1. Development and comparison of spectral algorithms for numerical modeling of the quasi-static mechanical behavior of inhomogeneous materials
- Author
-
Khorrami, M., Mianroodi, J. R., Shanthraj, P., and Svendsen, B.
- Subjects
Computer Science - Computational Engineering, Finance, and Science ,65N35, 74B05, 74Q99, 74S25 ,J.2.7 ,J.2.9 - Abstract
In the current work, a number of algorithms are developed and compared for the numerical solution of periodic (quasi-static) linear elastic mechanical boundary-value problems (BVPs) based on two different discretizations of Fourier series. The first is standard and based on the trapezoidal approximation of the Fourier mode integral, resulting in trapezoidal discretization (TD) of the truncated Fourier series. Less standard is the second discretization based on piecewise-constant approximation of the Fourier mode integrand, yielding a piecewise-constant discretization (PCD) of this series. Employing these, fixed-point algorithms are formulated via Green-function preconditioning (GFP) and finite-difference discretization (of differential operators; FDD). In particular, in the context of PCD, this includes an algorithm based on the so-called "discrete Green operator" (DGO) recently introduced by Eloh et al. (2019), which employs GFP, but not FDD. For computational comparisons, the (classic) benchmark case of a cubic inclusion embedded in a matrix (e.g., Suquet, 1997; Willot, 2015) is employed. Both discontinuous and smooth transitions in elastic stiffness at the matrix-inclusion (MI) interface are considered. In the context of both TD and PCD, a number of GFP- and FDD-based algorithms are developed. Among these, one based on so-called averaged-forward-backward-differencing (AFB) is shown to result in the greatest improvement in convergence rate. As it turns out, AFB is equivalent to the "rotated scheme" (R) of Willot (2015) in the context of TD. In the context of PCD, comparison of the performance and convergence behavior of AFB/R- and DGO-based algorithms shows that the former is more efficient than the latter for larger phase contrasts., Comment: 35 pages, 10 figures
- Published
- 2020