1. Spectrotemporal Modulation Detection and Speech Perception by Cochlear Implant Users.
- Author
-
Jong Ho Won, Il Joon Moon, Sunhwa Jin, Heesung Park, Jihwan Woo, Yang-Sun Cho, Won-Ho Chung, and Sung Hwa Hong
- Subjects
Medicine ,Science - Abstract
Spectrotemporal modulation (STM) detection performance was examined for cochlear implant (CI) users. The test involved discriminating between an unmodulated steady noise and a modulated stimulus. The modulated stimulus presents frequency modulation patterns that change in frequency over time. In order to examine STM detection performance for different modulation conditions, two different temporal modulation rates (5 and 10 Hz) and three different spectral modulation densities (0.5, 1.0, and 2.0 cycles/octave) were employed, producing a total 6 different STM stimulus conditions. In order to explore how electric hearing constrains STM sensitivity for CI users differently from acoustic hearing, normal-hearing (NH) and hearing-impaired (HI) listeners were also tested on the same tasks. STM detection performance was best in NH subjects, followed by HI subjects. On average, CI subjects showed poorest performance, but some CI subjects showed high levels of STM detection performance that was comparable to acoustic hearing. Significant correlations were found between STM detection performance and speech identification performance in quiet and in noise. In order to understand the relative contribution of spectral and temporal modulation cues to speech perception abilities for CI users, spectral and temporal modulation detection was performed separately and related to STM detection and speech perception performance. The results suggest that that slow spectral modulation rather than slow temporal modulation may be important for determining speech perception capabilities for CI users. Lastly, test-retest reliability for STM detection was good with no learning. The present study demonstrates that STM detection may be a useful tool to evaluate the ability of CI sound processing strategies to deliver clinically pertinent acoustic modulation information.
- Published
- 2015
- Full Text
- View/download PDF