1. Thermal–Mechanical Delamination for Recovery of Tempered Glass from Photovoltaic Panels
- Author
-
Agnieszka Surowiak and Mustapha Wahman
- Subjects
PV recycling ,glass recovery ,thermal–mechanical delamination ,sustainable ,environmental impact ,Technology - Abstract
This paper presents a sustainable recycling process for the separation and recovery of tempered glass from end-of-life photovoltaic (PV) modules. As glass accounts for 75% of the weight of a panel, its recovery is an important step in the recycling process. Current methods, such as mechanical, chemical and thermal processes, often lead to contamination of the glass and pose significant environmental risks. In response to these challenges, a thermal–mechanical delamination approach is proposed in this study. The method utilizes controlled heat application (hot air gun) to weaken the adhesive bond between the glass and encapsulant, allowing for separation with a thin stainless steel wire. Various analytical methods, including X-ray diffraction analysis (XRD), X-ray fluorescence (XRF) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), were used to verify the effectiveness of the proposed method. The results show that the proposed method is effective. In less than a minute, the glass layer was separated and recovered with a success rate of over 99%, with no degradation of the material or release of gasses. The significance of this process lies in its ability to recover high-purity glass while minimizing the impact on the environment. This opens up the possibility of reusing the recovered tempered glass in new PV panels or other applications, reducing the need for virgin materials and lowering the overall environmental footprint of the solar energy industry.
- Published
- 2024
- Full Text
- View/download PDF