Dolan E, Dumas A, Esteves GP, Takarabe LL, Perfeito LAM, Keane KM, Gualano B, Kelley GA, Burke L, Sale C, and Swinton PA
Background: Although nutrition and exercise both influence bone metabolism, little is currently known about their interaction, or whether nutritional intervention can modulate the bone biomarker response to acute exercise. Improved understanding of the relationships between nutrition, exercise and bone metabolism may have substantial potential to inform nutritional interventions to protect the bone health of exercising individuals, and to elucidate mechanisms by which exercise and nutrition influence bone., Objective: The aim was to synthesise available evidence related to the influence of nutrition on the response of the bone biomarkers procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX-1) to acute exercise, using a systematic review and meta-analytic approach., Methods: Studies evaluating the influence of nutritional status or intervention on the bone biomarker response to an acute exercise bout were included and separated into four categories: (1) feeding status and energy availability, (2) macronutrients, (3) micronutrients and (4) other. Studies conducted on healthy human populations of any age or training status were included. Meta-analysis was conducted when data from at least five studies with independent datasets were available. In the case of insufficient data to warrant meta-analysis, results from individual studies were narratively synthesised and standardised mean effect sizes visually represented., Results: Twenty-two articles were included. Of these, three investigated feeding status or energy availability, eight macronutrients, eight micronutrients (all calcium) and six other interventions including dairy products or collagen supplementation. Three studies had more than one intervention and were included in all relevant outcomes. The largest and most commonly reported effects were for the bone resorption marker CTX-1. Meta-analysis indicated that calcium intake, whether provided via supplements, diet or infusion, reduced exercise-induced increases in CTX-1 (effect size - 1.1; 95% credible interval [CrI] - 2.2 to - 0.05), with substantially larger effects observed in studies that delivered calcium via direct infusion versus in supplements or foods. Narrative synthesis suggests that carbohydrate supplementation may support bone during acute exercise, via reducing exercise-induced increases in CTX-1. Conversely, a low-carbohydrate/high-fat diet appears to induce the opposite effect, as evidenced by an increased exercise associated CTX-1 response, and reduced P1NP response. Low energy availability may amplify the CTX-1 response to exercise, but it is unclear whether this is directly attributable to energy availability or to the lack of specific nutrients, such as carbohydrate., Conclusion: Nutritional intervention can modulate the acute bone biomarker response to exercise, which primarily manifests as an increase in bone resorption. Ensuring adequate attention to nutritional factors may be important to protect bone health of exercising individuals, with energy, carbohydrate and calcium availability particularly important to consider. Although a wide breadth of data were available for this evidence synthesis, there was substantial heterogeneity in relation to design and intervention characteristics. Direct and indirect replication is required to confirm key findings and to generate better estimates of true effect sizes., Competing Interests: Declarations Conflict of interest None of the authors have any conflict of interest to declare. Funding ED, GPE and LP are financially supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2019/05616-6; 2019/26899-6; 2020/07860-9 and 2022/09028-4). No other funding sources were used to assist in the preparation of this article. Data availability The data that support the findings of this study are available within the paper, associated online resources or within the original articles cited herein. Author contributions ED conceived the original idea for this article, and the protocol was developed by ED, PAS, CS and GK. ED conducted the searches and GPE, AD and KK selected the studies. Data were extracted by GPE and AD, and GPE, AD, LP and LT evaluated the risk of bias of each study. PAS conducted all statistical analyses, and results were interpreted by ED, CS, GK, BG and LB. ED wrote the initial manuscript draft, which was then edited in accordance with ongoing critical input from all authors. All authors read and approved the final manuscript., (© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)