The COVID-19 pandemic has been affecting the world since December 2019, and nowadays, the number of infected is increasing rapidly. Chest X-ray images are clinical adjuncts that can be used in the diagnosis of COVID-19 disease. Because of the rapid spread of COVID-19 disease worldwide and the limited number of expert radiologists, the proposed method uses the automatic diagnosis method rather than a manual diagnosis method. In the paper, COVID-19 Positive/Negative (2275 Positive, 4626 Negative) and Normal/Pneumonia (2313 Normal, 2313 Pneumonia) are diagnosed using chest X-ray images. Herein, 80 % and 20 % of the images are used in the training and validation set, respectively. In the proposed method, six different classifiers are trained using chest X-ray images, and the five most successful classifiers are used in both phases. In Phase-1 and Phase-2, image features are extracted using the Bag of Features method for Cosine K-Nearest Neighbor (KNN), Linear Discriminant, Logistic Regression, Bagged Trees Ensemble, Medium Gaussian Support Vector Machine (SVM), excluding SqueezeNet Deep Learning (K = 2000 and K = 1500 for Phase-1 and Phase-2, respectively). In both phases, the five most successful classifiers are determined, and images classify with the help of the Majority Voting (Mathematical Evaluation) method. The application of the proposed method is designed for users to diagnose COVID-19 Positive, Normal, and Pneumonia. The results show that accuracy values obtained by Majority Voting (Mathematical Evaluation) method for Phase-1 and Phase-2 are equal to 99.86 % and 99.28 %, respectively. Thus, it indicates that the accuracy of the whole system is 99.63 % . When we analyze the classification performance metrics for Phase-1 and Phase-2, Specificity (%), Precision (%), Recall (%), F 1 Score (%), Area Under Curve (AUC), and Matthews Correlation Coefficient (MCC) are equal to 99.98-99.83-99.07-99.51-0.9974-0.9855 and 99.73-99.69-98.63-99.23-0.9928-0.9518, respectively. Moreover, if the classification performance metrics of the whole system are examined, it is seen that Specificity (%), Precision (%), Recall (%), F 1 Score (%), AUC, and MCC are 99.88, 99.78, 98.90, 99.40, 0.9956, and 0.9720 , respectively. When the studies in the literature are examined, the results show that the proposed model is better than its counterparts. Because the best performance metrics for the dataset used were obtained in this study. In addition, since the biphasic majority voting technique is used in the study, it is seen that the proposed model is more reliable. On the other hand, although there are tens of thousands of studies on this subject, the usability of these models is debatable since most of them do not have graphical user interface applications. Already, in artificial intelligence technologies, besides the performance of the developed models, their usability is also important. Because the developed models can generally be used by people who are less knowledgeable about artificial intelligence., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2022 Elsevier Ltd. All rights reserved.)