37 results on '"Sylvia Eiler"'
Search Results
2. Structural and functional role of INI1 and LEDGF in the HIV-1 preintegration complex.
- Author
-
Benoit Maillot, Nicolas Lévy, Sylvia Eiler, Corinne Crucifix, Florence Granger, Ludovic Richert, Pascal Didier, Julien Godet, Karine Pradeau-Aubreton, Stéphane Emiliani, Alexis Nazabal, Paul Lesbats, Vincent Parissi, Yves Mely, Dino Moras, Patrick Schultz, and Marc Ruff
- Subjects
Medicine ,Science - Abstract
Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 (INI1-IBD), a subunit of the SWI/SNF chromatin remodeling factor. The stoichiometry of the IN/LEDGF/INI1-IBD/DNA complex components was found to be 4/2/2/2 by mass spectrometry and Fluorescence Correlation Spectroscopy. Functional assays showed that INI1-IBD inhibits the 3' processing reaction but does not interfere with specific viral DNA binding. Integration assays demonstrate that INI1-IBD decreases the amount of integration events but inhibits by-product formation such as donor/donor or linear full site integration molecules. Cryo-electron microscopy locates INI1-IBD within the cellular DNA binding site of the IN/LEDGF complex, constraining the highly flexible integrase in a stable conformation. Taken together, our results suggest that INI1 could stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration. Moreover, our results provide the basis for a novel type of integrase inhibitor (conformational inhibitor) representing a potential new strategy for use in human therapy.
- Published
- 2013
- Full Text
- View/download PDF
3. Identification of Endocrine-Disrupting Compounds Using Nanoelectrospray Ionization Mass Spectrometry
- Author
-
Cédric Bovet, Marc Ruff, Arno Wortmann, Sylvia Eiler, Florence Granger, Bertran Gerrits, Dino Moras, and Renato Zenobi
- Subjects
Electrospray ionization mass spectrometry ,Endochrine-disrupting compounds ,Estrogen receptor ,Noncovalent ,Solution-binding affinity ,Chemistry ,QD1-999 - Abstract
A method using chip-based nanoelectrospray mass spectrometry (nanoESI-MS) is described to detect noncovalent ligand binding to the human estrogen receptor alpha ligand-binding domain (hER? LBD). This system represents an important environmental interest, because a wide variety of molecules, known as endocrine-disrupting compounds (EDCs), can bind to the estrogen receptor (ER) and induce adverse health effects in wildlife and humans. An efficient analytical method is therefore required to identify EDCs and characterize their solution-phase binding affinity and character (i.e. agonist or antagonist). Using proper experimental conditions, the nanoESI-MS approach allowed the detection of specific ligand interactions with hER? LBD. The best approach to evaluate solution-binding affinity by nanoESI-MS was to perform competitive binding experiments with 17?-estradiol (E2) as a reference ligand. Among the ligands tested, the relative binding affinity for hER? LBD measured by nanoESI-MS was 4-hydroxytamoxifen ? diethylstilbestrol > E2 ? genistein ? bisphenol A, consistent with the order of the binding affinities in solution. To discern agonist from antagonist, we used the specificity of a coactivator peptide for agonist-bound receptor. A specific coactivator-hER? LBD complex was detected only in the presence of an agonist ligand. Therefore, the specificity of nanoESI-MS combined with its speed (1 min/ligand), low sample consumption (90 pmol protein/ligand), and its sensitivity for ligand (30 ng/ml) demonstrates that this method is promising for the identification and characterization of suspected ER ligands in a high-throughput manner.
- Published
- 2008
- Full Text
- View/download PDF
4. HIV-1 Pre-Integration Complexes. Structures, Functions and Drug Design
- Author
-
Serge Bouaziz, Sylvia Eiler, Patrice Gouet, Marc Ruff, Julien Batisse, Sylvie Duclaud, Nicolas Lévy, Eduardo Bruch, Patrick Schultz, Olivier Delelis, Vincent Parissi, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut de biologie et chimie des protéines [Lyon] (IBCP), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université Paris Descartes - Faculté de Pharmacie de Paris (UPD5 Pharmacie), Université Paris Descartes - Paris 5 (UPD5), Groupe Réparation de l'ADN, UMR 8113 CNRS, LBPA ENS Cachan, Institut Gustave Roussy (IGR)-Centre National de la Recherche Scientifique (CNRS), Microbiologie Fondamentale et Pathogénicité [Bordeaux] (MFP), Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Microbiologie moléculaire et biochimie structurale / Molecular Microbiology and Structural Biochemistry (MMSB), Cibles Thérapeutiques et conception de médicaments (CiTCoM - UMR 8038), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de biologie et pharmacologie appliquée (LBPA), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Microbiologie cellulaire et moléculaire et pathogénicité (MCMP), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Cachan (ENS Cachan), University of Bordeaux / CNRS, ruff, marc, Marseille medical genetics - Centre de génétique médicale de Marseille (MMG), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
[SDV.MP.VIR] Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Drug ,0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,business.industry ,media_common.quotation_subject ,[SDV]Life Sciences [q-bio] ,Biophysics ,Human immunodeficiency virus (HIV) ,medicine.disease_cause ,Virology ,3. Good health ,03 medical and health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,0302 clinical medicine ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,Medicine ,business ,030217 neurology & neurosurgery ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,media_common - Abstract
International audience; After retroviral infection of a target cell, during the early phase of replication, the HIV-1 genomic RNA is reverse transcribed by the viral reverse transcriptase to generate the double-stranded viral DNA that interact with viral and cellular proteins to form the pre-integration complex (PIC). Viral integrase (IN) is the key component of the PIC and is involved in several steps of viral replication notably in reverse transcription, nuclear import, chromatin targeting and integration. Viral components such as IN cannot perform these functions on their own and need to recruit host cell proteins to carry out thedifferent processes. IN is a flexible protein with intrinsically disordered regions allowing its interaction with multiple partners and enabling its multiple functions. To study the molecular mechanisms of viral integration we use a bottom - up strategy by assembling in vitro and/or incellulo multiprotein complexes around the integrase protein (core protein of the PIC). Several complexes have been characterized in our team (IN/LEDGF, IN/LEDGF/INI1-IBD, IN/LEDGF/CA, IN/LEDGF/TNPO3, IN/LEDGF/Nucleosome). To reveal the structure - function relationships of PIC complexes, we combineX-ray, NMR and Cryo-EM structures with biochemical and biological data. Two cryo-EM structures of the IN/LEDGF/DNA and IN/LEDGF/INI1-IBD/DNA complexes have been solved at low resolution (Michel et al., EMBO J., 2009; Maillot et al. PLoS ONE, 2013). With the recent progress of the cryo-EM techniques and our improvement in the complex preparations (Levy et al. Nature Comm. 2016; Eiler et al., Methods in Molecular Biology, 2018) new cryoEM datasets are collected (IN/LEDGF/DNA-pal, IN/LEDGF/Nucleosome) to increase the structure quality to near atomic resolution. Inaddition, the use of molecular structures together with in vitro assays allows us to develop a screening platform for interaction/allosteric inhibitors with the pre-integration complexes as targets.
- Published
- 2020
- Full Text
- View/download PDF
5. A Molecular Tool Targeting the Base‐Flipping Activity of Human UHRF1
- Author
-
Christian Bronner, Christian Boudier, Waseem Ashraf, Marc Ruff, Krishna Gavvala, Vasyl Kilin, Tanveer Ahmad, Sylvia Eiler, Marc Mousli, Mattia Mori, Yves Mély, Liliyana Zaayter, Ludovic Richert, Maurizio Botta, Laboratoire de Bioimagerie et Pathologies (LBP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Siena = University of Siena (UNISI), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), and Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA (Cytosine-5-)-Methyltransferase 1 ,Molecular model ,Protein Conformation ,Ubiquitin-Protein Ligases ,Druggability ,Drug Evaluation, Preclinical ,Anthraquinones ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Computational biology ,010402 general chemistry ,Transfection ,01 natural sciences ,Methylation ,Catalysis ,chemistry.chemical_compound ,Structure-Activity Relationship ,Humans ,base flipping inhibitors ,DNA methylation ,fluorescence ,virtual screening ,5-Methylcytosine ,Binding Sites ,CCAAT-Enhancer-Binding Proteins ,Enzyme Inhibitors ,HeLa Cells ,Kinetics ,Molecular Docking Simulation ,Molecular Structure ,Protein Binding ,ComputingMilieux_MISCELLANEOUS ,Virtual screening ,010405 organic chemistry ,Chemistry ,Organic Chemistry ,DNA replication ,General Chemistry ,Preclinical ,0104 chemical sciences ,DNMT1 ,Drug Evaluation ,DNA - Abstract
During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5'-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.
- Published
- 2019
- Full Text
- View/download PDF
6. Production of unstable proteins through the formation of stable core complexes
- Author
-
Benoit Maillot, François Stricher, Marc Ruff, Karine Pradeau-Aubreton, Sylvia Eiler, Nicolas Levy, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and ruff, marc
- Subjects
0301 basic medicine ,Protein family ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,medicine.medical_treatment ,Science ,Receptors, Cytoplasmic and Nuclear ,General Physics and Astronomy ,Context (language use) ,Computational biology ,Biology ,Article ,General Biochemistry, Genetics and Molecular Biology ,Cell Line ,Steroid ,03 medical and health sciences ,chemistry.chemical_compound ,medicine ,Transcriptional regulation ,Humans ,[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Beta (finance) ,[SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM] ,Multidisciplinary ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Protein Stability ,General Chemistry ,3. Good health ,Integrase ,030104 developmental biology ,Solubility ,Biochemistry ,chemistry ,Nuclear receptor ,Multiprotein Complexes ,HIV-1 ,Solvents ,biology.protein ,DNA - Abstract
Purification of proteins that participate in large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we set up a methodology that enables the production of stable complexes for structural and functional studies. This procedure is benchmarked and applied to two challenging protein families: the human steroid nuclear receptors (SNR) and the HIV-1 pre-integration complex. In the context of transcriptional regulation studies, we produce and characterize the ligand-binding domains of the glucocorticoid nuclear receptor and the oestrogen receptor beta in complex with a TIF2 (transcriptional intermediary factor 2) domain containing the three SNR-binding motifs. In the context of retroviral integration, we demonstrate the stabilization of the HIV-1 integrase by formation of complexes with partner proteins and DNA. This procedure provides a powerful research tool for structural and functional studies of proteins participating in non-covalent macromolecular complexes., Flexible or disordered domains often hinder the purification of proteins involved in functional interactions. Here the authors describe an approach that enables the production of stable and functional complexes of otherwise unstable proteins in quantities sufficient for structural and functional studies.
- Published
- 2016
- Full Text
- View/download PDF
7. Unstable Protein Purification Through the Formation of Stable Complexes
- Author
-
Sylvia, Eiler, Nicolas, Levy, Benoit, Maillot, Julien, Batisse, Karine Pradeau, Aubreton, Oyindamola, Oladosu, and Marc, Ruff
- Subjects
Nuclear Receptor Coactivator 2 ,Receptors, Glucocorticoid ,Humans ,Receptors, Cytoplasmic and Nuclear ,Protein Interaction Domains and Motifs ,HIV Integrase ,Chromatography, Affinity ,Adaptor Proteins, Signal Transducing ,Protein Binding ,Transcription Factors - Abstract
Purification of proteins containing disordered regions and participating in transient complexes is often challenging because of the small amounts available after purification, their heterogeneity, instability, and/or poor solubility. To circumvent these difficulties, we set up a methodology that enables the production of stable complexes in large amounts for structural and functional studies. In this chapter, we describe the methodology used to establish the best cell culture conditions and buffer compositions to optimize soluble protein production and their stabilization through protein complex formation. Two examples of challenging protein families are described, namely, the human steroid nuclear receptors and the HIV-1 pre-integration complexes.
- Published
- 2018
8. Unstable Protein Purification Through the Formation of Stable Complexes
- Author
-
Oyindamola Oladosu, Marc Ruff, Sylvia Eiler, Benoit Maillot, Karine Pradeau Aubreton, Julien Batisse, Nicolas Lévy, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), and Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Protein family ,Chemistry ,medicine.medical_treatment ,Combinatorial chemistry ,Pre-integration complex ,Steroid ,03 medical and health sciences ,030104 developmental biology ,Protein purification ,Protein biosynthesis ,medicine ,Protein complex formation ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Functional studies ,Solubility ,ComputingMilieux_MISCELLANEOUS - Abstract
Purification of proteins containing disordered regions and participating in transient complexes is often challenging because of the small amounts available after purification, their heterogeneity, instability, and/or poor solubility. To circumvent these difficulties, we set up a methodology that enables the production of stable complexes in large amounts for structural and functional studies. In this chapter, we describe the methodology used to establish the best cell culture conditions and buffer compositions to optimize soluble protein production and their stabilization through protein complex formation. Two examples of challenging protein families are described, namely, the human steroid nuclear receptors and the HIV-1 pre-integration complexes.
- Published
- 2018
- Full Text
- View/download PDF
9. Toward High Resolution Structures of the HIV-1 In/LEDGF/DNA Complex
- Author
-
Marc Ruff, Julien Batisse, Nicolas Lévy, Eduardo Bruch, Oyindamola Oladosu, Benoit Maillot, Sylvia Eiler, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), and Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0303 health sciences ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Chemistry ,Biophysics ,Human immunodeficiency virus (HIV) ,High resolution ,medicine.disease_cause ,Virology ,03 medical and health sciences ,0302 clinical medicine ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,medicine ,Dna complex ,030217 neurology & neurosurgery ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology - Abstract
International audience
- Published
- 2018
- Full Text
- View/download PDF
10. Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration
- Author
-
Benoit Ledoussal, Sophie Chasset, Sylvia Eiler, Richard Benarous, Bruno P. Klaholz, Céline Amadori, Marc Ruff, Ali Saïb, Alessia Zamborlini, Danièle Spehner, Igor Orlov, Julien Barbion, François Moreau, Erwann Le Rouzic, Damien Bonnard, Jean-Michel Bruneau, Stéphane Emiliani, Julie Brias, Francis Chevreuil, Université Bordeaux Segalen - Bordeaux 2, Institut Cochin (UMR_S567 / UMR 8104), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Les Laboratoires Biodim-Mutabilis, Biocitech, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Economie de l'Université Paris Nord (CEPN), Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS), Génomes, biologie cellulaire et thérapeutiques (GenCellDi (UMR_S_944)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Collège de France (CdF (institution))-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Collège de France (CdF)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Klaholz, Bruno, and Collège de France (CdF (institution))-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Viral protein ,Pyridines ,Dimer ,[SDV]Life Sciences [q-bio] ,viruses ,Virus Integration ,Allosteric regulation ,HIV Integrase ,Thiophenes ,medicine.disease_cause ,Biochemistry ,Cell Line ,03 medical and health sciences ,chemistry.chemical_compound ,Structure-Activity Relationship ,Allosteric Regulation ,[SDV.BBM] Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Virus maturation ,medicine ,Humans ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,HIV Integrase Inhibitors ,Binding site ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,Viral maturation ,Binding Sites ,biology ,Molecular Structure ,Chemistry ,Virus Assembly ,Molecular Bases of Disease ,Cell Biology ,Integrase ,Cell biology ,[SDV] Life Sciences [q-bio] ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biomolecules [q-bio.BM] ,030104 developmental biology ,Viral replication ,[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology ,biology.protein ,HIV-1 - Abstract
Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, whereas inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Because these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125-IN can be fully dissociated: MUT-A–induced IN multimerization and the formation of eccentric condensates in viral particles, which are responsible for inhibition of virus maturation, were lost, whereas inhibition of the IN-LEDGF/p75 interaction and consequently integration was fully retained. Hence, the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the X-ray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the Ala-125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125-IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation.
- Published
- 2017
- Full Text
- View/download PDF
11. Dynamics of Methylated Cytosine Flipping by UHRF1
- Author
-
Marc Ruff, Benoît Y. Michel, Sylvia Eiler, Florence Granger, Vasyl Kilin, Olivier Mauffret, Nicolas Barthes, Yves Mély, Christian Bronner, Yitzhak Tor, Krishna Gavvala, Alain Burger, Valeriy M. Yashchuk, Dongwon Shin, Marc Mousli, Christian Boudier, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Group of Applied Physics - Biophotonics [Geneva] (GAP-Biophotonics), Group of Applied Physics [Geneva] (GAP), University of Geneva [Switzerland]-University of Geneva [Switzerland], Laboratoire de Bioimagerie et Pathologies (LBP), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut de Recherche pour le Développement (IRD [France-Sud]), Siemens Industry Software SAS [Roanne], Laboratoire de Biophotonique et Pharmacologie - UMR 7213 (LBP), Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan), Lawrence Berkeley National Laboratory [Berkeley] (LBNL), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
DNA Replication ,0301 basic medicine ,Stereochemistry ,Ubiquitin-Protein Ligases ,[SDV]Life Sciences [q-bio] ,Biochemistry ,DNA methyltransferase ,Fluorescence ,Article ,Catalysis ,Nucleobase ,Cytosine ,03 medical and health sciences ,chemistry.chemical_compound ,Colloid and Surface Chemistry ,Genetics ,Humans ,ComputingMilieux_MISCELLANEOUS ,Molecular Structure ,DNA replication ,DNA ,General Chemistry ,DNA Methylation ,Kinetics ,030104 developmental biology ,chemistry ,CpG site ,Chemical Sciences ,DNA methylation ,CCAAT-Enhancer-Binding Proteins ,Thermodynamics ,Nucleoside - Abstract
DNA methylation patterns, which are critical for gene expression, are replicated by DNA methyltransferase 1 (DNMT1) and ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) proteins. This replication is initiated by the recognition of hemimethylated CpG sites and further flipping of methylated cytosines (mC) by the Set and Ring Associated (SRA) domain of UHRF1. Although crystallography has shed light on the mechanism of mC flipping by SRA, tools are required to monitor in real time how SRA reads DNA and flips the modified nucleobase. To accomplish this aim, we have utilized two distinct fluorescent nucleobase surrogates, 2-thienyl-3-hydroxychromone nucleoside (3HCnt) and thienoguanosine (thG), incorporated at different positions into hemimethylated (HM) and nonmethylated (NM) DNA duplexes. Large fluorescence changes were associated with mC flipping in HM duplexes, showing the outstanding sensitivity of both nucleobase surrogates to the small structural changes accompanying base flipping. Importantly, the nucleobase surrogates marginally affected the structure of the duplex and its affinity for SRA at positions where they were responsive to base flipping, illustrating their promise as nonperturbing probes for monitoring such events. Stopped-flow studies using these two distinct tools revealed the fast kinetics of SRA binding and sliding to NM duplexes, consistent with its reader role. In contrast, the kinetics of mC flipping was found to be much slower in HM duplexes, substantially increasing the lifetime of CpG-bound UHRF1, and thus the probability of recruiting DNMT1 to faithfully duplicate the DNA methylation profile. The fluorescence-based approach using these two different fluorescent nucleoside surrogates advances the mechanistic understanding of the UHRF1/DNMT1 tandem and the development of assays for the identification of base flipping inhibitors.
- Published
- 2017
- Full Text
- View/download PDF
12. The HIV-1 Pre-Integration Complexes: Structures, Functions and Dynamics
- Author
-
Marc Ruff, Oyindamola Oladosu, Karine Pradeau-Aubreton, Julien Batisse, Nicolas Lévy, Sylvia Eiler, Benoit Maillot, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Batisse, Julien
- Subjects
biology ,[SDV]Life Sciences [q-bio] ,Biophysics ,Molecular biology ,Reverse transcriptase ,Cell biology ,Integrase ,Chromatin ,[SDV] Life Sciences [q-bio] ,chemistry.chemical_compound ,Viral replication ,chemistry ,Acetylation ,biology.protein ,Phosphorylation ,Nuclear transport ,ComputingMilieux_MISCELLANEOUS ,DNA - Abstract
After retroviral infection of a target cell, during the early phase of replication, the HIV-1 genomic viral RNA is reverse transcribed by the viral reverse transcriptase to generate the double-stranded viral DNA that interact with viral and cellular proteins to form the pre-integration complex (PIC). Viral integrase (IN) is a key component of the PIC and is involved in several steps of replication notably in reverse transcription, nuclear import, chromatin targeting and integration. Viral components such as IN cannot perform these functions on their own and need to recruit host cell proteins to efficiently carry out the different processes. IN is a flexible protein, property allowing its interaction with multiple partners and enabling its multiple functions in viral replication. The molecular mechanisms and dynamics of these processes remain largely unknown. Purification of proteins that participate in these large transient complexes is impeded by low amounts, heterogeneity, instability and poor solubility. To circumvent these difficulties we develop methodologies that enable the production of stable complexes for structural and functional studies [1] as well as system for the production of multi-protein complexes from mammalian cells enabling assembly of entire complexes within cells. Using these strategies we reconstruct in vitro stable and soluble complexes around IN. We use cryo-EM combined with X-ray crystallography to solve structures of the IN/LEDGF/DNA [2] and IN/LEDGF/INI1/DNA [3] complexes. Other IN complexes involved in the PIC nuclear translocation and integration as well as IN post-translational modifications (phosphorylation and acetylation) have been characterized and are under study.[1] Levy et al. (2016) Nature comm. 7: 10932[2] Michel et al. (2009) EMBO J., 28, 980-991[3] Maillot et al. (2013) PLoS ONE 8(4): e60734
- Published
- 2017
- Full Text
- View/download PDF
13. Overexpression, Purification, and Crystal Structure of Native ERα LBD
- Author
-
Marc Ruff, Sylvia Eiler, Dino Moras, Sylvie Duclaud, and Monique Gangloff
- Subjects
Models, Molecular ,Protein Folding ,Recombinant Fusion Proteins ,medicine.medical_treatment ,Crystal structure ,Crystallography, X-Ray ,Ligands ,DNA-binding protein ,Protein Structure, Secondary ,Steroid ,medicine ,Humans ,Computer Simulation ,Denaturation (biochemistry) ,Cloning, Molecular ,Chemistry ,Estrogen Receptor alpha ,Peptide Fragments ,Protein Structure, Tertiary ,Folding (chemistry) ,Receptors, Estrogen ,Nuclear receptor ,Biochemistry ,Crystallization ,Dimerization ,Estrogen receptor alpha ,Biotechnology ,Cysteine - Abstract
Several crystal structures of human estrogen receptor alpha ligand-binding domain (hERalpha LBD) complexed with agonist or antagonist molecules have previously been solved. The proteins had been modified in cysteine residues (carboxymethylation) or renatured in urea to circumvent aggregation and denaturation problems. In this work, high-level protein expression and purification together with crystallization screening procedure yielded high amounts of soluble protein without renaturation or modifications steps. The native protein crystallizes in the space group P3(2) 21 with three molecules in the asymmetric unit. The overall structure is very similar to that previously reported for the hERalpha LBD with cysteine carboxymethylated residues thus validating the modification approach. The present strategy can be adapted to other cases where the solubility and the proper folding is a difficulty.
- Published
- 2001
- Full Text
- View/download PDF
14. An intermediate step in the recognition of tRNA Asp by aspartyl-tRNA synthetase 1 1Edited by J. Doudna
- Author
-
Sylvia Eiler, Arnaud Poterszman, Jean-Claude Thierry, G. Webster, C. Briand, Dino Moras, Peney, Maité, IGBMC- Biologie structurale intégrative, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), and Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
chemistry.chemical_classification ,[SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,[SDV.BBM.BS] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Structural Biology [q-bio.BM] ,Thermophile ,Active site ,Biology ,Thermus thermophilus ,medicine.disease_cause ,biology.organism_classification ,Acceptor ,TRNA binding ,enzymes and coenzymes (carbohydrates) ,Crystallography ,Enzyme ,chemistry ,Structural Biology ,Transfer RNA ,medicine ,biology.protein ,bacteria ,Molecular Biology ,Escherichia coli ,ComputingMilieux_MISCELLANEOUS - Abstract
The crystal structures of aspartyl-tRNA synthetase (AspRS) from Thermus thermophilus, a prokaryotic class IIb enzyme, complexed with tRNAAsp from either T. thermophilus or Escherichia coli reveal a potential intermediate of the recognition process. The tRNA is positioned on the enzyme such that it cannot be aminoacylated but adopts an overall conformation similar to that observed in active complexes. While the anticodon loop binds to the N-terminal domain of the enzyme in a manner similar to that of the related active complexes, its aminoacyl acceptor arm remains at the entrance of the active site, stabilized in its intermediate conformational state by non-specific interactions with the insertion and catalytic domains. The thermophilic nature of the enzyme, which manifests itself in a very low kinetic efficiency at 17 °C, the temperature at which the crystals were grown, is in agreement with the relative stability of this non-productive conformational state. Based on these data, a pathway for tRNA binding and recognition is proposed.
- Published
- 2000
- Full Text
- View/download PDF
15. Synthesis of aspartyl-tRNAAsp in Escherichia coli—a snapshot of the second step
- Author
-
Luc Moulinier, Jean-Claude Thierry, Dino Moras, Sylvia Eiler, and Anne-Catherine Dock-Bregeon
- Subjects
Models, Molecular ,Stereochemistry ,Aspartate-tRNA Ligase ,Molecular Sequence Data ,Aspartate—tRNA ligase ,Wobble base pair ,RNA, Transfer, Amino Acyl ,Crystallography, X-Ray ,Protein Structure, Secondary ,General Biochemistry, Genetics and Molecular Biology ,Serine ,Aspartic acid ,Anticodon ,Escherichia coli ,Binding site ,Molecular Biology ,chemistry.chemical_classification ,RNA, Transfer, Asp ,Binding Sites ,Base Sequence ,General Immunology and Microbiology ,biology ,General Neuroscience ,Active site ,Hydrogen Bonding ,Amino acid ,RNA, Bacterial ,chemistry ,Biochemistry ,Transfer RNA ,biology.protein ,Nucleic Acid Conformation ,Research Article - Abstract
The 2.4 A crystal structure of the Escherichia coli aspartyl-tRNA synthetase (AspRS)-tRNA(Asp)-aspartyl-adenylate complex shows the two substrates poised for the transfer of the aspartic acid moiety from the adenylate to the 3'-hydroxyl of the terminal adenosine of the tRNA. A general molecular mechanism is proposed for the second step of the aspartylation reaction that accounts for the observed conformational changes, notably in the active site pocket. The stabilization of the transition state is mediated essentially by two amino acids: the class II invariant arginine of motif 2 and the eubacterial-specific Gln231, which in eukaryotes and archaea is replaced by a structurally non-homologous serine. Two archetypal RNA-protein modes of interactions are observed: the anticodon stem-loop, including the wobble base Q, binds to the N-terminal beta-barrel domain through direct protein-RNA interactions, while the binding of the acceptor stem involves both direct and water-mediated hydrogen bonds in an original recognition scheme.
- Published
- 1999
- Full Text
- View/download PDF
16. Structural and functional studies of the HIV-1 pre-integration complex
- Author
-
Marc Ruff, Yves Mély, Patrick Schultz, Vincent Parissi, Corinne Crucifix, Sylvia Eiler, Robert Drillien, Nicolas Lévy, Aurélie Schaetzel, Stéphane Emiliani, Karine Pradeau-Aubreton, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Microbiologie cellulaire et moléculaire et pathogénicité (MCMP), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Institut Cochin (UMR_S567 / UMR 8104), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biophotonique et Pharmacologie - UMR 7213 (LBP), Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), BMC, Ed., Microbiologie Fondamentale et Pathogénicité (MFP), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire ( IGBMC ), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Microbiologie cellulaire et moléculaire et pathogénicité ( MCMP ), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique ( CNRS ), Institut Cochin ( UMR_S567 / UMR 8104 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biophotonique et Pharmacologie - UMR 7213 ( LBP ), Centre National de la Recherche Scientifique ( CNRS ) -Réseau nanophotonique et optique, and Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Computational biology ,Pre-integration complex ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Retrovirus ,Protein structure ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Virology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,biology ,biology.organism_classification ,Reverse transcriptase ,3. Good health ,Chromatin ,Integrase ,[ SDV.MHEP.MI ] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Infectious Diseases ,chemistry ,030220 oncology & carcinogenesis ,Chaperone (protein) ,Poster Presentation ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,biology.protein ,DNA - Abstract
Background To replicate their genome retroviruses need two key enzymes, the viral reverse transcriptase (RT) and integrase (IN). Soon after viral infection of a target cell, the genomic RNA is reverse transcribed by RT to generate the double-stranded viral DNA that interacts with viral and cellular proteins to form the pre-integration complex (PIC). IN is a key component of the PIC and is involved in several steps of retrovirus replication notably in reverse transcription, nuclear import, chromatin targeting and integration. IN cannot perform these functions on its own and need to recruit host cell proteins to efficiently carry out the different processes. Retroviral INs are proteins showing high inter-domain flexibility which accounts for their ability to interact with multiple partners, which in turn chaperone PIC formation and its multiple functions in integration. We assume that the different functions of the PIC in viral infection reflect the different conformations of their protein components as well as post-translational modifications. Biochemical and structural studies of the PIC have long been hampered due to the dynamics of composition and the intrinsic flexibility its components such as IN. We demonstrated that the low solubility and inter-domain flexibility can be circumvented by forming stable and specific complexes with DNA or protein co-factors and by post-translational modifications.
- Published
- 2013
- Full Text
- View/download PDF
17. Structural and functional role of INI1 and LEDGF in the HIV-1 preintegration complex
- Author
-
Yves Mély, Pascal Didier, Marc Ruff, Florence Granger, Corinne Crucifix, Paul Lesbats, Stéphane Emiliani, Patrick Schultz, Ludovic Richert, Karine Pradeau-Aubreton, Dino Moras, Benoit Maillot, Nicolas Levy, Sylvia Eiler, Alexis Nazabal, Vincent Parissi, Julien Godet, Laboratoire de Mathématiques Nicolas Oresme (LMNO), Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU), Centre d'études et de recherche en informatique et communications (CEDRIC), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Fonctions et dysfonctions épithéliales - UFC (EA 4267) (FDE), Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Laboratoire de Biophotonique et Pharmacologie - UMR 7213 (LBP), Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA)), European Commission, European Commission [Brussels], Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Microbiologie cellulaire et moléculaire et pathogénicité (MCMP), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques Nicolas Oresme ( LMNO ), Université de Caen Normandie ( UNICAEN ), Normandie Université ( NU ) -Normandie Université ( NU ) -Centre National de la Recherche Scientifique ( CNRS ), Centre d'étude et de recherche en informatique et communications ( CEDRIC ), Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise ( ENSIIE ) -Conservatoire National des Arts et Métiers [CNAM] ( CNAM ), Institut de Génétique et de Biologie Moléculaire et Cellulaire ( IGBMC ), Université de Strasbourg ( UNISTRA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Institut de génétique et biologie moléculaire et cellulaire ( IGBMC ), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Fonctions et dysfonctions épithéliales - UFC (EA 4267) ( FDE ), Université de Franche-Comté ( UFC ), Laboratoire de Biophotonique et Pharmacologie - UMR 7213 ( LBP ), Centre National de la Recherche Scientifique ( CNRS ) -Réseau nanophotonique et optique, Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Strasbourg ( UNISTRA ) -Université de Haute-Alsace (UHA) Mulhouse - Colmar ( Université de Haute-Alsace (UHA) ) -Centre National de la Recherche Scientifique ( CNRS ), Institut Cochin ( UM3 (UMR 8104 / U1016) ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Microbiologie cellulaire et moléculaire et pathogénicité ( MCMP ), Université Bordeaux Segalen - Bordeaux 2-Centre National de la Recherche Scientifique ( CNRS ), IGBMC, 1 rue Laurent Fries, European Synchroton Radiation Facility [Grenoble] (ESRF), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS), and Cancer Research UK London Research Institute
- Subjects
Models, Molecular ,Macromolecular Assemblies ,Chromosomal Proteins, Non-Histone ,Protein Conformation ,[SDV]Life Sciences [q-bio] ,Integrase inhibitor ,lcsh:Medicine ,HIV Integrase ,Biochemistry ,Mass Spectrometry ,Computational biology ,chemistry.chemical_compound ,Immunodeficiency Viruses ,[ SDV.MP ] Life Sciences [q-bio]/Microbiology and Parasitology ,Biomacromolecule-Ligand Interactions ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,Recombinant proteins ,0303 health sciences ,Multidisciplinary ,biology ,030302 biochemistry & molecular biology ,SMARCB1 Protein ,3. Good health ,Chromatin ,Integrase ,Cell biology ,Subviral Particles ,Host-Pathogen Interaction ,[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology ,Viral Enzymes ,Macromolecular complex analysis ,Binding domain ,Research Article ,Virus Integration ,Biophysics ,Fluorescence Polarization ,Viral Structure ,Microbiology ,Viral Preintegration Complex ,03 medical and health sciences ,Virology ,DNA-binding proteins ,Nucleosome ,Humans ,Binding site ,Biology ,030304 developmental biology ,Adaptor Proteins, Signal Transducing ,Cryoelectron Microscopy ,lcsh:R ,Proteins ,Protein interactions ,DNA structure ,Molecular biology ,Viral Replication ,Macromolecular structure analysis ,Spectrometry, Fluorescence ,chemistry ,Multiprotein Complexes ,biology.protein ,HIV-1 ,Protein structure ,lcsh:Q ,DNA ,Transcription Factors - Abstract
International audience; Integration of the HIV-1 cDNA into the human genome is catalyzed by the viral integrase (IN) protein. Several studies have shown the importance of cellular cofactors that interact with integrase and affect viral integration and infectivity. In this study, we produced a stable complex between HIV-1 integrase, viral U5 DNA, the cellular cofactor LEDGF/p75 and the integrase binding domain of INI1 (INI1-IBD), a subunit of the SWI/SNF chromatin remodeling factor. The stoichiometry of the IN/LEDGF/INI1-IBD/DNA complex components was found to be 4/2/2/2 by mass spectrometry and Fluorescence Correlation Spectroscopy. Functional assays showed that INI1-IBD inhibits the 3' processing reaction but does not interfere with specific viral DNA binding. Integration assays demonstrate that INI1-IBD decreases the amount of integration events but inhibits by-product formation such as donor/donor or linear full site integration molecules. Cryo-electron microscopy locates INI1-IBD within the cellular DNA binding site of the IN/LEDGF complex, constraining the highly flexible integrase in a stable conformation. Taken together, our results suggest that INI1 could stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration. Moreover, our results provide the basis for a novel type of integrase inhibitor (conformational inhibitor) representing a potential new strategy for use in human therapy.
- Published
- 2012
- Full Text
- View/download PDF
18. Structural basis for a molecular allosteric control mechanism of cofactor binding to nuclear receptors
- Author
-
Natacha Rochel, Vincent Cura, Carole Peluso-Iltis, Sylvia Eiler, Marc Ruff, Judit Osz, Yann Brelivet, William Bourguet, and Dino Moras
- Subjects
Models, Molecular ,Receptors, Retinoic Acid ,Allosteric regulation ,Biophysics ,Molecular Conformation ,Estrogen receptor ,Plasma protein binding ,Biology ,Crystallography, X-Ray ,Ligands ,Models, Biological ,Nuclear Receptor Coactivator 1 ,Coactivator ,Humans ,Cell Nucleus ,Cofactor binding ,Multidisciplinary ,Cooperative binding ,Nuclear receptor coactivator 1 ,Kinetics ,Nuclear receptor ,Biochemistry ,PNAS Plus ,Receptors, Calcitriol ,Peptides ,Dimerization ,Allosteric Site ,Protein Binding - Abstract
Transcription regulation by steroid hormones, vitamin derivatives, and metabolites is mediated by nuclear receptors (NRs), which play an important role in ligand-dependent gene expression and human health. NRs function as homodimers or heterodimers and are involved in a combinatorial, coordinated and sequentially orchestrated exchange between coregulators (corepressors, coactivators). The architecture of DNA-bound functional dimers positions the coregulators proteins. We previously demonstrated that retinoic acid (RAR-RXR) and vitamin D3 receptors (VDR-RXR) heterodimers recruit only one coactivator molecule asymmetrically without steric hindrance for the binding of a second cofactor. We now address the problem of homodimers for which the presence of two identical targets enhances the functional importance of the mode of binding. Using structural and biophysical methods and RAR as a model, we could dissect the molecular mechanism of coactivator recruitment to homodimers. Our study reveals an allosteric mechanism whereby binding of a coactivator promotes formation of nonsymmetrical RAR homodimers with a 2∶1 stoichiometry. Ligand conformation and the cofactor binding site of the unbound receptor are affected through the dimer interface. A similar control mechanism is observed with estrogen receptor (ER) thus validating the negative cooperativity model for an established functional homodimer. Correlation with published data on other NRs confirms the general character of this regulatory pathway.
- Published
- 2012
19. Structural and Functional Role of INI1, a Cellular Cofactor of HIV-1 integrase in the Early Step of HIV Infection
- Author
-
Dino Moras, Benoit Maillot, Marc Ruff, Yves Mély, Nicolas Lévy, Sylvia Eiler, Karine Pradeau, Corinne Crucifix, and Patrick Schultz
- Subjects
chemistry.chemical_classification ,Biophysics ,Biology ,Molecular biology ,Integrase ,Cell biology ,chemistry.chemical_compound ,chemistry ,Complementary DNA ,biology.protein ,Nucleotide ,Human genome ,DNA Integration ,Ternary complex ,DNA ,Binding domain - Abstract
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the human genome is catalyzed by the viral integrase protein (IN) that requires cellular cofactors for viral infectivity. IN catalyzes a two step reaction, first the 3’ processing removes two nucleotides on the 3’ end of the viral DNA and second the strand transfer reaction performs the integration. A cryo-EM structure at 14 A resolution of the HIV-1 integrase in complex with the lens epithelium-derived growth factor (LEDGF) has been solved in presence and absence of DNA (1). Recently we solve a cryo-EM structure of the ternary complex of HIV-1 Integrase, LEDGF and the integrase binding domain of the integrase interactor 1 protein (INI1) in absence (16 A) and presence (18 A) of DNA. In vitro functional and binding assays using fluorescence anisotropy have been performed showing the effect of INI1 on DNA binding and on the first catalytic activity of integrase, the 3’processing. We show that INI1 decreases the affinity of viral DNA for the IN/LEDGF complex by a factor of 2 and inhibits completely the 3’processing reaction. The structure shows that INI1 prevent the viral DNA to access the catalytic site of integrase. The functional role of INI1 could be to prevent the auto integration of the viral DNA. Theses structures could led the basis for the design of 3’processing inhibitors.(1) Michel, F., Crucifix, C., Granger, F., Eiler, S., Mouscadet, J.F., Korolev, S., Agapkina, J., Ziganshin, R., Gottikh , M., Nazabal, A., Emiliani, S., Benarous, R., Moras, D., Schultz, P. and Ruff, M. (2009). Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J., 28, 980-991.
- Published
- 2011
- Full Text
- View/download PDF
20. Structural basis for HIV-1 DNA integration in the human genome
- Author
-
Florence Granger, Richard Benarous, Jean-François Mouscadet, Marina Gottikh, Patrick Schultz, Marc Ruff, Stéphane Emiliani, Dino Moras, Fabrice Michel, Alexis Nazabal, Sylvia Eiler, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Belozersky Institute of Physico-Chemical Biology, Moscow State University, CovalX, Institut Cochin (UMR_S567 / UMR 8104), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CellVir SAS, Hybrigenics [Paris], Hybrigenics, BMC, Ed., Université Louis Pasteur - Strasbourg I - Institut National de la Santé et de la Recherche Médicale (INSERM) - Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Cachan (ENS Cachan) - Centre National de la Recherche Scientifique (CNRS), and Université Paris Descartes - Paris 5 (UPD5) - Institut National de la Santé et de la Recherche Médicale (INSERM) - Centre National de la Recherche Scientifique (CNRS)
- Subjects
lcsh:Immunologic diseases. Allergy ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Protein structure ,Tetramer ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Virology ,Complementary DNA ,DNA Integration ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,Genetics ,0303 health sciences ,biology ,Wild type ,3. Good health ,Cell biology ,Integrase ,Infectious Diseases ,chemistry ,030220 oncology & carcinogenesis ,Poster Presentation ,biology.protein ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Human genome ,ComputingMethodologies_GENERAL ,lcsh:RC581-607 ,DNA - Abstract
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the human genome is catalyzed by the viral integrase protein that requires the lens epithelium-derived growth factor (LEDGF), a cellular transcriptional coactivator. In the presence of LEDGF, integrase forms a stable complex in vitro and importantly becomes soluble by contrast with integrase alone which aggregates and precipitates. Using cryo-electron microscopy (EM) and single-particle reconstruction, we obtained three-dimensional structures of the wild type full length integrase-LEDGF complex with and without DNA [1]. The stoichiometry of the complex was found to be (integrase)4-(LEDGF)2 by mass spectrometry analysis and existing atomic structures were unambiguous positioned in the EM map. In vitro functional assays reveal that LEDGF increases integrase activity likely in maintaining a stable and functional integrase structure. DNA-Protein cross-linking experiments show specific interaction between viral DNA and the C-terminal domain of integrase. Upon DNA binding, IN undergoes large conformational changes. Cryo-EM structure underlines the path of viral and target DNA and a model for DNA integration in human DNA is proposed (see fig. fig.1,1, overleaf). Figure 1 Proposed mechanism for thei ntegration of viral cDNA into the host genome: The LEDGF envelope is represented in blue; the integrase tetramer is shown as atomic structures. The viral DNA is in orange and the target DNA in red. On target DNA binding, there ...
- Published
- 2009
- Full Text
- View/download PDF
21. Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor
- Author
-
Richard Benarous, Patrick Schultz, Rustam H. Ziganshin, Marc Ruff, Jean-François Mouscadet, S. Korolev, Dino Moras, Julia Agapkina, Stéphane Emiliani, Florence Granger, Corinne Crucifix, Marina Gottikh, Sylvia Eiler, Alexis Nazabal, Fabrice Michel, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Cachan (ENS Cachan), Belozersky Institute of Physico-Chemical Biology, Moscow State University, Department of Analytical Chemistry, Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institut Cochin (UMR_S567 / UMR 8104), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), CellVir, Peney, Maité, Institut de Génétique et de Biologie Moléculaire et Cellulaire ( IGBMC ), Université de Strasbourg ( UNISTRA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), École normale supérieure - Cachan ( ENS Cachan ), Eidgenössische Technische Hochschule [Zürich] ( ETH Zürich ), Institut Cochin ( UMR_S567 / UMR 8104 ), and Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Models, Molecular ,Protein Conformation ,MESH : Virus Integration ,HIV Integrase ,Virus Replication ,Mass Spectrometry ,chemistry.chemical_compound ,Protein structure ,MESH: Protein Conformation ,[ SDV.IMM ] Life Sciences [q-bio]/Immunology ,MESH : DNA, Viral ,MESH : Protein Conformation ,0303 health sciences ,biology ,General Neuroscience ,030302 biochemistry & molecular biology ,3. Good health ,Integrase ,MESH : Virus Replication ,Biochemistry ,Intercellular Signaling Peptides and Proteins ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,MESH: Cryoelectron Microscopy ,MESH: Models, Molecular ,MESH: Virus Integration ,MESH : Genome, Human ,[SDV.IMM] Life Sciences [q-bio]/Immunology ,MESH : Models, Molecular ,Virus Integration ,Article ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,MESH : Mass Spectrometry ,Complementary DNA ,Humans ,DNA Integration ,MESH: Intercellular Signaling Peptides and Proteins ,Molecular Biology ,MESH : Intercellular Signaling Peptides and Proteins ,MESH: Genome, Human ,030304 developmental biology ,MESH: Mass Spectrometry ,MESH: Humans ,General Immunology and Microbiology ,Genome, Human ,MESH : Humans ,Cryoelectron Microscopy ,MESH: Virus Replication ,MESH : Cryoelectron Microscopy ,Molecular biology ,MESH: DNA, Viral ,Viral replication ,chemistry ,DNA, Viral ,biology.protein ,Human genome ,MESH: HIV Integrase ,MESH : HIV Integrase ,DNA - Abstract
International audience; Integration of the human immunodeficiency virus (HIV-1) cDNA into the human genome is catalysed by integrase. Several studies have shown the importance of the interaction of cellular cofactors with integrase for viral integration and infectivity. In this study, we produced a stable and functional complex between the wild-type full-length integrase (IN) and the cellular cofactor LEDGF/p75 that shows enhanced in vitro integration activity compared with the integrase alone. Mass spectrometry analysis and the fitting of known atomic structures in cryo negatively stain electron microscopy (EM) maps revealed that the functional unit comprises two asymmetric integrase dimers and two LEDGF/p75 molecules. In the presence of DNA, EM revealed the DNA-binding sites and indicated that, in each asymmetric dimer, one integrase molecule performs the catalytic reaction, whereas the other one positions the viral DNA in the active site of the opposite dimer. The positions of the target and viral DNAs for the 3' processing and integration reaction shed light on the integration mechanism, a process with wide implications for the understanding of viral-induced pathologies.
- Published
- 2009
- Full Text
- View/download PDF
22. Monitoring ligand modulation of protein-protein interactions by mass spectrometry: estrogen receptor alpha-SRC1
- Author
-
Renato Zenobi, Sylvia Eiler, Alexis Nazabal, Marc Ruff, Ryan J. Wenzel, Dino Moras, Cédric Bovet, Florence Granger, Department of Analytical Chemistry, Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Peney, Maité
- Subjects
MESH: Pharmacology ,MESH: Protein Structure, Quaternary ,Fluorescence spectrometry ,Peptide ,MESH: Amino Acid Sequence ,Endocrine Disruptors ,Mass spectrometry ,Ligands ,01 natural sciences ,Mass Spectrometry ,Analytical Chemistry ,03 medical and health sciences ,MESH: Protein Structure, Tertiary ,Coactivator ,MESH: Ligands ,MESH: Protein Binding ,Humans ,Amino Acid Sequence ,Protein Structure, Quaternary ,MESH: Estrogen Receptor alpha ,030304 developmental biology ,chemistry.chemical_classification ,MESH: Mass Spectrometry ,Pharmacology ,0303 health sciences ,MESH: Humans ,[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,MESH: Peptides ,Ligand binding assay ,010401 analytical chemistry ,Estrogen Receptor alpha ,[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM] ,0104 chemical sciences ,MESH: Endocrine Disruptors ,Protein Structure, Tertiary ,Nuclear receptor coactivator 1 ,Matrix-assisted laser desorption/ionization ,Biochemistry ,chemistry ,MESH: Dimerization ,Peptides ,Estrogen receptor alpha ,Dimerization ,Protein Binding - Abstract
International audience; Many drugs and chemicals exert their biological effect by modulating protein-protein interactions. In vitro approaches to characterize these mechanisms are often based on indirect measurements (e.g., fluorescence). Here, we used mass spectrometry (MS) to directly monitor the effect of small-molecule ligands on the binding of a coactivator peptide (SRC1) by the human estrogen receptor alpha ligand binding domain (hERalpha LBD). Nanoelectrospray mass spectrometry (nanoESI-MS) and high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking were employed to follow these processes. The chemical cross-linking protocol used prior to high-mass MALDI analysis allows detection of intact noncovalent complexes. The binding of intact hERalpha LBD homodimer with two coactivator peptides was detected with nanoESI-MS and high-mass MALDI-MS only in the presence of an agonist ligand. Furthermore, high-mass MALDI-MS revealed an increase of the homodimer abundance after incubating the receptor with a ligand, independent of the ligand character (i.e., agonist, antagonist). The binding characteristics of the compounds tested by MS correlate very well with their biological activity reported by cell-based assays. High-mass MALDI appears to be an efficient and simple tool for directly monitoring ligand regulation mechanisms involved in protein-protein interactions. Furthermore, the combination of both MS methods allows identifying and characterizing endocrine-disrupting compounds or new drug compounds in an efficient way.
- Published
- 2008
- Full Text
- View/download PDF
23. Towards high-throughput identification of endocrine disrupting compounds with mass spectrometry
- Author
-
Renato Zenobi, Sylvia Eiler, Cédric Bovet, Benoit Plet, Marc Ruff, Alexis Nazabal, Dino Moras, Andreas Panagiotidis, Florence Granger, Ryan J. Wenzel, Department of Analytical Chemistry, Laboratory of Organic Chemistry, Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institute for Molecular Systems Biology [ETH Zurich] (IMSB), Department of Biology [ETH Zürich] (D-BIOL), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich)- Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), and Peney, Maité
- Subjects
Estrogen receptor ,Endocrine Disruptors ,Toxicology ,Mass spectrometry ,Ligands ,01 natural sciences ,03 medical and health sciences ,chemistry.chemical_compound ,Endocrine system ,Humans ,Ionization mass spectrometry ,Receptor ,030304 developmental biology ,0303 health sciences ,Chromatography ,Binding Sites ,010401 analytical chemistry ,Estrogen Receptor alpha ,General Medicine ,Ligand binding domain ,0104 chemical sciences ,Biochemistry ,chemistry ,Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ,Quercetin ,Dimerization - Abstract
International audience; High-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking has the ability to monitor the ligand-dependent dimerization of the human estrogen receptor alpha ligand binding domain (hERalpha LBD) in solution. Because only ER ligands enhance the homodimer abundance, we evaluated the ability of this label-free approach for identifying endocrine disrupting compounds (EDCs) in a high-throughput manner. This was achieved by combining an automated liquid handler with an automated MS acquisition procedure, which allowed a five-fold gain in operator time compared to a fully manual approach. To detect ligand binding with enough confidence, the receptor has to be incubated with at least a 10muM concentration of the test compound. Based on the increase of the measured homodimer intensity, eight compounds with a relative binding affinity (RBA, relative to the natural hormone estradiol) >7% were identified as ER ligands among the 28 chemicals tested. Two other compounds, quercetin and 4-tert-amylphenol, were also identified as ER ligands, although their RBAs have been reported to be only 0.01% and 0.000055%, respectively. This suggests that these two ligands have a higher affinity for hERalpha LBD than reported in the literature. The high-mass MALDI approach thus allows identifying high affinity EDCs in an efficient way.
- Published
- 2008
- Full Text
- View/download PDF
24. Cleaved thioredoxin fusion protein enables the crystallization of poorly soluble ERalpha in complex with synthetic ligands
- Author
-
Marc Ruff, Dino Moras, Vincent Cura, Sylvia Eiler, Monique Gangloff, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Dpt Biochemistry, and University of Cambridge [UK] (CAM)
- Subjects
Recombinant Fusion Proteins ,Biophysics ,Peptide ,medicine.disease_cause ,Cleavage (embryo) ,Crystallography, X-Ray ,Ligands ,Biochemistry ,Polymorphism, Single Nucleotide ,law.invention ,03 medical and health sciences ,Thioredoxins ,Structural Biology ,law ,Genetics ,medicine ,Humans ,Binding site ,Crystallization ,Receptor ,Escherichia coli ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,Binding Sites ,030302 biochemistry & molecular biology ,Estrogen Receptor alpha ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Condensed Matter Physics ,Fusion protein ,chemistry ,Solubility ,Crystallization Communications ,Thioredoxin ,hormones, hormone substitutes, and hormone antagonists - Abstract
The ligand-binding domain (LBD) of human oestrogen receptor alpha was produced in Escherichia coli as a cleavable thioredoxin (Trx) fusion in order to improve solubility. Crystallization trials with either cleaved and purified LBD or with the purified fusion protein both failed to produce crystals. In another attempt, Trx was not removed from the LBD after endoproteolytic cleavage and its presence promoted nucleation and subsequent crystal growth, which allowed the structure determination of two different LBD-ligand-coactivator peptide complexes at 2.3 A resolution. This technique is likely to be applicable to other low-solubility proteins.
- Published
- 2008
- Full Text
- View/download PDF
25. Estrogen receptor-ligand complexes measured by chip-based nanoelectrospray mass spectrometry: an approach for the screening of endocrine disruptors
- Author
-
Renato Zenobi, Dino Moras, Marc Ruff, Bertran Gerrits, Cédric Bovet, Sylvia Eiler, Florence Granger, Arno Wortmann, Institut de génétique et biologie moléculaire et cellulaire (IGBMC), Université Louis Pasteur - Strasbourg I-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), University of Zurich, and Zenobi, R
- Subjects
Bisphenol A ,Spectrometry, Mass, Electrospray Ionization ,1303 Biochemistry ,Electrospray ionization ,Estrogen receptor ,610 Medicine & health ,10071 Functional Genomics Center Zurich ,Plasma protein binding ,Endocrine Disruptors ,Ligands ,01 natural sciences ,Biochemistry ,MESH: Spectrometry, Mass, Electrospray Ionization ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,1312 Molecular Biology ,MESH: Ligands ,Humans ,Nanotechnology ,MESH: Protein Binding ,Molecular Biology ,MESH: Estrogen Receptor alpha ,MESH: Nanotechnology ,030304 developmental biology ,0303 health sciences ,Chromatography ,MESH: Humans ,Chemistry ,Ligand binding assay ,010401 analytical chemistry ,Estrogen Receptor alpha ,[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Molecular biology ,Ligand (biochemistry) ,0104 chemical sciences ,MESH: Endocrine Disruptors ,Nuclear receptor ,Biophysics ,570 Life sciences ,biology ,U7 Systems Biology / Functional Genomics ,Estrogen receptor alpha ,hormones, hormone substitutes, and hormone antagonists ,Protein Binding - Abstract
In the present report, a method based on chip-based nanoelectrospray mass spectrometry (nanoESI-MS) is described to detect noncovalent ligand binding to the human estrogen receptor alpha ligand-binding domain (hERalpha LBD). This system represents an important environmental interest, because a wide variety of molecules, known as endocrine disruptors, can bind to the estrogen receptor (ER) and induce adverse health effects in wildlife and humans. Using proper experimental conditions, the nanoESI-MS approach allowed for the detection of specific ligand interactions with hERalpha LBD. The relative gas-phase stability of selected hERalpha LBD-ligand complexes did not mirror the binding affinity in solution, a result that demonstrates the prominent role of hydrophobic contacts for stabilizing ER-ligand complexes in solution. The best approach to evaluate relative solution-binding affinity by nanoESI-MS was to perform competitive binding experiments with 17beta-estradiol (E2) used as a reference ligand. Among the ligands tested, the relative binding affinity for hERalpha LBD measured by nanoESI-MS was 4-hydroxtamoxifen approximately diethylstilbestrol > E2 >> genistein >> bisphenol A, consistent with the order of the binding affinities in solution. The limited reproducibility of the bound to free protein ratio measured by nanoESI-MS for this system only allowed the binding constants (K(d)) to be estimated (low nanomolar range for E2). The specificity of nanoESI-MS combined with its speed (1 min/ligand), low sample consumption (90 pmol protein/ligand), and its sensitivity for ligand (30 ng/mL) demonstrates that this technique is a promising method for screening suspected endocrine disrupting compounds and to qualitatively evaluate their binding affinity.
- Published
- 2007
- Full Text
- View/download PDF
26. Structural and functional studies of HIV-1 pre-integration complexes
- Author
-
Marc Ruff, Patrick Schultz, Corinne Crucifix, Sylvia Eiler, Vincent Parissi, Robert Drillien, Yves Mély, Stéphane Emiliani, Aurélie Schaetzel, Nicolas Lévy, and Karine Pradeau
- Subjects
Functional analysis ,biology ,biology.organism_classification ,Bioinformatics ,Chromatin remodeling ,Integrase ,Turn (biochemistry) ,chemistry.chemical_compound ,Infectious Diseases ,Retrovirus ,chemistry ,Biophysics ,biology.protein ,Nucleosome ,Oral Presentation ,Function (biology) ,DNA - Abstract
HIV-1 integrase (IN) is a key component of the pre-integration complex (PIC) and is involved in several steps of retrovirus replication. IN cannot perform these functions on its own and need to recruit host cell proteins to efficiently carry out the different processes. Retroviral INs are flexible proteins showing high inter-domain flexibility. This intrinsic flexibility accounts for IN ability to interact with multiple partners, which in turn chaperones PIC formation and its multiple functions. Biochemical and structural studies have long been hampered due to the PIC dynamics and intrinsic flexibility. We demonstrated that the low solubility and inter-domain flexibility can be circumvented by forming stable and specific complexes with DNA or protein co-factors and by post-translational modifications. Hundreds of milligrams of stable complexes are needed for in vitro functional and structural studies. For this, we develop new technologies for high molecular weight transient complexes production as well as for functional and structural analysis (mammalian cell system for protein production, in vitro functional analysis and complexes characterization). Structures have been solved by Cryo-EM and X-ray crystallography. We reconstruct in vitro stable and soluble complexes around IN. We solved the cryo-EM structures of the IN/LEDGF/DNA (Michel et al. 2009) and IN/LEDGF/INI1/DNA (Maillot et al. 2013) complexes. Structures together with functional assays gave important hints on the functional role of LEDGF and INI1. Other sub-complexes of the PIC have been characterized. One of them is the IN/transportin-SR2/VBP1 complex (structure in progress). Our results suggest that the function of INI1 (core protein of the swi/snf chromatin remodeling complex) in HIV-1 replication is to stabilize the PIC in the host cell, by maintaining integrase in a stable constrained conformation which prevents non-specific interactions and auto integration on the route to its integration site within nucleosomes, while LEDGF (a transcriptional co-activator) organizes and stabilizes an active integrase tetramer suitable for specific vDNA integration.
- Published
- 2014
27. The structure of an AspRS–tRNAAsp complex reveals a tRNA-dependent control mechanism
- Author
-
J. Gangloff, G. Eriani, Kay Gabriel, Sylvia Eiler, Jean-Claude Thierry, William H. McClain, Luc Moulinier, Dino Moras, Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN
- Subjects
Models, Molecular ,Macromolecular Substances ,Protein subunit ,Mutant ,Aspartate-tRNA Ligase ,Molecular Sequence Data ,Saccharomyces cerevisiae ,Crystallography, X-Ray ,General Biochemistry, Genetics and Molecular Biology ,Article ,03 medical and health sciences ,Species Specificity ,Escherichia coli ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Binding site ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,chemistry.chemical_classification ,0303 health sciences ,RNA, Transfer, Asp ,Sugar phosphates ,Binding Sites ,General Immunology and Microbiology ,biology ,Base Sequence ,General Neuroscience ,030302 biochemistry & molecular biology ,Active site ,RNA ,Hydrogen Bonding ,Amino acid ,Protein Subunits ,chemistry ,Biochemistry ,Transfer RNA ,biology.protein ,Biophysics ,Cell Division ,Gene Deletion - Abstract
The 2.6 A resolution crystal structure of an inactive complex between yeast tRNA Asp and Escherichia coli aspartyl‐tRNA synthetase reveals the molecular details of a tRNA‐induced mechanism that controls the specificity of the reaction. The dimer is asymmetric, with only one of the two bound tRNAs entering the active site cleft of its subunit. However, the flipping loop, which controls the proper positioning of the amino acid substrate, acts as a lid and prevents the correct positioning of the terminal adenosine. The structure suggests that the acceptor stem regulates the loop movement through sugar phosphate backbone—protein interactions. Solution and cellular studies on mutant tRNAs confirm the crucial role of the tRNA three‐dimensional structure versus a specific recognition of bases in the control mechanism.
- Published
- 2001
- Full Text
- View/download PDF
28. Crystal structure of a mutant hERalpha ligand-binding domain reveals key structural features for the mechanism of partial agonism
- Author
-
Dino Moras, Jean Marie Wurtz, Sylvia Eiler, Marc Ruff, Monique Gangloff, and Sylvie Duclaud
- Subjects
Agonist ,Models, Molecular ,medicine.drug_class ,Stereochemistry ,Protein Conformation ,Mutant ,Crystallography, X-Ray ,Ligands ,Biochemistry ,Partial agonist ,Serine ,medicine ,Humans ,Cloning, Molecular ,Molecular Biology ,Hydrogen bond ,Chemistry ,Wild type ,Estrogen Antagonists ,Estrogen Receptor alpha ,Hydrogen Bonding ,Cell Biology ,Ligand (biochemistry) ,Receptors, Estrogen ,Mutagenesis, Site-Directed ,hormones, hormone substitutes, and hormone antagonists ,Cysteine - Abstract
The crystal structure of a triple cysteine to serine mutant ERα ligand-binding domain (LBD), complexed with estradiol, shows that despite the presence of a tightly bound agonist ligand, the protein exhibits an antagonist-like conformation, similar to that observed in raloxifen and 4-hydroxytamoxifen-bound structures. This mutated receptor binds estradiol with wild type affinity and displays transcriptional activity upon estradiol stimulation, but with limited potency (about 50%). This partial activity is efficiently repressed in antagonist competition assays. The comparison with available LBD structures reveals key features governing the positioning of helix H12 and highlights the importance of cysteine residues in promoting an active conformation. Furthermore the present study reveals a hydrogen bond network connecting ligand binding to protein trans conformation. These observations support a dynamic view of H12 positioning, where the control of the equilibrium between two stable locations determines the partial agonist character of a given ligand.
- Published
- 2001
29. Dual inhibition of HIV-1 replication by integrase-LEDGF allosteric inhibitors is predominant at the post-integration stage
- Author
-
François Moreau, Richard Benarous, Jean-Michel Bruneau, Erwann Le Rouzic, Marc Ruff, Ali Saïb, Julie Brias, Stéphane Emiliani, Frédéric Le Strat, Olivier Delelis, Eric Deprez, Céline Amadori, Roxane Beauvoir, Nicolas Levy, Alessia Zamborlini, Francis Chevreuil, Juliette Nguyen, Sophie Chasset, Sylvia Eiler, Sophie Vomscheid, Benoit Ledoussal, Damien Bonnard, Les Laboratoires Biodim-Mutabilis, Biocitech, Institut de Génétique et de Biologie Moléculaire et Cellulaire ( IGBMC ), Université de Strasbourg ( UNISTRA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), Laboratoire de Biologie et de Pharmacologie Appliquée ( LBPA ), École normale supérieure - Cachan ( ENS Cachan ) -Centre National de la Recherche Scientifique ( CNRS ), Pathologie cellulaire : aspects moléculaires et viraux / Pathologie et Virologie Moléculaire, Université Paris Diderot - Paris 7 ( UPD7 ) -Institut Universitaire d'Hématologie ( IUH ), Université Paris Diderot - Paris 7 ( UPD7 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris]-Centre National de la Recherche Scientifique ( CNRS ), Institut Cochin ( UM3 (UMR 8104 / U1016) ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), EU FP7 provided financial support under the HIVINNOV consortium, grant agreement 305137. Marc Ruff team was supported by grants from the CNRS, the INSERM, SIDACTION, the French National Agency for Research against AIDS (ANRS), the SPINE 2 European Project (FP6 Contract Nu QLG2- CT-2002-00988 and 031220), the French Infrastructure for Integrated Structural Biology (FRISBI, ANR-10-INSB-05-01) and Instruct, part of the European Strategy Forum on Research Infrastructure (ESFRI) supported by national members subscription., Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Institut Universitaire d'Hématologie (IUH), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Centre National de la Recherche Scientifique (CNRS), Institut Cochin (IC UM3 (UMR 8104 / U1016)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and BMC, Ed.
- Subjects
Protein Conformation ,Virus Integration ,Allosteric regulation ,Integrase inhibitor ,HIV Integrase ,Plasma protein binding ,Crystallography, X-Ray ,Virus Replication ,Integrase ,Cell Line ,03 medical and health sciences ,Allosteric inhibition ,[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Virology ,Humans ,HIV Integrase Inhibitors ,LEDGF ,030304 developmental biology ,0303 health sciences ,biology ,Drug discovery ,Research ,030302 biochemistry & molecular biology ,HIV ,Antiretroviral activity ,Molecular biology ,3. Good health ,Chromatin ,Cell biology ,[ SDV.MHEP.MI ] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,Protein-protein interaction inhibitor ,Infectious Diseases ,Viral replication ,[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseases ,HIV-1 ,biology.protein ,Intercellular Signaling Peptides and Proteins ,Co-crystallization ,Protein Binding - Abstract
Background LEDGF/p75 (LEDGF) is the main cellular cofactor of HIV-1 integrase (IN). It acts as a tethering factor for IN, and targets the integration of HIV in actively transcribed gene regions of chromatin. A recently developed class of IN allosteric inhibitors can inhibit the LEDGF-IN interaction. Results We describe a new series of IN-LEDGF allosteric inhibitors, the most active of which is Mut101. We determined the crystal structure of Mut101 in complex with IN and showed that the compound binds to the LEDGF-binding pocket, promoting conformational changes of IN which explain at the atomic level the allosteric effect of the IN/LEDGF interaction inhibitor on IN functions. In vitro, Mut101 inhibited both IN-LEDGF interaction and IN strand transfer activity while enhancing IN-IN interaction. Time of addition experiments indicated that Mut101 behaved as an integration inhibitor. Mut101 was fully active on HIV-1 mutants resistant to INSTIs and other classes of anti-HIV drugs, indicative that this compound has a new mode of action. However, we found that Mut101 also displayed a more potent antiretroviral activity at a post-integration step. Infectivity of viral particles produced in presence of Mut101 was severely decreased. This latter effect also required the binding of the compound to the LEDGF-binding pocket. Conclusion Mut101 has dual anti-HIV-1 activity, at integration and post-integration steps of the viral replication cycle, by binding to a unique target on IN (the LEDGF-binding pocket). The post-integration block of HIV-1 replication in virus-producer cells is the mechanism by which Mut101 is most active as an antiretroviral. To explain this difference between Mut101 antiretroviral activity at integration and post-integration stages, we propose the following model: LEDGF is a nuclear, chromatin-bound protein that is absent in the cytoplasm. Therefore, LEDGF can outcompete compound binding to IN in the nucleus of target cells lowering its antiretroviral activity at integration, but not in the cytoplasm where post-integration production of infectious viral particles takes place.
- Published
- 2013
- Full Text
- View/download PDF
30. The HIV-1 Pre-Integration Complex: Structural and Functional Role of INI1 and LEDGF, Cellular Cofactors of Viral Integrase
- Author
-
Karine Pradeau, Benoit Maillot, Marc Ruff, Patrick Schultz, Dino Moras, Sylvia Eiler, Yves Mély, Corinne Crucifix, and Nicolas Lévy
- Subjects
biology ,Biophysics ,Integrase inhibitor ,Molecular biology ,Pre-integration complex ,Integrase ,Cell biology ,chemistry.chemical_compound ,chemistry ,Viral replication ,biology.protein ,Nucleosome ,Binding site ,DNA ,Binding domain - Abstract
Virally encoded integrase (IN) proteins perform several important steps in the life cycle of retroviruses. During the early events of viral replication the RNA genome is converted into its cDNA copy which upon interaction with cellular and viral proteins generates the pre-integration complex (PIC). IN is a permanent component of the PIC. The Integrase Interactor Protein 1 (INI1) a homolog of yeast SNF5 and the lens epithelial derived growth factor (LEDGF) have been shown to interact with HIV-1 IN. In order to understand the mechanisms of the INI1 - mediated inhibition and/or activation functions in the early stage of HIV-1 infection, we analyzed the structure-function relationships of a quaternary complex comprising the full length wild type HIV-1 IN, the full length wild-type LEDGF, the INI1 IN binding domain (173-290) and viral U5 DNA. The stoichiometry of the components is 4/2/2/2, as shown by mass spectrometry and FCS. We determined for the first time the binding constants of U5 vDNA for IN by fluorescence anisotropy and found that the dissociation constants of IN/LEDGF and IN/LEDGF/INI1 for U5 vDNA remained in the same order of magnitude, while INI1 when bound to the IN/LEDGF complex inhibited the 3’processing reaction. CryoEM and in vitro functional analysis show that INI1, located within the cellular DNA binding site, inhibits the 3’ processing but not specific viral DNA binding. INI1 stabilizes the highly flexible integrase in a nonproductive conformation. Taken together, our data suggest that the role of INI1 could be to stabilize the highly flexible IN protein in a conformation that prevent non-specific interaction and auto integration during nucleosome targeting. Our results provide the basis for a novel type of integrase inhibitors (conformational inhibitors).
- Published
- 2012
- Full Text
- View/download PDF
31. Overproduction and purification of native and queuine-lacking Escherichia coli tRNA(Asp). Role of the wobble base in tRNA(Asp) acylation
- Author
-
Sylvia Eiler, Guy Dirheimer, Franck Martin, Dino Moras, Jean Gangloff, Gilbert Eriani, Architecture et Réactivité de l'ARN (ARN), Institut de biologie moléculaire et cellulaire (IBMC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Louis Pasteur - Strasbourg I
- Subjects
Guanine ,Stereochemistry ,[SDV]Life Sciences [q-bio] ,Aspartate—tRNA ligase ,Aspartate-tRNA Ligase ,Molecular Sequence Data ,Queuosine ,Wobble base pair ,Saccharomyces cerevisiae ,medicine.disease_cause ,Crystallography, X-Ray ,03 medical and health sciences ,chemistry.chemical_compound ,Structure-Activity Relationship ,Structural Biology ,medicine ,Anticodon ,Escherichia coli ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Transfer RNA Aminoacylation ,Cloning, Molecular ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,0303 health sciences ,Base Composition ,RNA, Transfer, Asp ,biology ,Base Sequence ,030302 biochemistry & molecular biology ,Queuine ,Yeast ,chemistry ,Biochemistry ,Transfer RNA ,biology.protein ,Nucleic Acid Conformation - Abstract
Escherichia coli tRNA(Asp) was overproduced in E. coli up to 15-fold from a synthetic tRNA(Asp) gene placed in a plasmid under the dependence of an isopropyl-beta,D-thiogalactopyranoside-inducible promoter. Purification to nearly homogeneity (95%) was achieved after two HPLC DEAE-cellulose columns. E. coli tRNA(Asp)[G34] (having guanine instead of queuine at position 34) was obtained by the same procedure except that it was overproduced in a strain lacking the enzyme responsible for queuine modification. Nucleoside analysis showed that, except for the replacement of Q34 by G34 in mutant-derived tRNA(Asp), the base modification levels of both tRNAs are the same as those in wild-type E. coli tRNA(Asp). Kinetic properties of tRNA(Asp)[Q34] and [G34] with yeast AspRS compared to those in the homologous reactions in yeast and E. coli clearly indicate that the major identity elements are the same in both organisms: the conserved discriminant base and the anticodon triplet. In connection with this, we explored by site-directed mutagenesis the functional role of the interactions which, as revealed by the crystallographic structure, occur between the wobble base of yeast tRNA(Asp) and two residues of yeast AspRS. Their absence strongly affected aspartylation and the kd of tRNA(Asp). Each contact individually restores almost completely the wild-type acylation properties of the enzyme; thus, wobble base recognition in yeast appears to be more protected against mutational events than in E. coli, where only one contact is thought to occur at position 34.
- Published
- 1993
- Full Text
- View/download PDF
32. Structure-Function Analysis of the HIV-1 Integrase in Complex With Two Cellular Proteins: Ledgf and INI1
- Author
-
Corinne Crucifix, Marc Ruff, Dino Moras, Florence Granger, Benoit Maillot, Patrick Schultz, and Sylvia Eiler
- Subjects
biology ,Biophysics ,Molecular biology ,3. Good health ,Integrase ,Cell biology ,Chromatin ,chemistry.chemical_compound ,chemistry ,Complementary DNA ,biology.protein ,Human genome ,DNA Integration ,Ternary complex ,Function (biology) ,DNA - Abstract
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the human genome is catalyzed by the viral integrase protein (IN) that requires cellular cofactors for viral infectivity. Recently, we solved a cryo-EM structure at 14 A resolution of the HIV-1 integrase in complex with the lens epithelium-derived growth factor (LEDGF), a cellular transcriptional coactivator, in presence and absence of DNA (1). This structure revealed the molecular mechanism of DNA integration in the human genome. Another cellular co-factor, the integrase interactor 1 protein (INI1/SNF5) which is a part of the SWI/SNF complex, an ATP dependant chromatin remodeler, has been shown to binds directly to integrase. Its function in the viral DNA integration process is not well characterized, but its presence is critical for viral infectivity. We stably formed, in vitro, a complex comprising IN, LEDGF and a fragment of INI1. In vitro functional assays have been performed and a 15 A resolution cryo-EM structure of the ternary complex has been solved. The structure function analysis and the effect of INI1 on the DNA binding, 3′ processing and integration reaction will be presented.(1) Michel, F., Crucifix, C., Granger, F., Eiler, S., Mouscadet, J.F., Korolev, S., Agapkina, J., Ziganshin, R., Gottikh , M., Nazabal, A., Emiliani, S., Benarous, R., Moras, D., Schultz, P. and Ruff, M. (2009). Structural basis for HIV-1 DNA integration in the human genome, role of the LEDGF/P75 cofactor. EMBO J., 28, 980-991.
- Published
- 2010
- Full Text
- View/download PDF
33. Crystallization of aspartyl-tRNA synthetase-tRNAAsp complex from Escherichia coli and first crystallographic results
- Author
-
Jean Gangloff, Sylvia Eiler, Gilbert Eriani, Franck Martin, Dino Moras, Jean-Claude Thierry, Marcel Boeglin, Architecture et réactivité de l'ARN (ARN), Université Louis Pasteur - Strasbourg I-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Sciences de l'Image, de l'Informatique et de la Télédétection (LSIIT), Centre National de la Recherche Scientifique (CNRS), Institut de génétique et biologie moléculaire et cellulaire (IGBMC), and Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Louis Pasteur - Strasbourg I
- Subjects
Stereochemistry ,[SDV]Life Sciences [q-bio] ,Aspartate-tRNA Ligase ,Crystal structure ,Biology ,medicine.disease_cause ,03 medical and health sciences ,chemistry.chemical_compound ,X-Ray Diffraction ,Structural Biology ,Escherichia coli ,medicine ,Molecule ,[SDV.BBM]Life Sciences [q-bio]/Biochemistry, Molecular Biology ,Molecular Biology ,ComputingMilieux_MISCELLANEOUS ,030304 developmental biology ,chemistry.chemical_classification ,RNA, Transfer, Asp ,0303 health sciences ,Crystallography ,Molecular mass ,030302 biochemistry & molecular biology ,Monomer ,Enzyme ,chemistry ,Transfer RNA ,Orthorhombic crystal system - Abstract
Crystals of the dimeric aspartyl-tRNA synthetase from Escherichia coli (molecular mass 132,000 Da) complexed with its cognate tRNA (molecular mass 25,000 Da) have been grown using ammonium sulfate as precipitant. The crystals belong to the orthorhombic space group C 222 1 with unit cell parameters a = 102·75 A , b = 128·11 A , c = 231·70 A and diffract to 3 A. The asymmetric unit contains one monomer of the aspartyl-tRNA synthetase and one tRNA molecule.
- Published
- 1992
- Full Text
- View/download PDF
34. tRNA recognition by procaryotic aspartyl tRNA-synthetases
- Author
-
A. Poterzmann, L. Moulinier, Sylvia Eiler, J.-C. Thierry, C. Briand, and Dino Moras
- Subjects
Biochemistry ,Structural Biology ,Chemistry ,Transfer RNA - Published
- 1996
- Full Text
- View/download PDF
35. Proceedings of the Frontiers of Retrovirology Conference 2016
- Author
-
Irena Zurnic, Sylvia Hütter, Ute Lehmann, Nicole Stanke, Juliane Reh, Tobias Kern, Fabian Lindel, Gesche Gerresheim, Martin Hamann, Erik Müllers, Paul Lesbats, Peter Cherepanov, Erik Serrao, Alan Engelman, Dirk Lindemann, Claire Da Silva Santos, Kevin Tartour, Andrea Cimarelli, Rya Burdick, Jianbo Chen, Jaya Sastri, Wei-Shau Hu, Vinay Pathak, Oliver T. Keppler, Karine Pradeau, Sylvia Eiler, Nicolas Levy, Sarah Lennon, Sarah Cianferani, Stéphane Emiliani, Marc Ruff, Vincent Parissi, Sylvie Rato, Antonio Rausell, Miguel Munoz, Amalio Telenti, Angela Ciuffi, Alexander Zhyvoloup, Anat Melamed, Ian Anderson, Delphine Planas, Janos Kriston-Vizi, Robin Ketteler, Chen- Hsuin Lee, Andy Merritt, Petronela Ancuta, Charles Bangham, Ariberto Fassati, Anthony Rodari, Benoit Van Driessche, Mathilde Galais, Nadége Delacourt, Sylvain Fauquenoy, Caroline Vanhulle, Anna Kula, Arsène Burny, Olivier Rohr, Carine Van Lint, Thijs van Montfort, Renee van der Sluis, Dave Speijer, Ben Berkhout, Bo Meng, Andrzej Rutkowski, Neil Berry, Lars Dölken, Andrew Lever, Thomas Schuster, Benedikt Asbach, Ralf Wagner, Christine Gross, Veit Wiesmann, Martina Kalmer, Thomas Wittenberg, Jan Gettemans, Andrea K. Thoma-Kress, Minghua Li, Eric O. Freed, Shan-Lu Liu, Janis Müller, Jan Münch, Xaver Sewald, Pradeep Uchil, Mark Ladinsky, Jagadish Beloor, Ruoxi Pi, Christin Herrmann, Nasim Motamedi, Thomas Murooka, Michael Brehm, Dale Greiner, Thorsten Mempel, Pamela Bjorkman, Priti Kumar, Walther Mothes, Simone Joas, Erica Parrish, Clement Wesley Gnanadurai, Edina Lump, Christina M. Stürzel, Nicholas F. Parrish, Ulrike Sauermann, Katharina Töpfer, Tina Schultheiss, Steven Bosinger, Guido Silvestri, Cristian Apetrei, Nicholas Huot, Michaela Müller-Trutwin, Daniel Sauter, Beatrice H. Hahn, Christiane Stahl-Hennig, Frank Kirchhoff, Gerald Schumann, Sabine Jung-Klawitter, Nina V. Fuchs, Kyle R. Upton, Martin Muñoz-Lopez, Ruchi Shukla, Jichang Wang, Marta Garcia-Canadas, Cesar Lopez-Ruiz, Daniel J. Gerhardt, Attila Sebe, Ivana Grabundzija, Patricia Gerdes, Sylvia Merkert, Andres Pulgarin, Anja Bock, Ulrike Held, Anett Witthuhn, Alexandra Haase, Ernst J. Wolvetang, Ulrich Martin, Zoltán Ivics, Zsuzsanna Izsvák, J. Garcia-Perez, Geoffrey J. Faulkner, Tara Hurst, Aris Katzourakis, Gkikas Magiorkinis, Kerstin Schott, Rita Derua, Janna Seifried, Andreas Reuter, Heike Schmitz, Christiane Tondera, Alberto Brandariz-Nuñez, Felipe Diaz-Griffero, Veerle Janssens, Renate König, Hanna-Mari Baldauf, Lena Stegmann, Sarah-Marie Schwarz, Maud Trotard, Margarethe Martin, Gina Lenzi, Manja Burggraf, Xiaoyu Pan, Oliver I. Fregoso, Efrem S. Lim, Libin Abraham, Elina Erikson, Laura Nguyen, Ina Ambiel, Frank Rutsch, Baek Kim, Michael Emerman, Oliver T. Fackler, Sabine Wittmann, Rayk Behrendt, Bianca Volkmann, Kristin Eissmann, Thomas Gramberg, Sebastian Bolduan, Herwig Koppensteiner, Stefanie Regensburg, Ruth Brack-Werner, Rika Draenert, Michael Schindler, Aurélie Ducroux, Shuting Xu, Aparna Ponnurangam, Sergej Franz, Angelina Malassa, Ellen Ewald, Christine Goffinet, Sin-Yee Fung, Ching-Ping Chan, Chun-Kit Yuen, Kin-Hang Kok, Chin-Ping Chan, Dong-Yan Jin, Ulf Dittmer, Dorota Kmiec, Shilpa Iyer, Christina Stürzel, Beatrice Hahn, Yasuo Ariumi, Mariko Yasuda-Inoue, Koudai Kawano, Satoshi Tateishi, Priscilla Turelli, Alex Compton, Nicolas Roy, Françoise Porrot, Anne Billet, Nicoletta Casartelli, Jacob Yount, Chen Liang, Oliver Schwartz, Carsten Magnus, Lucia Reh, Penny Moore, Therese Uhr, Jacqueline Weber, Lynn Morris, Alexandra Trkola, Rashel V. Grindberg, Erika Schlaepfer, Gideon Schreiber, Viviana Simon, Roberto F. Speck, Zeger Debyser, Lenard Vranckx, Jonas Demeulemeester, Suha Saleh, Eric Verdin, Anna Cereseto, Frauke Christ, Rik Gijsbers, Gang Wang, Na Zhao, Atze T. Das, Josef Köstler, Beatriz Perdiguero, Mariano Esteban, Bertram L. Jacobs, David C. Montefiori, Celia C. LaBranche, Nicole L. Yates, Georgia D. Tomaras, Guido Ferrari, Kathryn E. Foulds, Mario Roederer, Gary Landucci, Donald N. Forthal, Michael S. Seaman, Natalie Hawkins, Steven G. Self, Sanjay Phogat, James Tartaglia, Susan W. Barnett, Brian Burke, Anthony D. Cristillo, Song Ding, Jonathan L. Heeney, Giuseppe Pantaleo, Viktoria Stab, Armin Ensser, Bettina Tippler, Dennis Burton, Matthias Tenbusch, Klaus Überla, Galit Alter, Giuseppe Lofano, Anne-Sophie Dugast, Viraj Kulkarni, Todd Suscovich, Tatiana Opazo, Felipe Barraza, Diego Herrera, Andrea Garces, Tomas Schwenke, Diego Tapia, Jorge Cancino, Gloria Arriagada, Christina Haußner, Dominik Damm, Anette Rohrhofer, Barbara Schmidt, Jutta Eichler, Rebecca Midgley, James Wheeldon, Vincent Piguet, Priyanka Khopkar, Megha Rohamare, Smita Kulkarni, Ana Godinho-Santos, Allan Hance, Joao Goncalves, Fabrizio Mammano, Romain Gasser, Meriem Hamoudi, Martina Pellicciotta, Zhicheng Zhou, Clara Visdeloup, Philippe Colin, Martine Braibant, Bernard Lagane, Matteo Negroni, Jula Wamara, Norbert Bannert, Thibault Mesplede, Nathan Osman, Kaitlin Anstett, Jiaming Calvin Liang, Hanh Thi Pham, Mark Wainberg, Wei Shao, Jigui Shan, Mary Kearney, Xiaolin Wu, Frank Maldarelli, John Mellors, Brian Luke, John Coffin, Stephen Hughes, Thomas Fricke, Silvana Opp, Caitlin Shepard, Dmitri Ivanov, Jose Valle-Casuso, Marine Kanja, Pierre Cappy, Daniela Lener, Ekaterina Knyazhanskaya, Andrey Anisenko, Timofey Zatsepin, Marina Gottikh, Alexander Komkov, Anastasia Minervina, Gaiaz Nugmanov, Vadim Nazarov, Konstantin Khodosevich, Ilgar Mamedov, Yuri Lebedev, Marta Colomer-Lluch, Ruth Serra-Moreno, Ambra Sarracino, Lavina Gharu, Alexander Pasternak, Alessandro Marcello, Ann Marie McCartin, Anurag Kulkarni, Valentin Le Douce, Virginie Gautier, Ann Baeyens, Evelien Naessens, Anouk Van Nuffel, Karin Weening, Anne- Marie Reilly, Eva Claeys, Wim Trypsteen, Linos Vandekerckhove, Sven Eyckerman, Kris Gevaert, Bruno Verhasselt, Hoi Ping Mok, Nicholas Norton, Axel Fun, Jack Hirst, Mark Wills, Dalibor Miklik, Filip Senigl, Jiri Hejnar, Jun-ichi Sakuragi, Sayuri Sakuragi, Masaru Yokoyama, Tatsuo Shioda, Hironori Sato, Jochen Bodem, Rebecca Moschall, Sarah Denk, Steffen Erkelenz, Christian Schenk, Heiner Schaal, Norbert Donhauser, Ellen Socher, Sebastian Millen, Heinrich Sticht, Melanie Mann, Guochao Wei, Matthew J. Betts, Yang Liu, Timo Kehl, Robert B. Russell, Martin Löchelt, Oliver Hohn, Saeed Mostafa, Kirsten Hanke, Stephen Norley, Chia-Yen Chen, Masashi Shingai, Pedro Borrego, Nuno Taveira, Klaus Strebel, Chris Hellmund, Melanie Friedrich, Friedrich Hahn, Christian Setz, Pia Rauch, Kirsten Fraedrich, Alina Matthaei, Petra Henklein, Maximilian Traxdorf, Torgils Fossen, Ulrich Schubert, Aya Khwaja, Meytal Galilee, Akram Alian, Birco Schwalbe, Heiko Hauser, Michael Schreiber, Mirte Scherpenisse, Young-Keol Cho, Jungeun Kim, Daeun Jeong, Katerina Trejbalova, Martina Benesova, Dana Kucerova, Zdenka Vernerova, Rachel Amouroux, Petra Hajkova, Daniel Elleder, Tomas Hron, Helena Farkasova, Abinash Padhi, Jan Paces, Henan Zhu, Robert Gifford, Pablo Murcia, Maria Luisa Carrozza, Anna-Maria Niewiadomska, Maurizio Mazzei, Mounir Abi-Said, Joseph Hughes, Stéphane Hué, Adetayo Obasa, Graeme Jacobs, Susan Engelbrecht, Katharina Mack, Kathrin Starz, Matthias Geyer, Frederic Bibollet-Ruche, Marie Leoz, Jean Christophe Plantier, Ayele Argaw-Denboba, Emanuela Balestrieri, Annalucia Serafino, Ilaria Bucci, Chiara Cipriani, Corrado Spadafora, Paolo Sinibaldi-Vallebona, Claudia Matteucci, S. Nandi Jayashree, Ujjwal Neogi, Anil K. Chhangani, Shravan Sing Rathore, Bajrang R. J. Mathur, Adeyemi Abati, B. Taylan Koç, Tuba Çiğdem Oğuzoğlu, Takatoshi Shimauchi, Stephan Caucheteux, Jocelyn Turpin, Katja Finsterbusch, Yoshiki Tokura, Shanti Souriant, Luciana Balboa, Karine Pingris, Denise Kviatcowsky, Brigitte Raynaud-Messina, Céline Cougoule, Ingrid Mercier, Marcelo Kuroda, Pablo González-Montaner, Sandra Inwentarz, Eduardo Jose Moraña, Maria del Carmen Sasiain, Olivier Neyrolles, Isabelle Maridonneau-Parini, Geanncarlo Lugo-Villarino, Christel Vérollet, Alexandra Herrmann, Dominique Thomas, Nerea Ferreirós Bouzas, Xavier Lahaye, Anvita Bhargava, Takeshi Satoh, Matteo Gentili, Silvia Cerboni, Aymeric Silvin, Cécile Conrad, Hakim Ahmed-Belkacem, Elisa C. Rodriguez, Jean-François Guichou, Nathalie Bosquet, Matthieu Piel, Roger Le Grand, Megan King, Jean-Michel Pawlotsky, Nicolas Manel, Henning Hofmann, Benedicte Vanwalscappel, Nicolin Bloch, Nathaniel Landau, Stanislav Indik, Benedikt Hagen, José Carlos Valle-Casuso, Awatef Allouch, Annie David, Françoise Barré-Sinoussi, Monsef Benkirane, Gianfranco Pancino, Asier Saez-Cirion, Wing-Yiu Lee, Richard Sloan, Bianca Schulte, Jonas Blomberg, Luana Vargiu, Patricia Rodriguez-Tomé, Enzo Tramontano, Göran Sperber, Namita Kumari, Tatiana Ammosova, Sharmeen Diaz, Patricia Oneal, Sergei Nekhai, Audrey Fahrny, Gustavo Gers-Huber, Annette Audigé, Anitha Jayaprakash, Ravi Sachidanandam, Matt Hernandez, Marsha Dillon-White, Emmanuel Maze, Claire Ham, Neil Almond, Greg Towers, Robert Belshaw, Patrícia de Sousa-Pereira, Joana Abrantes, Massimo Pizzato, Pedro J. Esteves, Tanja Kahle, Sven Schmitt, Laura Merkel, Nina Reuter, Thomas Stamminger, Ilaria Dalla Rosa, Kate Bishop, Antonella Spinazzola, Harriet Groom, Gabrielle Vieyres, Mathias Müsken, Thomas Zillinger, Veit Hornung, Winfried Barchet, Susanne Häussler, Thomas Pietschmann, Aneela Javed, Nicole Leuchte, Gabriela Salinas, Lennart Opitz, Sieghart Sopper, Christiane Mummert, Christian Hofmann, Angela G. Hückelhoven, Silke Bergmann, Sandra M. Müller-Schmucker, Ellen G. Harrer, Jan Dörrie, Niels Schaft, Thomas Harrer, Laure Cardinaux, M.- L. Zahno, H.- R. Vogt, R. Zanoni, G. Bertoni, Maximilian Muenchhoff, Philip Goulder, Oliver Keppler, Stephanie Rebensburg, Markus Helfer, Yuwei Zhang, Huicheng Chen, Annie Bernier, Annie Gosselin, Jean- Pierre Routy, Birgitta Wöhrl, Anna Schneider, Angela Corona, Imke Spöring, Mareike Jordan, Bernd Buchholz, Elias Maccioni, Roberto Di Santo, Kristian Schweimer, Christian Schölz, Brian Weinert, Sebastian Wagner, Petra Beli, Yasuyuki Miyake, Jun Qi, Lars Jensen, Werner Streicher, Anna McCarthy, Nicholas Westwood, Sonia Lain, Jürgen Cox, Patrick Matthias, Matthias Mann, James Bradner, Chunaram Choudhary, Marcel Stern, Elena Valletta, Caterina Frezza, Francesca Marino-Merlo, Sandro Grelli, Anna Lucia Serafino, Antonio Mastino, Beatrice Macchi, Meike Kaulfuß, Sonja Windmann, Wibke Bayer, Sello Mikasi, Rebecca Heß, Michael Storcksdieck gen. Bonsmann, Carsten Kirschning, Bernd Lepenies, Anne Kolenbrander, Vladimir Temchura, Kenta Iijima, Junya Kobayashi, and Yukihito Ishizaka
- Subjects
0301 basic medicine ,03 medical and health sciences ,030104 developmental biology ,Infectious Diseases ,Retroviral infection ,Virology ,Pandemic ,Biology ,Meeting Abstracts - Abstract
Table of contents Oral presentations Session 1: Entry & uncoating O1 Host cell polo-like kinases (PLKs) promote early prototype foamy virus (PFV) replication Irena Zurnic, Sylvia Hütter, Ute Lehmann, Nicole Stanke, Juliane Reh, Tobias Kern, Fabian Lindel, Gesche Gerresheim, Martin Hamann, Erik Müllers, Paul Lesbats, Peter Cherepanov, Erik Serrao, Alan Engelman, Dirk Lindemann O2 A novel entry/uncoating assay reveals the presence of at least two species of viral capsids during synchronized HIV-1 infection Claire Da Silva Santos, Kevin Tartour, Andrea Cimarelli O3 Dynamics of nuclear envelope association and nuclear import of HIV-1 complexes Rya Burdick, Jianbo Chen, Jaya Sastri, Wei-Shau Hu, Vinay Pathak O4 Human papillomavirus protein E4 potently enhances the susceptibility to HIV infection Oliver T. Keppler Session 2: Reverse transcription & integration O5 Structure and function of HIV-1 integrase post translational modifications Karine Pradeau, Sylvia Eiler, Nicolas Levy, Sarah Lennon, Sarah Cianferani, Stéphane Emiliani, Marc Ruff O6 Regulation of retroviral integration by RNA polymerase II associated factors and chromatin structure Vincent Parissi Session 3: Transcription and latency O7 A novel single-cell analysis pipeline to identify specific biomarkers of HIV permissiveness Sylvie Rato, Antonio Rausell, Miguel Munoz, Amalio Telenti, Angela Ciuffi O8 A capsid-dependent integration program linking T cell activation to HIV-1 gene expression Alexander Zhyvoloup, Anat Melamed, Ian Anderson, Delphine Planas, Janos Kriston-Vizi, Robin Ketteler, Chen-Hsuin Lee, Andy Merritt, Petronela Ancuta, Charles Bangham, Ariberto Fassati O9 Characterisation of new RNA polymerase III and RNA polymerase II transcriptional promoters in the Bovine Leukemia Virus genome Anthony Rodari, Benoit Van Driessche, Mathilde Galais, Nadége Delacourt, Sylvain Fauquenoy, Caroline Vanhulle, Anna Kula, Arsène Burny, Olivier Rohr, Carine Van Lint O10 Tissue-specific dendritic cells differentially modulate latent HIV-1 reservoirs Thijs van Montfort, Renee van der Sluis, Dave Speijer, Ben Berkhout Session 4: RNA trafficking & packaging O11 A novel cis-acting element affecting HIV replication Bo Meng, Andrzej Rutkowski, Neil Berry, Lars Dölken, Andrew Lever O12 Tolerance of HIV’s late gene expression towards stepwise codon adaptation Thomas Schuster, Benedikt Asbach, Ralf Wagner Session 5: Assembly & release O13 Importance of the tax-inducible actin-bundling protein fascin for transmission of human T cell leukemia virus Type 1 (HTLV-1) Christine Gross, Veit Wiesmann, Martina Kalmer, Thomas Wittenberg, Jan Gettemans, Andrea K. Thoma-Kress O14 Lentiviral nef proteins antagonize TIM-mediated inhibition of viral release Minghua Li, Eric O. Freed, Shan-Lu Liu Session 6: Pathogenesis & evolution O15 SEVI and semen prolong the half-life of HIV-1 Janis Müller, Jan Münch O16 CD169+ macrophages mediate retrovirus trans-infection of permissive lymphocytes to establish infection in vivo Xaver Sewald, Pradeep Uchil, Mark Ladinsky, Jagadish Beloor, Ruoxi Pi, Christin Herrmann, Nasim Motamedi, Thomas Murooka, Michael Brehm, Dale Greiner, Thorsten Mempel, Pamela Bjorkman, Priti Kumar, Walther Mothes O17 Efficient replication of a vpu containing SIVagm construct in African Green Monkeys requires an HIV-1 nef gene Simone Joas, Erica Parrish, Clement Wesley Gnanadurai, Edina Lump, Christina M. Stürzel, Nicholas F. Parrish, Ulrike Sauermann, Katharina Töpfer, Tina Schultheiss, Steven Bosinger, Guido Silvestri, Cristian Apetrei, Nicholas Huot, Michaela Müller-Trutwin, Daniel Sauter, Beatrice H. Hahn, Christiane Stahl-Hennig, Frank Kirchhoff O18 Reprogramming initiates mobilization of endogenous mutagenic LINE-1, Alu and SVA retrotransposons in human induced pluripotent stem cells with consequences for host gene expression Gerald Schumann, Sabine Jung-Klawitter, Nina V. Fuchs, Kyle R. Upton, Martin Muñoz-Lopez, Ruchi Shukla, Jichang Wang, Marta Garcia-Canadas, Cesar Lopez-Ruiz, Daniel J. Gerhardt, Attila Sebe, Ivana Grabundzija, Patricia Gerdes, Sylvia Merkert, Andres Pulgarin, Anja Bock, Ulrike Held, Anett Witthuhn, Alexandra Haase, Ernst J. Wolvetang, Ulrich Martin, Zoltán Ivics, Zsuzsanna Izsvák, J. Garcia-Perez, Geoffrey J. Faulkner O19 NF-κB activation induces expression of human endogenous retrovirus and particle production Tara Hurst, Aris Katzourakis, Gkikas Magiorkinis Session 7a and b: Innate sensing & intrinsic immunity O20 Identification of the phosphatase acting on T592 in SAMHD1 during M/G1 transition Kerstin Schott, Rita Derua, Janna Seifried, Andreas Reuter, Heike Schmitz, Christiane Tondera, Alberto Brandariz-Nuñez, Felipe Diaz-Griffero, Veerle Janssens, Renate König O21 Vpx overcomes a SAMHD1-independent block to HIV reverse transcription that is specific to resting CD4 T cells Hanna-Mari Baldauf, Lena Stegmann, Sarah-Marie Schwarz, Maud Trotard, Margarethe Martin, Gina Lenzi, Manja Burggraf, Xiaoyu Pan, Oliver I. Fregoso, Efrem S. Lim, Libin Abraham, Elina Erikson, Laura Nguyen, Ina Ambiel, Frank Rutsch, Renate König, Baek Kim, Michael Emerman, Oliver T. Fackler, Oliver T. Keppler O22 The role of SAMHD1 in antiviral restriction and immune sensing in the mouse Sabine Wittmann, Rayk Behrendt, Bianca Volkmann, Kristin Eissmann, Thomas Gramberg O23 T cells expressing reduced restriction factors are preferentially infected in therapy naïve HIV-1 patients Sebastian Bolduan, Herwig Koppensteiner, Stefanie Regensburg, Ruth Brack-Werner, Rika Draenert, Michael Schindler O24 cGAS-mediated innate immunity spreads through HIV-1 env-induced membrane fusion sites from infected to uninfected primary HIV-1 target cells Aurélie Ducroux, Shuting Xu, Aparna Ponnurangam, Sergej Franz, Angelina Malassa, Ellen Ewald, Christine Goffinet O25 Perturbation of innate RNA and DNA sensing by human T cell leukemia virus type 1 oncoproteins Sin-Yee Fung, Ching-Ping Chan, Chun-Kit Yuen, Kin-Hang Kok, Chin-Ping Chan, Dong-Yan Jin O26 Induction and anti-viral activity of Interferon α subtypes in HIV-1 infection Ulf Dittmer O27 Vpu-mediated counteraction of tetherin is a major determinant of HIV-1 interferon resistance Dorota Kmiec, Shilpa Iyer, Christina Stürzel, Daniel Sauter, Beatrice Hahn, Frank Kirchhoff O28 DNA repair protein Rad18 restricts HIV-1 and LINE-1 life cycle Yasuo Ariumi, Mariko Yasuda-Inoue, Koudai Kawano, Satoshi Tateishi, Priscilla Turelli O29 Natural mutations in IFITM3 allow escape from post-translational regulation and toggle antiviral specificity Alex Compton, Nicolas Roy, Françoise Porrot, Anne Billet, Nicoletta Casartelli, Jacob Yount, Chen Liang, Oliver Schwartz Session 8: Adaptive immunity & immune evasion O30 Observing evolution in HIV-1 infection: phylogenetics and mutant selection windows to infer the influence of the autologous antibody response on the viral quasispecies Carsten Magnus, Lucia Reh, Penny Moore, Therese Uhr, Jacqueline Weber, Lynn Morris, Alexandra Trkola O31 Dose and subtype specific analyses of the anti-HIV effects of IFN-alpha family members Rashel V. Grindberg, Erika Schlaepfer, Gideon Schreiber, Viviana Simon, Roberto F. Speck Session 9: Novel antiviral strategies O32 LEDGIN-mediated inhibition of the integrase-LEDGF/p75 interaction reduces reactivation of residual latent HIV Zeger Debyser, Lenard Vranckx, Jonas Demeulemeester, Suha Saleh, Eric Verdin, Anna Cereseto, Frauke Christ, Rik Gijsbers O33 NKG2D-mediated clearance of reactivated viral reservoirs by natural killer cells O34 Inhibition of HIV reactivation in brain cells by AAV-mediated delivery of CRISPR/Cas9 O35 CRISPR-Cas9 as antiviral: potent HIV-1 inhibition, but rapid virus escape and the subsequent design of escape-proof antiviral strategies Ben Berkhout, Gang Wang, Na Zhao, Atze T. Das Session 10: Recent advances in HIV vaccine development O36 Priming with a potent HIV-1 DNA vaccine frames the quality of T cell and antibody responses prior to a poxvirus and protein boost Benedikt Asbach, Josef Köstler, Beatriz Perdiguero, Mariano Esteban, Bertram L. Jacobs, David C. Montefiori, Celia C. LaBranche, Nicole L. Yates, Georgia D. Tomaras, Guido Ferrari, Kathryn E. Foulds, Mario Roederer, Gary Landucci, Donald N. Forthal, Michael S. Seaman, Natalie Hawkins, Steven G. Self, Sanjay Phogat, James Tartaglia, Susan W. Barnett, Brian Burke, Anthony D. Cristillo, Song Ding, Jonathan L. Heeney, Giuseppe Pantaleo, Ralf Wagner O37 Passive immunisation with a neutralising antibody against HIV-1 Env prevents infection of the first cells in a mucosal challenge rhesus monkey model Christiane Stahl-Hennig, Viktoria Stab, Armin Ensser, Ulrike Sauermann, Bettina Tippler, Dennis Burton, Matthias Tenbusch, Klaus Überla O38 HIV antibody Fc-glycoforms drive B cell affinity maturation Galit Alter, Giuseppe Lofano, Anne-Sophie Dugast, Viraj Kulkarni, Todd Suscovich Poster presentations Topic 1: Entry & uncoating P1 Dynein light chain is required for murine leukemia virus infection Tatiana Opazo, Felipe Barraza, Diego Herrera, Andrea Garces, Tomas Schwenke, Diego Tapia, Jorge Cancino, Gloria Arriagada P2 Peptide paratope mimics of the broadly neutralising HIV-1 antibody b12 Christina Haußner, Dominik Damm, Anette Rohrhofer, Barbara Schmidt, Jutta Eichler P3 Investigating cellular pathways involved in the transmission of HIV-1 between dendritic cells and T cells using RNAi screening techniques Rebecca Midgley, James Wheeldon, Vincent Piguet P4 Co-receptor tropism in HIV-1, HIV-2 monotypic and dual infections Priyanka Khopkar, Megha Rohamare, Smita Kulkarni P5 Characterisation of the role of CIB1 and CIB2 as HIV-1 helper factors Ana Godinho-Santos, Allan Hance, Joao Goncalves, Fabrizio Mammano P6 Buffering deleterious polymorphisms in the highly constrained C2 region of HIV-1 envelope by the flexible V3 domain Romain Gasser, Meriem Hamoudi, Martina Pellicciotta, Zhicheng Zhou, Clara Visdeloup, Philippe Colin, Martine Braibant, Bernard Lagane, Matteo Negroni P7 Entry inhibition of HERV-K(HML-2) by an Env-IgG fusion protein Jula Wamara, Norbert Bannert Topic 2: Reverse transcription & integration P8 The R263K/H51Y resistance substitutions in HIV integrase decreases levels of integrated HIV DNA over time Thibault Mesplede, Nathan Osman, Kaitlin Anstett, Jiaming Calvin Liang, Hanh Thi Pham, Mark Wainberg P9 The Retrovirus Integration Database (RID) Wei Shao, Jigui Shan, Mary Kearney, Xiaolin Wu, Frank Maldarelli, John Mellors, Brian Luke, John Coffin, Stephen Hughes P10 The small molecule 3G11 inhibits HIV-1 reverse transcription Thomas Fricke, Silvana Opp, Caitlin Shepard, Dmitri Ivanov, Baek Kim, Jose Valle-Casuso, Felipe Diaz-Griffero P11 Dual and opposite regulation of HIV-1 integration by hRAD51: impact on therapeutical approaches using homologous DNA repair modulators Vincent Parissi P12 A flexible motif essential for integration by HIV-1 integrase Marine Kanja, Pierre Cappy, Matteo Negroni, Daniela Lener P13 Interaction between HIV-1 integrase and the host protein Ku70: identification of the binding site and study of the influence on integrase-proteasome interplay Ekaterina Knyazhanskaya, Andrey Anisenko, Timofey Zatsepin, Marina Gottikh P14 Normalisation based method for deep sequencing of somatic retroelement integrations in human genome Alexander Komkov, Anastasia Minervina, Gaiaz Nugmanov, Vadim Nazarov, Konstantin Khodosevich, Ilgar Mamedov, Yuri Lebedev Topic 3: Transcription and latency P15 BCA2/RABRING7 restricts HIV-1 transcription by preventing the nuclear translocation of NF-κB Marta Colomer-Lluch, Ruth Serra-Moreno P16 MATR3 post-transcriptional regulation of HIV-1 transcription during latency Ambra Sarracino, Anna Kula, Lavina Gharu, Alexander Pasternak, Carine Van Lint, Alessandro Marcello P17 HIV-1 tat intersects the SUMO pathway to regulate HIV-1 promoter activity Ann Marie McCartin, Anurag Kulkarni, Valentin Le Douce, Virginie Gautier P18 Conservation in HIV-1 Vpr guides tertiary gRNA folding and alternative splicing Ann Baeyens, Evelien Naessens, Anouk Van Nuffel, Karin Weening, Anne-Marie Reilly, Eva Claeys, Wim Trypsteen, Linos Vandekerckhove, Sven Eyckerman, Kris Gevaert, Bruno Verhasselt P19 The majority of reactivatable latent HIV are genetically distinct Hoi Ping Mok, Nicholas Norton, Axel Fun, Jack Hirst, Mark Wills, Andrew Lever P20 Do mutations in the tat exonic splice enhancer contribute to HIV-1 latency? Nicholas Norton, Hoi Ping Mok, Jack Hirst, Andrew Lever P21 Culture-to-Ct: A fast and direct RT-qPCR HIV gene reactivation screening method using primary T cell culture Valentin Le Douce, Ann Marie McCartin, Virginie Gautier P22 A novel approach to define populations of early silenced proviruses Dalibor Miklik, Filip Senigl, Jiri Hejnar Topic 4: RNA trafficking & packaging P23 Functional analysis of the structure and conformation of HIV-1 genome RNA DIS Jun-ichi Sakuragi, Sayuri Sakuragi, Masaru Yokoyama, Tatsuo Shioda, Hironori Sato P24 Regulation of foamy viral env splicing controls gag and pol expression Jochen Bodem, Rebecca Moschall, Sarah Denk, Steffen Erkelenz, Christian Schenk, Heiner Schaal Topic 5: Assembly & release P25 Transfer of HTLV-1 p8 to target T cells depends on VASP: a novel interaction partner of p8 Norbert Donhauser, Ellen Socher, Sebastian Millen, Heinrich Sticht, Andrea K. Thoma-Kress P26 COL4A1 and COL4A2 are novel HTLV-1 tax targets with a putative role in virus transmission Christine Gross, Sebastian Millen, Melanie Mann, Klaus Überla, Andrea K. Thoma-Kress P27 The C terminus of foamy virus gag protein is required for particle formation, and virus budding: starting assembly at the C terminus? Guochao Wei, Matthew J. Betts, Yang Liu, Timo Kehl, Robert B. Russell, Martin Löchelt P28 Generation of an antigen-capture ELISA and analysis of Rec and Staufen-1 effects on HERV-K(HML-2) virus particle production Oliver Hohn, Saeed Mostafa, Kirsten Hanke, Stephen Norley, Norbert Bannert P29 Antagonism of BST-2/tetherin is a conserved function of primary HIV-2 Env glycoproteins Chia-Yen Chen, Masashi Shingai, Pedro Borrego, Nuno Taveira, Klaus Strebel P30 Mutations in the packaging signal region of the HIV-1 genome cause a late domain mutant phenotype Chris Hellmund, Bo Meng, Andrew Lever P31 p6 regulates membrane association of HIV-1 gag Melanie Friedrich, Friedrich Hahn, Christian Setz, Pia Rauch, Kirsten Fraedrich, Alina Matthaei, Petra Henklein, Maximilian Traxdorf, Torgils Fossen, Ulrich Schubert Topic 6: Pathogenesis & evolution P32 Molecular and structural basis of protein evolution during viral adaptation Aya Khwaja, Meytal Galilee, Akram Alian P33 HIV-1 enhancement and neutralisation by soluble gp120 and its role for the selection of the R5-tropic “best fit” Birco Schwalbe, Heiko Hauser, Michael Schreiber P34 An insertion of seven amino acids in the Env cytoplasmic tail of Human Immunodeficiency Virus type 2 (HIV-2) selected during disease progression enhances viral replication François Dufrasne, Mara Lucchetti, Patrick Goubau, Jean Ruelle P35 Cell-associated HIV-1 unspliced to multiply spliced RNA ratio at 12 weeks ART correlates with markers of immune activation and apoptosis and predicts the CD4 T-cell count at 96 weeks ART Mirte Scherpenisse, Ben Berkhout, Alexander Pasternak P36 Faster progression in non-B subtype HIV-1-infected patients than Korean subclade of subtype B is accompanied by higher variation and no induction of gross deletion in non-B nef gene by Korean red ginseng treatment Young-Keol Cho, Jungeun Kim, Daeun Jeong P37 Aberrant expression of ERVWE1 endogenous retrovirus and overexpression of TET dioxygenases are characteristic features of seminoma Katerina Trejbalova, Martina Benesova, Dana Kucerova, Zdenka Vernerova, Rachel Amouroux, Petra Hajkova, Jiri Hejnar P38 Life history of the oldest lentivirus: characterisation of ELVgv integrations and the TRIM5 selection pattern in dermoptera Daniel Elleder, Tomas Hron, Helena Farkasova, Abinash Padhi, Jan Paces P39 Characterisation of a highly divergent endogenous retrovirus in the equine germ line Henan Zhu, Robert Gifford, Pablo Murcia P40 The emergence of pandemic retroviral infection in small ruminants Maria Luisa Carrozza, Anna-Maria Niewiadomska, Maurizio Mazzei, Mounir Abi-Said, Joseph Hughes, Stéphane Hué, Robert Gifford P41 Near full-length genome (NFLG) Characterisation of HIV-1 subtype B identified in South Africa Adetayo Obasa, Graeme Jacobs, Susan Engelbrecht P42 Acquisition of Vpu-mediated tetherin antagonism by an HIV-1 group O strain Katharina Mack, Kathrin Starz, Daniel Sauter, Matthias Geyer, Frederic Bibollet-Ruche, Christina Stürzel, Marie Leoz, Jean Christophe Plantier, Beatrice H. Hahn, Frank Kirchhoff P43 The human endogenous retrovirus type K is involved in cancer stem cell markers expression and in human melanoma malignancy Ayele Argaw-Denboba, Emanuela Balestrieri, Annalucia Serafino, Ilaria Bucci, Chiara Cipriani, Corrado Spadafora, Paolo Sinibaldi-Vallebona, Claudia Matteucci P44 Natural infection of Indian non-human primates by unique lentiviruses S. Nandi Jayashree, Ujjwal Neogi, Anil K. Chhangani, Shravan Sing Rathore, Bajrang R. J. Mathur P45 Free cervical cancer screening among HIV-positive women receiving antiretroviral treatment in Nigeria Adeyemi Abati P46 Molecular evolutionary status of feline immunodeficiency virus in Turkey B. Taylan Koç, Tuba Çiğdem Oğuzoğlu Topic 7: Innate sensing & intrinsic immunity P47 Cell-to-cell contact with HTLV-1-infected T cells reduces dendritic cell immune functions and contributes to infection in trans. Takatoshi Shimauchi, Stephan Caucheteux, Jocelyn Turpin, Katja Finsterbusch, Charles Bangham, Yoshiki Tokura, Vincent Piguet P48 Deciphering the mechanisms of HIV-1 exacerbation induced by Mycobacterium tuberculosis in monocytes/macrophages Shanti Souriant, Luciana Balboa, Karine Pingris, Denise Kviatcowsky, Brigitte Raynaud-Messina, Céline Cougoule, Ingrid Mercier, Marcelo Kuroda, Pablo González-Montaner, Sandra Inwentarz, Eduardo Jose Moraña, Maria del Carmen Sasiain, Olivier Neyrolles, Isabelle Maridonneau-Parini, Geanncarlo Lugo-Villarino, Christel Vérollet P49 The SAMHD1-mediated inhibition of LINE-1 retroelements is regulated by phosphorylation Alexandra Herrmann, Sabine Wittmann, Caitlin Shepard, Dominique Thomas, Nerea Ferreirós Bouzas, Baek Kim, Thomas Gramberg P50 Activities of nuclear envelope protein SUN2 in HIV infection Xavier Lahaye, Anvita Bhargava, Takeshi Satoh, Matteo Gentili, Silvia Cerboni, Aymeric Silvin, Cécile Conrad, Hakim Ahmed-Belkacem, Elisa C. Rodriguez, Jean-François Guichou, Nathalie Bosquet, Matthieu Piel, Roger Le Grand, Megan King, Jean-Michel Pawlotsky, Nicolas Manel P51 Activation of TLR7/8 with a small molecule agonist induces a novel restriction to HIV-1 infection of monocytes Henning Hofmann, Benedicte Vanwalscappel, Nicolin Bloch, Nathaniel Landau P52 Steady state between the DNA polymerase and Rnase H domain activities of reverse transcriptases determines the sensitivity of retroviruses to inhibition by APOBEC3 proteins Stanislav Indik, Benedikt Hagen P53 HIV restriction in mature dendritic cells is related to p21 induction and p21-mediated control of the dNTP pool and SAMHD1 activity. José Carlos Valle-Casuso, Awatef Allouch, Annie David, Françoise Barré-Sinoussi, Michaela Müller-Trutwin, Monsef Benkirane, Gianfranco Pancino, Asier Saez-Cirion P54 IFITM protens restrict HIV-1 protein synthesis Wing-Yiu Lee, Chen Liang, Richard Sloan P55 Characterisation and functional analysis of the novel restriction factor Serinc5 Bianca Schulte, Silvana Opp, Felipe Diaz-Griffero P56 piRNA sequences are common in Human Endogenous Retroviral Sequences (HERVs): An antiretroviral restriction mechanism? Jonas Blomberg, Luana Vargiu, Patricia Rodriguez-Tomé, Enzo Tramontano, Göran Sperber P57 Ferroportin restricts HIV-1 infection in sickle cell disease Namita Kumari, Tatiana Ammosova, Sharmeen Diaz, Patricia Oneal, Sergei Nekhai P58 APOBEC3G modulates the response to antiretroviral drugs in humanized mice Audrey Fahrny, Gustavo Gers-Huber, Annette Audigé, Roberto F. Speck, Anitha Jayaprakash, Ravi Sachidanandam, Matt Hernandez, Marsha Dillon-White, Viviana Simon P59 High-throughput epigenetic analysis of evolutionarily young endogenous retrovirus presents in the mule deer (Odocoileus hemionus) genome Tomas Hron, Helena Farkasova, Daniel Elleder P60 Characterisation of the expression of novel endogenous retroviruses and immune interactions in a macaque model Neil Berry, Emmanuel Maze, Claire Ham, Neil Almond, Greg Towers, Robert Belshaw P61 HIV-1 restriction by orthologs of SERINC3 and SERINC5 Patrícia de Sousa-Pereira, Joana Abrantes, Massimo Pizzato, Pedro J. Esteves, Oliver T. Fackler, Oliver T. Keppler, Hanna-Mari Baldauf P62 TRIM19/PML restricts HIV infection in a cell type-dependent manner Bianca Volkmann, Tanja Kahle, Kristin Eissmann, Alexandra Herrmann, Sven Schmitt, Sabine Wittmann, Laura Merkel, Nina Reuter, Thomas Stamminger, Thomas Gramberg P63 Recent invasion of the mule deer genome by a retrovirus Helena Farkasova, Tomas Hron, Daniel Elleder P64 Does the antiviral protein SAMHD1 influence mitochondrial function? Ilaria Dalla Rosa, Kate Bishop, Antonella Spinazzola, Harriet Groom P65 cGAMP transfers intercellularly via HIV-1 Env-mediated cell–cell fusion sites and triggers an innate immune response in primary target cells Shuting Xu, Aurélie Ducroux, Aparna Ponnurangam, Sergej Franz, Gabrielle Vieyres, Mathias Müsken, Thomas Zillinger, Angelina Malassa, Ellen Ewald, Veit Hornung, Winfried Barchet, Susanne Häussler, Thomas Pietschmann, Christine Goffinet P66 Pre-infection transcript levels of FAM26F in PBMCS inform about overall plasma viral load in acute and postacute phase after SIV-infection Ulrike Sauermann, Aneela Javed, Nicole Leuchte, Gabriela Salinas, Lennart Opitz, Christiane Stahl-Hennig, Sieghart Sopper P67 Sequence-function analysis of three T cell receptors targeting the HIV-1 p17 epitope SLYNTVATL Christiane Mummert, Christian Hofmann, Angela G. Hückelhoven, Silke Bergmann, Sandra M. Müller-Schmucker, Ellen G. Harrer, Jan Dörrie, Niels Schaft, Thomas Harrer P68 An immunodominant region of the envelope glycoprotein of small ruminant lentiviruses may function as decoy antigen Laure Cardinaux, M.-L. Zahno, H.-R. Vogt, R. Zanoni, G. Bertoni P69 Impact of immune activation, immune exhaustion, broadly neutralising antibodies and viral reservoirs on disease progression in HIV-infected children Maximilian Muenchhoff, Philip Goulder, Oliver Keppler Topic 9: Novel antiviral strategies P70 Identification of natural compounds as new antiviral products by bioassay-guided fractionation Alexandra Herrmann, Stephanie Rebensburg, Markus Helfer, Michael Schindler, Ruth Brack-Werner P71 The PPARG antagonism disconnects the HIV replication and effector functions in Th17 cells Yuwei Zhang, Huicheng Chen, Delphine Planas, Annie Bernier, Annie Gosselin, Jean-Pierre Routy, Petronela Ancuta P72 Characterisation of a multiresistant subtype AG reverse transcriptase: AZT resistance, sensitivity to RNase H inhibitors and inhibitor binding Birgitta Wöhrl, Anna Schneider, Angela Corona, Imke Spöring, Mareike Jordan, Bernd Buchholz, Elias Maccioni, Roberto Di Santo, Jochen Bodem, Enzo Tramontano, Kristian Schweimer P73 Insigths into the acetylation pattern of HDAC inhibitors and their potential role in HIV therapy Christian Schölz, Brian Weinert, Sebastian Wagner, Petra Beli, Yasuyuki Miyake, Jun Qi, Lars Jensen, Werner Streicher, Anna McCarthy, Nicholas Westwood, Sonia Lain, Jürgen Cox, Patrick Matthias, Matthias Mann, James Bradner, Chunaram Choudhary P74 HPV-derived and seminal amyloid peptides enhance HIV-1 infection and impair the efficacy of broadly neutralising antibodies and antiretroviral drugs Marcel Stern, Oliver T. Keppler P75 D(−)lentiginosine inhibits both proliferation and virus expression in cells infected by HTLV-1 in vitro Elena Valletta, Caterina Frezza, Claudia Matteucci, Francesca Marino-Merlo, Sandro Grelli, Anna Lucia Serafino, Antonio Mastino, Beatrice Macchi P76 HIV-1 resistance analyses of the Cape Winelands districts, South Africa Sello Mikasi, Graeme Jacobs, Susan Engelbrecht Topic 10: Recent advances in HIV vaccine development P77 Induction of complex retrovirus antigen-specific immune responses by adenovirus-based vectors depends on the order of vector administration Meike Kaulfuß, Sonja Windmann, Wibke Bayer P78 Direct impact of structural properties of HIV-1 Env on the regulation of the humoral immune response Rebecca Heß, Michael Storcksdieck gen. Bonsmann, Viktoria Stab, Carsten Kirschning, Bernd Lepenies, Matthias Tenbusch, Klaus Überla P79 Lentiviral virus-like particles mediate gerenration of T-follicular helper cells in vitro Anne Kolenbrander, Klaus Überla, Vladimir Temchura P80 Recruitment of HIV-1 Vpr to DNA damage sites and protection of proviral DNA from nuclease activity Kenta Iijima, Junya Kobayashi, Yukihito Ishizaka
- Full Text
- View/download PDF
36. Characterization of a thermosensitive Escherichia coli aspartyl-tRNA synthetase mutant
- Author
-
Jean Gangloff, Gilbert Eriani, Franck Martin, Robert G. Lloyd, Sylvia Eiler, Gary J. Sharples, Dino Moras, Structure des macromolécules biologiques et mécanismes de reconnaissance (SMBMR), Centre National de la Recherche Scientifique (CNRS), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), and Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Models, Molecular ,Mutant ,Aspartate-tRNA Ligase ,medicine.disease_cause ,Microbiology ,Serine ,03 medical and health sciences ,Structure-Activity Relationship ,medicine ,Escherichia coli ,TRNA aminoacylation ,Molecular Biology ,030304 developmental biology ,Amino acid activation ,chemistry.chemical_classification ,0303 health sciences ,biology ,030302 biochemistry & molecular biology ,Temperature ,Active site ,Molecular biology ,[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology ,Enzyme ,Biochemistry ,chemistry ,Transfer RNA ,Mutation ,biology.protein ,Research Article - Abstract
The Escherichia coli tls-1 strain carrying a mutated aspS gene (coding for aspartyl-tRNA synthetase), which causes a temperature-sensitive growth phenotype, was cloned by PCR, sequenced, and shown to contain a single mutation resulting in substitution by serine of the highly conserved proline 555, which is located in motif 3. When an aspS fragment spanning the codon for proline 555 was transformed into the tls-1 strain, it was shown to restore the wild-type phenotype via homologous recombination with the chromosomal tls-1 allele. The mutated AspRS purified from an overproducing strain displayed marked temperature sensitivity, with half-life values of 22 and 68 min (at 42 degrees C), respectively, for tRNA aminoacylation and ATP/PPi exchange activities. Km values for aspartic acid, ATP, and tRNA(Asp) did not significantly differ from those of the native enzyme; thus, mutation Pro555Ser lowers the stability of the functional configuration of both the acylation and the amino acid activation sites but has no significant effect on substrate binding. This decrease in stability appears to be related to a conformational change, as shown by gel filtration analysis. Structural data strongly suggest that the Pro555Ser mutation lowers the stability of the Lys556 and Thr557 positions, since these two residues, as shown by the crystallographic structure of the enzyme, are involved in the active site and in contacts with the tRNA acceptor arm, respectively.
- Full Text
- View/download PDF
37. Structural Basis For HIV-1 DNA Integration in the Human Genome
- Author
-
Marina Gottikh, Richard Benarous, Marc Ruff, Sylvia Eiler, Dino Moras, Patrick Schultz, Corinne Crucifix, Jean-François Mouscadet, Alexis Nazabal, Fabrice Michel, Stéphane Emiliani, and Florence Granger
- Subjects
biology ,Chemistry ,Growth factor ,medicine.medical_treatment ,Biophysics ,Wild type ,In vitro ,Integrase ,Cell biology ,chemistry.chemical_compound ,Complementary DNA ,biology.protein ,medicine ,Human genome ,DNA Integration ,DNA - Abstract
Integration of the human immunodeficiency virus type 1 (HIV-1) cDNA into the human genome is catalyzed by the viral integrase protein that requires the lens epithelium-derived growth factor (LEDGF), a cellular transcriptional coactivator. In the presence of LEDGF, integrase forms a stable complex in vitro and importantly becomes soluble by contrast with integrase alone which aggregates and precipitates. Using cryo-electron microscopy (EM) and single-particle reconstruction, we obtained three-dimensional structures of the wild type full length integrase-LEDGF complex with and without DNA. The stoichiometry of the complex was found to be (integrase)4-(LEDGF)2 and existing atomic structures were unambiguous positioned in the EM map. In vitro functional assays reveal that LEDGF increases integrase activity likely in maintaining a stable and functional integrase structure. Upon DNA binding, IN undergoes large conformational changes. Cryo-EM structure underlines the path of viral and target DNA and a model for DNA integration in human DNA is proposed.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.