1. A Flying Bird Object Detection Method for Surveillance Video
- Author
-
Sun, Ziwei, Hua, Zexi, Li, Hengchao, and Li, Yan
- Subjects
Computer Science - Computer Vision and Pattern Recognition - Abstract
Aiming at the specific characteristics of flying bird objects in surveillance video, such as the typically non-obvious features in single-frame images, small size in most instances, and asymmetric shapes, this paper proposes a Flying Bird Object Detection method for Surveillance Video (FBOD-SV). Firstly, a new feature aggregation module, the Correlation Attention Feature Aggregation (Co-Attention-FA) module, is designed to aggregate the features of the flying bird object according to the bird object's correlation on multiple consecutive frames of images. Secondly, a Flying Bird Object Detection Network (FBOD-Net) with down-sampling followed by up-sampling is designed, which utilizes a large feature layer that fuses fine spatial information and large receptive field information to detect special multi-scale (mostly small-scale) bird objects. Finally, the SimOTA dynamic label allocation method is applied to One-Category object detection, and the SimOTA-OC dynamic label strategy is proposed to solve the difficult problem of label allocation caused by irregular flying bird objects. In this paper, the performance of the FBOD-SV is validated using experimental datasets of flying bird objects in traction substation surveillance videos. The experimental results show that the FBOD-SV effectively improves the detection performance of flying bird objects in surveillance video.
- Published
- 2024