaccharide into Crystalline Structures to Solidify the Bacterial Membrane. Nat. Commun. 2022, 13 (1), 6195. https://doi.org/10.1038/s41467-022-33838-0.","16. \tSabnis, A.; Hagart, K. L.; Klöckner, A.; et al. Colistin Kills Bacteria by Targeting Lipopolysaccharide in the Cytoplasmic Membrane. eLife 2021, 10, e65836. https://doi.org/10.7554/eLife.65836.","17. \tTsuji, B. T.; Pogue, J. M.; Zavascki, A. P.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti‐infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39 (1), 10–39. https://doi.org/10.1002/phar.2209.","18. \tMagana, M.; Pushpanathan, M.; Santos, A. L.; et al. The Value of Antimicrobial Peptides in the Age of Resistance. Lancet Infect. Dis. 2020, 20 (9), e216–e230. https://doi.org/10.1016/S1473-3099(20)30327-3.","19. \tWeerakoon, D.; Petrov, K.; Pedebos, C.; et al. Polymyxin B1 within the E. Coli Cell Envelope: Insights from Molecular Dynamics Simulations. Biophys. Rev. 2021, 13 (6), 1061–1070. https://doi.org/10.1007/s12551-021-00869-8.","20. \tStefaniuk, E. M.; Tyski, S. Colistin Resistance in Enterobacterales Strains – A Current View. Pol. J. Microbiol. 2019, 68 (4), 417–427. https://doi.org/10.33073/pjm-2019-055.","21. \tNation, R.; Rigatto, M.; Falci, D.; et al. Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics 2019, 8 (1), 24. https://doi.org/10.3390/antibiotics8010024.","22. \tNang, S. C.; Li, J.; Velkov, T. The Rise and Spread of Mcr Plasmid-Mediated Polymyxin Resistance. Crit. Rev. Microbiol. 2019, 45 (2), 131–161. https://doi.org/10.1080/1040841X.2018.1492902.","23. \tBertani, B.; Ruiz, N. Function and Biogenesis of Lipopolysaccharides. EcoSal Plus 2018, 8 (1), ecosalplus.ESP-0001-2018. https://doi.org/10.1128/ecosalplus.ESP-0001-2018.","24. \tSun, J.; Rutherford, S. T.; Silhavy, T. J.; et al. Physical Properties of the Bacterial Outer Membrane. Nat. Rev. Microbiol. 2022, 20 (4), 236–248. https://doi.org/10.1038/s41579-021-00638-0.","25. \tLi, Z.; Velkov, T. Polymyxins: Mode of Action. In Polymyxin Antibiotics: From Laboratory Bench to Bedside; Li, J., Nation, R. L., Kaye, K. S., Eds.; Springer International Publishing: Cham, 2019; Vol. 1145, pp 37–54. https://doi.org/10.1007/978-3-030-16373-0_4.","26. \tKhadka, N. K.; Aryal, C. M.; Pan, J. Lipopolysaccharide-Dependent Membrane Permeation and Lipid Clustering Caused by Cyclic Lipopeptide Colistin. ACS Omega 2018, 3 (12), 17828–17834. https://doi.org/10.1021/acsomega.8b02260.","27. \tSi, W.; Wang, L.; Usongo, V.; et al. Colistin Induces S. Aureus Susceptibility to Bacitracin. Front. Microbiol. 2018, 9, 2805. https://doi.org/10.3389/fmicb.2018.02805.","28. \tLima, M. R.; Ferreira, G. F.; Nunes Neto, W. R.; et al. Evaluation of the Interaction between Polymyxin B and Pseudomonas Aeruginosa Biofilm and Planktonic Cells: Reactive Oxygen Species Induction and Zeta Potential. BMC Microbiol. 2019, 19 (1), 115. https://doi.org/10.1186/s12866-019-1485-8.","29. \tYu, Z.; Zhu, Y.; Fu, J.; et al. Enhanced NADH Metabolism Involves Colistin-Induced Killing of Bacillus Subtilis and Paenibacillus Polymyxa. Molecules 2019, 24 (3), 387. https://doi.org/10.3390/molecules24030387.","30. \tKoen, N.; van Breda, S. V.; Loots, D. T. Elucidating the Antimicrobial Mechanisms of Colistin Sulfate on Mycobacterium Tuberculosis Using Metabolomics. Tuberculosis 2018, 111, 14–19. https://doi.org/10.1016/j.tube.2018.05.001.","31. \tThe European Committee on Antimicrobial Susceptibility Testing.","32. \tClinical Laboratory and Standards Instiute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th e.","33. \tGai, Z.; Samodelov, S.; Kullak-Ublick, G.; et al. Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 2019, 24 (3), 653. https://doi.org/10.3390/molecules24030653.","34. \tVaara, M. New Polymyxin Derivatives That Display Improved Efficacy in Animal Infection Models as Compared to Polymyxin B and Colistin. Med. Res. Rev. 2018, 38 (5), 1661–1673. https://doi.org/10.1002/med.21494.","35. \tGallardo-Godoy, A.; Hansford, K.; Muldoon, C.; et al. Structure-Function Studies of Polymyxin B Lipononapeptides. Molecules 2019, 24 (3), 553. https://doi.org/10.3390/molecules24030553.","36. \tBrennan-Krohn, T.; Pironti, A.; Kirby, J. E. Synergistic Activity of Colistin-Containing Combinations against Colistin-Resistant Enterobacteriaceae. Antimicrob. Agents Chemother. 2018, 62 (10), e00873-18. https://doi.org/10.1128/AAC.00873-18.","37. \tMacNair, C. R.; Stokes, J. M.; Carfrae, L. A.; et al. Overcoming Mcr-1 Mediated Colistin Resistance with Colistin in Combination with Other Antibiotics. Nat. Commun. 2018, 9 (1), 458. https://doi.org/10.1038/s41467-018-02875-z.","38. \tLoose, M.; Naber, K. G.; Hu, Y.; et al. Urinary Bactericidal Activity of Colistin and Azidothymidine Combinations against Mcr-1-Positive Colistin-Resistant Escherichia Coli. Int. J. Antimicrob. Agents 2019, 54 (1), 55–61. https://doi.org/10.1016/j.ijantimicag.2019.04.011.","39. \tTyrrell, J. M.; Aboklaish, A. F.; Walsh, T. R.; et al. The Polymyxin Derivative NAB739 Is Synergistic with Several Antibiotics against Polymyxin-Resistant Strains of Escherichia Coli, Klebsiella Pneumoniae and Acinetobacter Baumannii. Peptides 2019, 112, 149–153. https://doi.org/10.1016/j.peptides.2018.12.006.","40. \tThomas, V. M.; Brown, R. M.; Ashcraft, D. S.; et al. Synergistic Effect between Nisin and Polymyxin B against Pandrug-Resistant and Extensively Drug-Resistant Acinetobacter Baumannii. Int. J. Antimicrob. Agents 2019, 53 (5), 663–668. https://doi.org/10.1016/j.ijantimicag.2019.03.009.","41. \tLewies, A.; Wentzel, J. F.; Jordaan, A.; et al. Interactions of the Antimicrobial Peptide Nisin Z with Conventional Antibiotics and the Use of Nanostructured Lipid Carriers to Enhance Antimicrobial Activity. Int. J. Pharm. 2017, 526 (1–2), 244–253. https://doi.org/10.1016/j.ijpharm.2017.04.071.","42. \tO'Sullivan, J. N.; O'Connor, P. M.; Rea, M. C.; et al. Nisin J, a Novel Natural Nisin Variant, Is Produced by Staphylococcus Capitis Sourced from the Human Skin Microbiota. J. Bacteriol. 2020, 202 (3). https://doi.org/10.1128/JB.00639-19.","43. \tHatziioanou, D.; Gherghisan-Filip, C.; Saalbach, G.; et al. Discovery of a Novel Lantibiotic Nisin O from Blautia Obeum A2-162, Isolated from the Human Gastrointestinal Tract. Microbiology 2017, 163 (9), 1292–1305. https://doi.org/10.1099/mic.0.000515.","44. \tLawrence, G. W.; Garcia-Gutierrez, E.; Walsh, C. J.; et al. Nisin G Is a Novel Nisin Variant Produced by a Gut-Derived Streptococcus Salivarius; preprint; Microbiology, 2022. https://doi.org/10.1101/2022.02.15.480493.","45. \tMeade; Slattery; Garvey. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics 2020, 9 (1), 32. https://doi.org/10.3390/antibiotics9010032.","46. \tEFSA Panel on Food Additives and Nutrient Sources added to Food (ANS); Younes, M.; Aggett, P.; et al. Safety of Nisin (E 234) as a Food Additive in the Light of New Toxicological Data and the Proposed Extension of Use. EFSA J. 2017, 15 (12). https://doi.org/10.2903/j.efsa.2017.5063.","47. \tBarbosa, A. A. T.; de Melo, M. R.; da Silva, C. M. R.; et al. Nisin Resistance in Gram-Positive Bacteria and Approaches to Circumvent Resistance for Successful Therapeutic Use. Crit. Rev. Microbiol. 2021, 47 (3), 376–385. https://doi.org/10.1080/1040841X.2021.1893264.","48. \tLi, Q.; Montalban-Lopez, M.; Kuipers, O. P. Increasing the Antimicrobial Activity of Nisin-Based Lantibiotics against Gram-Negative Pathogens. Appl. Environ. Microbiol. 2018, 84 (12), e00052-18. https://doi.org/10.1128/AEM.00052-18.","49. \tPrince, A.; Sandhu, P.; Ror, P.; et al. Lipid-II Independent Antimicrobial Mechanism of Nisin Depends On Its Crowding And Degree Of Oligomerization. Sci. Rep. 2016, 6 (1), 37908. https://doi.org/10.1038/srep37908.","50. \tGalván Márquez, I. J.; McKay, B.; Wong, A.; et al. Mode of Action of Nisin on Escherichia Coli. Can. J. Microbiol. 2020, 66 (2), 161–168. https://doi.org/10.1139/cjm-2019-0315.","51. \tJensen, C.; Li, H.; Vestergaard, M.; et al. Nisin Damages the Septal Membrane and Triggers DNA Condensation in Methicillin-Resistant Staphylococcus Aureus. Front. Microbiol. 2020, 11, 1007. https://doi.org/10.3389/fmicb.2020.01007.","52. \tÖzdemir, F. N.; Buzrul, S.; Özdemir, C.; et al. Determination of an Effective Agent Combination Using Nisin against Salmonella Biofilm. Arch. Microbiol. 2022, 204 (3), 167. https://doi.org/10.1007/s00203-022-02766-4.","53. \tChi, H.; Holo, H. Synergistic Antimicrobial Activity Between the Broad Spectrum Bacteriocin Garvicin KS and Nisin, Farnesol and Polymyxin B Against Gram-Positive and Gram-Negative Bacteria. Curr. Microbiol. 2018, 75 (3), 272–277. https://doi.org/10.1007/s00284-017-1375-y.","54. \tField, D.; Seisling, N.; Cotter, P. D.; et al. Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation. Front. Microbiol. 2016, 7. https://doi.org/10.3389/fmicb.2016.01713.","55. \tMathur, H.; Field, D.; Rea, M. C.; et al. Fighting Biofilms with Lantibiotics and Other Groups of Bacteriocins. Npj Biofilms Microbiomes 2018, 4 (1), 9. https://doi.org/10.1038/s41522-018-0053-6"]}