I primi mesi di vita del bambino sono caratterizzati da radicali cambiamenti evolutivi che pongono le basi per lo sviluppo successivo. A livello cerebrale, nel corso dei primi mesi di vita risposte non specifiche e subottimali si specializzano e, man mano che il bambino cresce, questo processo di specializzazione getta le basi per lo sviluppo dei network cerebrali osservati negli adulti. In tale contesto gruppi di aree cerebrali si specializzano progressivamente per l’elaborazione di stimoli sociali, andando a formare quel che viene definito con il termine social brain. L’emergere del cervello sociale rappresenta un importante spartiacque tra le traiettorie di sviluppo tipiche e quelle atipiche, specialmente in disturbi fortemente caratterizzati da deficit di natura sociale, quali il disturbo dello spettro autistico (ASD; Grossman & Johnson, 2007). Lo scopo di questa tesi è quindi di caratterizzare i network cerebrali che supportano l’elaborazione di stimoli sociali nella prima infanzia e di indagare tali network all’interno di traiettorie di sviluppo atipiche, quali sono quelle osservate in bambini con maggiore probabilità di sviluppare ASD (HL-ASD). Nel Capitolo1 abbiamo indagato lo sviluppo dei network cerebrali coinvolti nell’elaborazione di semplici stimoli uditivi attraverso tecniche di ricostruzione di sorgente. Nel Capitolo 2 ci siamo focalizzati sull’elaborazione della salienza sociale delle voci in bambini a basso rischio (LR) e in bambini HL-ASD tramite tracking corticale. Nel Capitolo 3 ci siamo focalizzati sull’elaborazione di volti emozionali attraverso tecniche di decoding. Dato che volti e voci sono spesso associati, nel Capitolo 4, attraverso tecniche di ricostruzione di sorgente e di connettività time-varying, abbiamo indagato come avviene nel cervello l’integrazione di vocalizzazioni emozionali multimodali. Nonostante i dati presentati siano a tratti preliminari a causa della pandemia di Covid-19, i nostri risultati rivelano la presenza di capillari intercomunicazioni tra network sensoriali e aree associative in risposta a cambiamenti nella salienza sociale degli stimoli. Nello specifico, il cervello sembra essere specificamente orientato all’elaborazione di segnali sociali e, a loro volta, i segnali sociali strutturano le interazioni tra network attraverso feedback reciproci tra le aree appartenenti al social brain. Questa regolazione sembra non essere presente nei bambini HL-ASD negli studi presentati, e tale dato potrebbe contribuire a spiegare i deficit associati all’ASD. Complessivamente, quindi, i nostri risultati supportano la presenza di meccanismi progressivi di specializzazione, in cui risposte inizialmente non differenziate si specializzano tramite l’esposizione a segnali sociali, quali volti e voci, per mezzo dei loop descritti, caratterizzando sia lo sviluppo tipico che quello atipico. The first months of life are characterized by striking developmental changes. As the infant grows, through processes of interactive specialization between the environment and the brain, unspecific and suboptimal neural responses specialize and lay the basis for the development of the brain networks observed in adults. Within this context, particular sets of brain areas specialize progressively for the processing of social stimuli, becoming what is known as the social brain. This feature highlights the central role that social processing has across the first year of life, when social cues represent the primary mean through which preverbal infants interact with and absorb information from their surroundings. Hence, the emergence of the social brain may represent a turning point separating typical from atypical development, especially in disorders whose core features include disruptions in social processing, such as autism spectrum disorder (ASD; Grossman & Johnson, 2007). The aim of this thesis is to define brain networks involved in social processing across developmental stages and to investigate the departures from typical development seen in infants at higher likelihood of developing ASD (HL-ASD). To this end, in Chapter 1 we first isolated the developmental axis of brain networks involved in low-level auditory processing through source reconstruction techniques. In Chapter 2 we manipulated social saliency in voice processing in both low risk (LR) and HL-ASD infants, investigating the encoding of voices in the brain through cortical tracking. Following the same line of thought, in Chapter 3 we focused on the early processing of emotional faces in the brain via decoding techniques. As faces and voice mostly co-occur in everyday life, through source reconstruction and time-varying connectivity measures, we then investigated how the integration of multimodal emotional vocalization happens in the brain of adults and of HL-ASD infants in Chapter 4. While some of the data we present must be considered preliminary due to the Covid-19 pandemic, our results uncover the presence of early intercommunications between networks subserving sensory processing and higher-order cortical areas in response to social saliency. Specifically, we propose that the brain is hard-wired to social cues, and social cues scaffold networks interactions through reciprocal feedbacks between sensory and associative regions belonging to the social brain. This tuning is seemingly absent in HL-ASD infants across studies, as we found a lack of synchronization between networks involved in social processing and perceptual and cognitive systems. Overall, our result support the progressive specialization of brain networks. Specifically, while brain activations may be undifferentiated in the beginning, with social experience patterns of activations specialize to specific sets of social cues, such as faces and voices and their integration. We thus hypothesise that the loops connecting sensory and higher-order areas influence the networks involved in social and perceptual processing and their deviations from typical development.