335 results on '"Summons, R. E"'
Search Results
2. Indigenous and exogenous organics and surface–atmosphere cycling inferred from carbon and oxygen isotopes at Gale crater
- Author
-
Franz, H. B., Mahaffy, P. R., Webster, C. R., Flesch, G. J., Raaen, E., Freissinet, C., Atreya, S. K., House, C. H., McAdam, A. C., Knudson, C. A., Archer, Jr., P. D., Stern, J. C., Steele, A., Sutter, B., Eigenbrode, J. L., Glavin, D. P., Lewis, J. M. T., Malespin, C. A., Millan, M., Ming, D. W., Navarro-González, R., and Summons, R. E.
- Published
- 2020
- Full Text
- View/download PDF
3. The Permian-Triassic Boundary in Australia: where is it and how is it expressed?
- Author
-
Foster, C B, Logan, G A, Summons, R E, and BioStor
- Published
- 1998
4. Time-Sensitive Aspects of Mars Sample Return (MSR) Science
- Author
-
Tosca, N. J., Agee, Carl, Cockell, C., Glavin, D P, Hutzler, Aurore, Marty, B., McCubbin, F. M., Regberg, Aaron, Velbel, Michael, Kminek, G., Meyer, M., Beaty, D.W., Carrier, B. L., Haltigin, T., Hays, Lindsay, Busemann, H., Cavalazzi, Barbara, Debaille, V, Grady, M., Hauber, Ernst, Pratt, Lisa, Smith, Alvin, Smith, C., Summons, R E, Swindle, T. D., Tait, Kimberly, Udry, Arya, Usui, Tomohiro, Wadhwa, M., Westall, F., Zorzano, M.-P., Tosca N. J., Beaty D. W., Carrier B. L., Agee C. B., Cockell C. S., Glavin D. P., Hutzler A., Marty B., McCubbin F. M., Regberg A. B., Velbel M. A., Kminek G., Meyer M. A., Haltigin T., Busemann H., Cavalazzi B., Debaille V., Grady M. M., Hauber E., Hays L. E., Pratt L. M., Smith A. L., Smith C. L., Summons R. E., Swindle T. D., Tait K. T., Udry A., Usui T., Wadhwa M., Westall F., Zorzano M. -P., University of Cambridge [UK] (CAM), The University of New Mexico [Albuquerque], University of Edinburgh, NASA Goddard Space Flight Center (GSFC), European Space Agency (ESA), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, Michigan State University [East Lansing], Michigan State University System, Smithsonian Institution, NASA Headquarters, California Institute of Technology (CALTECH), Canadian Space Agency (CSA), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Bologna, Université libre de Bruxelles (ULB), The Open University [Milton Keynes] (OU), German Aerospace Center (DLR), Indiana University [Bloomington], Indiana University System, The Natural History Museum [London] (NHM), University of Glasgow, Massachusetts Institute of Technology (MIT), University of Arizona, Royal Ontario Museum, University of Nevada [Las Vegas] (WGU Nevada), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), Arizona State University [Tempe] (ASU), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), University of Aberdeen, Tosca, Nicholas [0000-0003-4415-4231], and Apollo - University of Cambridge Repository
- Subjects
Minerals ,geology ,Extraterrestrial Environment ,laboratory experiments ,Sulfates ,[SDV]Life Sciences [q-bio] ,astrobiology ,Mars ,Space Flight ,Mars Sample Return (MSR) Science ,sample return ,Agricultural and Biological Sciences (miscellaneous) ,Space and Planetary Science ,Exobiology ,Clay ,Gases - Abstract
Samples returned from Mars would be placed under quarantine at a Sample Receiving Facility (SRF) until they are considered safe to release to other laboratories for further study. The process of determining whether samples are safe for release, which may involve detailed analysis and/or sterilization, is expected to take several months. However, the process of breaking the sample tube seal and extracting the headspace gas will perturb local equilibrium conditions between gas and rock and set in motion irreversible processes that proceed as a function of time. Unless these time-sensitive processes are understood, planned for, and/or monitored during the quarantine period, scientific information expected from further analysis may be lost forever. At least four processes underpin the time-sensitivity of Mars returned sample science: (1) degradation of organic material of potential biological origin, (2) modification of sample headspace gas composition, (3) mineral-volatile exchange, and (4) oxidation/reduction of redox-sensitive materials. Available constraints on the timescales associated with these processes supports the conclusion that an SRF must have the capability to characterize attributes such as sample tube headspace gas composition, organic material of potential biological origin, as well as volatiles and their solid-phase hosts. Because most time-sensitive investigations are also sensitive to sterilization, these must be completed inside the SRF and on timescales of several months or less. To that end, we detail recommendations for how sample preparation and analysis could complete these investigations as efficiently as possible within an SRF. Finally, because constraints on characteristic timescales that define time-sensitivity for some processes are uncertain, future work should focus on: (1) quantifying the timescales of volatile exchange for core material physically and mineralogically similar to samples expected to be returned from Mars, and (2) identifying and developing stabilization or temporary storage strategies that mitigate volatile exchange until analysis can be completed. Executive Summary Any samples returned from Mars would be placed under quarantine at a Sample Receiving Facility (SRF) until it can be determined that they are safe to release to other laboratories for further study. The process of determining whether samples are safe for release, which may involve detailed analysis and/or sterilization, is expected to take several months. However, the process of breaking the sample tube seal and extracting the headspace gas would perturb local equilibrium conditions between gas and rock and set in motion irreversible processes that proceed as a function of time. Unless these processes are understood, planned for, and/or monitored during the quarantine period, scientific information expected from further analysis may be lost forever. Specialist members of the Mars Sample Return Planning Group Phase 2 (MSPG-2), referred to here as the Time-Sensitive Focus Group, have identified four processes that underpin the time-sensitivity of Mars returned sample science: (1) degradation of organic material of potential biological origin, (2) modification of sample headspace gas composition, (3) mineral-volatile exchange, and (4) oxidation/reduction of redox-sensitive materials (Figure 2). Consideration of the timescales and the degree to which these processes jeopardize scientific investigations of returned samples supports the conclusion that an SRF must have the capability to characterize: (1) sample tube headspace gas composition, (2) organic material of potential biological origin, (3) volatiles bound to or within minerals, and (4) minerals or other solids that host volatiles (Table 4). Most of the investigations classified as time-sensitive in this report are also sensitive to sterilization by either heat treatment and/or gamma irradiation (Velbel et al., 2022). Therefore, these investigations must be completed inside biocontainment and on timescales that minimize the irrecoverable loss of scientific information (i.e., several months or less; Section 5). To that end, the Time-Sensitive Focus Group has outlined a number of specific recommendations for sample preparation and instrumentation in order to complete these investigations as efficiently as possible within an SRF (Table 5). Constraints on the characteristic timescales that define time-sensitivity for different processes can range from relatively coarse to uncertain (Section 4). Thus, future work should focus on: (1) quantifying the timescales of volatile exchange for variably lithified core material physically and mineralogically similar to samples expected to be returned from Mars, and (2) identifying and developing stabilization strategies or temporary storage strategies that mitigate volatile exchange until analysis can be completed. List of Findings FINDING T-1: Aqueous phases, and oxidants liberated by exposure of the sample to aqueous phases, mediate and accelerate the degradation of critically important but sensitive organic compounds such as DNA. FINDING T-2: Warming samples increases reaction rates and destroys compounds making biological studies much more time-sensitive. MAJOR FINDING T-3: Given the potential for rapid degradation of biomolecules, (especially in the presence of aqueous phases and/or reactive O-containing compounds) Sample Safety Assessment Protocol (SSAP) and parallel biological analysis are time sensitive and must be carried out as soon as possible. FINDING T-4: If molecules or whole cells from either extant or extinct organisms have persisted under present-day martian conditions in the samples, then it follows that preserving sample aliquots under those same conditions (i.e., 6 mbar total pressure in a dominantly CO2 atmosphere and at an average temperature of -80°C) in a small isolation chamber is likely to allow for their continued persistence. FINDING T-5: Volatile compounds (e.g., HCN and formaldehyde) have been lost from Solar System materials stored under standard curation conditions. FINDING T-6: Reactive O-containing species have been identified in situ at the martian surface and so may be present in rock or regolith samples returned from Mars. These species rapidly degrade organic molecules and react more rapidly as temperature and humidity increase. FINDING T-7: Because the sample tubes would not be closed with perfect seals and because, after arrival on Earth, there will be a large pressure gradient across that seal such that the probability of contamination of the tube interiors by terrestrial gases increases with time, the as-received sample tubes are considered a poor choice for long-term gas sample storage. This is an important element of time sensitivity. MAJOR FINDING T-8: To determine how volatiles may have been exchanged with headspace gas during transit to Earth, the composition of martian atmosphere (in a separately sealed reservoir and/or extracted from the witness tubes), sample headspace gas composition, temperature/time history of the samples, and mineral composition (including mineral-bound volatiles) must all be quantified. When the sample tube seal is breached, mineral-bound volatile loss to the curation atmosphere jeopardizes robust determination of volatile exchange history between mineral and headspace. FINDING T-9: Previous experiments with mineral powders show that sulfate minerals are susceptible to H2O loss over timescales of hours to days. In addition to volatile loss, these processes are accompanied by mineralogical transformation. Thus, investigations targeting these minerals should be considered time-sensitive. FINDING T-10: Sulfate minerals may be stabilized by storage under fixed relative-humidity conditions, but only if the identity of the sulfate phase(s) is known a priori. In addition, other methods such as freezing may also stabilize these minerals against volatile loss. FINDING T-11: Hydrous perchlorate salts are likely to undergo phase transitions and volatile exchange with ambient surroundings in hours to days under temperature and relative humidity ranges typical of laboratory environments. However, the exact timescale over which these processes occur is likely a function of grain size, lithification, and/or cementation. FINDING T-12: Nanocrystalline or X-ray amorphous materials are typically stabilized by high proportions of surface adsorbed H2O. Because this surface adsorbed H2O is weakly bound compared to bulk materials, nanocrystalline materials are likely to undergo irreversible ripening reactions in response to volatile loss, which in turn results in decreases in specific surface area and increases in crystallinity. These reactions are expected to occur over the timescale of weeks to months under curation conditions. Therefore, the crystallinity and specific surface area of nanocrystalline materials should be characterized and monitored within a few months of opening the sample tubes. These are considered time-sensitive measurements that must be made as soon as possible. FINDING T-13: Volcanic and impact glasses, as well as opal-CT, are metastable in air and susceptible to alteration and volatile exchange with other solid phases and ambient headspace. However, available constraints indicate that these reactions are expected to proceed slowly under typical laboratory conditions (i.e., several years) and so analyses targeting these materials are not considered time sensitive. FINDING T-14: Surface adsorbed and interlayer-bound H2O in clay minerals is susceptible to exchange with ambient surroundings at timescales of hours to days, although the timescale may be modified depending on the degree of lithification or cementation. Even though structural properties of clay minerals remain unaffected during this process (with the exception of the interlayer spacing), investigations targeting H2O or other volatiles bound on or within clay minerals should be considered time sensitive upon opening the sample tube. FINDING T-15: Hydrated Mg-carbonates are susceptible to volatile loss and recrystallization and transformation over timespans of months or longer, though this timescale may be modified by the degree of lithification and cementation. Investigations targeting hydrated carbonate minerals (either the volatiles they host or their bulk mineralogical properties) should be considered time sensitive upon opening the sample tube. MAJOR FINDING T-16: Current understanding of mineral-volatile exchange rates and processes is largely derived from monomineralic experiments and systems with high surface area; lithified sedimentary rocks (accounting for some, but not all, of the samples in the cache) will behave differently in this regard and are likely to be associated with longer time constants controlled in part by grain boundary diffusion. Although insufficient information is available to quantify this at the present time, the timescale of mineral-volatile exchange in lithified samples is likely to overlap with the sample processing and curation workflow (i.e., 1-10 months; Table 4). This underscores the need to prioritize measurements targeting mineral-hosted volatiles within biocontainment. FINDING T-17: The liberation of reactive O-species through sample treatment or processing involving H2O (e.g., rinsing, solvent extraction, particle size separation in aqueous solution, or other chemical extraction or preparation protocols) is likely to result in oxidation of some component of redox-sensitive materials in a matter of hours. The presence of reactive O-species should be examined before sample processing steps that seek to preserve or target redox-sensitive minerals. Electron paramagnetic resonance spectroscopy (EPR) is one example of an effective analytical method capable of detecting and characterizing the presence of reactive O-species. FINDING T-18: Environments that maintain anoxia under inert gas containing <
- Published
- 2022
- Full Text
- View/download PDF
5. Murchison Meteorite Analysis Using Tetramethylammonium Hydroxide (TMAH) Thermochemolysis Under Simulated Sample Analysis at Mars (SAM) Pyrolysis‐Gas Chromatography‐Mass Spectrometry Conditions.
- Author
-
Mojarro, A., Buch, A., Dworkin, J. P., Eigenbrode, J. L., Fressinet, C., Glavin, D. P., Szopa, C., Millan, M., Williams, A. J., and Summons, R. E.
- Subjects
METEORITE analysis ,MARS rovers ,MARS (Planet) ,GALE Crater (Mars) ,CHEMICAL reagents - Abstract
The Sample Analysis at Mars (SAM) instrument aboard the Curiosity Rover at Gale crater can characterize organic molecules from scooped and drilled samples via pyrolysis of solid materials. In addition, SAM can conduct wet chemistry experiments which enhance the detection of organic molecules bound in macromolecules and convert polar organic compounds into volatile derivatives amenable to gas chromatography‐mass spectrometry analyses. Specifically, N‐tert‐butyldimethylsilyl‐N‐methyltrifluoroacetamide (MTBSTFA) is a silylation reagent whereas tetramethylammonium hydroxide (TMAH) is a thermochemolysis methylation reagent. Shortly after arriving at Mars, the SAM team discovered that at least one of the MTBSFTA cups was leaking, contributing to a continuous background inside SAM with the potential to interfere with future TMAH reactions. Therefore, here we characterized possible interactions between the two reagents to determine byproducts and implications for the detection of indigenous organics. SAM‐like pyrolysis experiments supplemented with flash pyrolysis were accordingly conducted with fragments of the Murchison meteorite as a reference for exogenous organic matter delivered to Mars. Flash TMAH experiments yielded various aromatic acids, dicarboxylic acids, and amino acids while SAM‐like pyrolysis presented mixtures of methylated and non‐methylated compounds due to decreased reaction efficiency at slower ramp rates. All experiments in the presence of simulated MTBSTFA vapor produced pervasive silylated byproducts which co‐elute and obscure the identification of Murchison‐derived compounds. Despite challenges, a significant diversity of pyrolyzates and TMAH derivatives could still be identified in flash pyrolysis in presence of MTBSTFA. However SAM‐like experiments with TMAH and MTBSTFA are hindered by both decreased methylation yields and additional co‐eluting compounds. Plain Language Summary: The Sample Analysis at Mars (SAM) instrument aboard the Curiosity Rover on Mars can detect and analyze organic molecules that might be used by life as we know it. SAM does this by heating scooped soil or drill samples in order to vaporize and uncover any organic content that might be present. In addition, SAM can detect different types of organics that have more direct similarities to those used by modern organisms by adding one of two different kinds of chemical reagents prior to heating. However, shortly after arriving at Mars, it was discovered that one type of reagent, called MTBSTFA, was leaking inside of SAM with the potential to eventually interfere with the other, called TMAH, whenever it might be utilized. This study therefore reports on the chemical interactions between the two reagents and how they might impact the detection of indigenous organics on Mars. We determined heating samples in the presence of both reagents produces a series of byproducts which obscure the identification of organic compounds of interest. Still, despite analytical challenges, it is possible SAM may detect different types of organics which have yet to be detected on Mars with TMAH despite interference from leaking MTBSTA. Key Points: TMAH experiments with Murchison meteorite produces various aromatic acids, dicarboxylic acids, and amino acidsSAM‐like TMAH pyrolysis presents mixtures of methylated and non‐methylated compounds due to decreased reaction yields at slower ramp ratesAll experiments with simulated MTBSTFA vapor produce byproducts that obscure the identification of Murchison‐derived compounds [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. Sedimentary Organics in Glen Torridon, Gale Crater, Mars: Results From the SAM Instrument Suite and Supporting Laboratory Analyses
- Author
-
Millan, M., primary, Williams, A. J., additional, McAdam, A. C., additional, Eigenbrode, J. L., additional, Steele, A., additional, Freissinet, C., additional, Glavin, D. P., additional, Szopa, C., additional, Buch, A., additional, Summons, R. E., additional, Lewis, J. M. T., additional, Wong, G. M., additional, House, C. H., additional, Sutter, B., additional, McIntosh, O., additional, Bryk, A. B., additional, Franz, H. B., additional, Pozarycki, C., additional, Stern, J. C., additional, Navarro‐Gonzalez, R., additional, Archer, D. P., additional, Fox, V., additional, Bennett, K., additional, Teinturier, S., additional, Malespin, C., additional, Johnson, S. S., additional, and Mahaffy, P. R., additional
- Published
- 2022
- Full Text
- View/download PDF
7. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, Ming, D. W., Archer, P. D., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., Brunner, A. E., Stern, J. C., Freissinet, C., McAdam, A. C., Mahaffy, P. R., Cabane, M., Coll, P., Campbell, J. L., Atreya, S. K., Niles, P. B., Bell, J. F., Bish, D. L., Brinckerhoff, W. B., Buch, A., Conrad, P. G., Des Marais, D. J., Ehlmann, B. L., Fairén, A. G., Farley, K., Flesch, G. J., Francois, P., Gellert, R., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., Leshin, L. A., Lewis, K. W., McLennan, S. M., Miller, K. E., Moersch, J., Morris, R. V., Navarro-González, R., Pavlov, A. A., Perrett, G. M., Pradler, I., Squyres, S. W., Summons, R. E., Steele, A., Stolper, E. M., Sumner, D. Y., Szopa, C., Teinturier, S., Trainer, M. G., Treiman, A. H., Vaniman, D. T., Vasavada, A. R., Webster, C. R., Wray, J. J., and Yingst, R. A.
- Published
- 2014
8. Enhanced terrestrial input supporting the Glomospira acme across the Paleocene-Eocene boundary in Southern Spain
- Author
-
Arreguín-Rodríguez, G. J., Alegret, L., Sepúlveda, J., Newman, S., and Summons, R. E.
- Published
- 2014
9. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover
- Author
-
Leshin, L. A., Mahaffy, P. R., Webster, C. R., Cabane, M., Coll, P., Conrad, P. G., Archer, P. D., Atreya, S. K., Brunner, A. E., Buch, A., Eigenbrode, J. L., Flesch, G. J., Franz, H. B., Freissinet, C., Glavin, D. P., McAdam, A. C., Miller, K. E., Ming, D. W., Morris, R. V., Navarro-González, R., Niles, P. B., Owen, T., Pepin, R. O., Squyres, S., Steele, A., Stern, J. C., Summons, R. E., Sumner, D. Y., Sutter, B., Szopa, C., Teinturier, S., Trainer, M. G., Wray, J. J., and Grotzinger, J. P.
- Published
- 2013
- Full Text
- View/download PDF
10. The “Dirty Ice” of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian
- Author
-
Hawes, I., Jungblut, A. D., Matys, E. D., Summons, R. E., Hawes, I., Jungblut, A. D., Matys, E. D., and Summons, R. E.
- Published
- 2022
11. Large Sulphur Isotope Fractionations in Martian Sediments at Gale Crater
- Author
-
Franz, H. B, McAdam, A. C, Ming, D. W, Freissinet, C, Mahaffy, Paul, Eldridge, D. L, Fischer, W. W, Grotzinger, J. P, House, C. H, Hurowitz, J. A, McLennan, S. M, Schwenzer, S. P, Vaniman, D. T, Archer, P. D. Jr, Atreya, S. K, Conrad, P. G, Dottin, J. W. III, Eigenbrode, J. L, Farley, K. A, Glavin, D. P, Johnson, S. S, Knudson, C. A, Morris, R. V, Navarro-Gonzalez, R, Pavlov, A. A, Plummer, R, Rampe, E. B, Stern, J. C, Steele, A, Summons, R. E, and Sutter, B
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA's Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in S-34. Measured values of δS-34 range from -47 +/- 14% to 28 +/- 7%, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.
- Published
- 2017
- Full Text
- View/download PDF
12. Science and Curation Considerations for the Design of a Mars Sample Return (MSR) Sample Receiving Facility
- Author
-
Carrier, B. L., Beaty, D., Hutzler, Aurore, Smith, Alvin, Kminek, G., Meyer, M., Haltigin, T., Hays, Lindsay, Agee, Carl, Busemann, H., Cavalazzi, B., Cockell, C., Debaille, V, Glavin, D P, Grady, M., Hauber, Ernst, Marty, B., McCubbin, F. M., Pratt, Lisa, Regberg, Aaron, Smith, C., Summons, R E, Swindle, T. D., Tait, Kimberly, Tosca, N. J., Udry, Arya, Usui, Tomohiro, Velbel, Michael, Wadhwa, M., Westall, F., Zorzano, M.-P., California Institute of Technology (CALTECH), European Space Agency (ESA), NASA Headquarters, Canadian Space Agency (CSA), The University of New Mexico [Albuquerque], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Bologna, University of Edinburgh, Université libre de Bruxelles (ULB), NASA Goddard Space Flight Center (GSFC), The Open University [Milton Keynes] (OU), German Aerospace Center (DLR), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, Indiana University [Bloomington], Indiana University System, The Natural History Museum [London] (NHM), University of Glasgow, Massachusetts Institute of Technology (MIT), University of Arizona, Royal Ontario Museum, University of Cambridge [UK] (CAM), University of Nevada [Las Vegas] (WGU Nevada), Japan Aerospace Exploration Agency [Tokyo] (JAXA), Michigan State University [East Lansing], Michigan State University System, Smithsonian Institution, Arizona State University [Tempe] (ASU), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), University of Aberdeen, Agence Spatiale Européenne = European Space Agency (ESA), University of Bologna/Università di Bologna, Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Frapart, Isabelle, Carrier B. L., Beaty D. W., Hutzler A., Smith A. L., Kminek G., Meyer M. A., Haltigin T., Hays L. E., Agee C. B., Busemann H., Cavalazzi B., Cockell C. S., Debaille V., Glavin D. P., Grady M. M., and Hauber E., Marty B., McCubbin F. M., Pratt L. M., Regberg A. B., Smith C. L., Summons R. E., Swindle T. D., Tait K. T., Tosca N. J., Udry A., Usui T., Velbel M. A., Wadhwa M., Westall F., Zorzano M. -P.
- Subjects
geology ,Extraterrestrial Environment ,laboratory experiments ,Sample Safety Assessment Protocol (SSAP) ,Plant Extracts ,astrobiology ,Reproducibility of Results ,Mars ,intrumentation ,Space Flight ,sample return ,Agricultural and Biological Sciences (miscellaneous) ,[SDU] Sciences of the Universe [physics] ,containment ,contamination ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Sample Receiving Facility (SRF) ,Mars Sample Return (MSR) Campaign ,Spacecraft - Abstract
The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to receive the returned spacecraft, extract and open the sealed sample container, extract the samples from the sample tubes, and implement a set of evaluations and analyses of the samples. One of the main findings of the first MSR Sample Planning Group (MSPG, 2019a) states that "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside in a biocontained facility, and the ability to allow multiple science investigators in different labs to perform similar or complementary analyses to confirm the reproducibility and accuracy of results. It is also reasonable to assume that there will be a desire for the SRF to be as efficient and economical as possible, while still enabling the objectives of MSR to be achieved. For these reasons, MSPG concluded, and MSPG2 agrees, that the SRF should be designed to accommodate only those analytical activities that could not reasonably be done in outside laboratories because they are time- or sterilization-sensitive, are necessary for the Sample Safety Assessment Protocol (SSAP), or are necessary parts of the initial sample characterization process that would allow subsamples to be effectively allocated for investigation. All of this must be accommodated in an SRF, while preserving the scientific value of the samples through maintenance of strict environmental and contamination control standards. Executive Summary The most important single element of the "ground system" portion of a Mars Sample Return (MSR) Campaign is a facility referred to as the Sample Receiving Facility (SRF), which would need to be designed and equipped to enable receipt of the returned spacecraft, extraction and opening of the sealed sample container, extraction of the samples from the sample tubes, and a set of evaluations and analyses of the samples-all under strict protocols of biocontainment and contamination control. Some of the important constraints in the areas of cost and required performance have not yet been set by the necessary governmental sponsors, but it is reasonable to assume there will be a desire for the SRF to be as efficient and economical as is possible, while still enabling the objectives of MSR science to be achieved. Additionally, one of the main findings of MSR Sample Planning Group (MSPG, 2019a) states "The scientific community, for reasons of scientific quality, cost, and timeliness, strongly prefers that as many sample-related investigations as possible be performed in PI-led laboratories outside containment." There are many scientific and technical reasons for this preference, including the ability to utilize advanced and customized instrumentation that may be difficult to reproduce inside a biocontained facility. Another benefit is the ability to enable similar or complementary analyses by multiple science investigators in different laboratories, which would confirm the reproducibility and accuracy of results. For these reasons, the MSPG concluded-and the MSR Science Planning Group Phase 2 (MSPG2) agrees-that the SRF should be designed to accommodate only those analytical activities inside biocontainment that could
- Published
- 2021
- Full Text
- View/download PDF
13. Preliminary Planning for Mars Sample Return (MSR) Curation Activities in a Sample Receiving Facility
- Author
-
Tait, Kimberly, McCubbin, F. M., Smith, C., Agee, Carl, Busemann, H., Cavalazzi, B., Debaille, V, Hutzler, Aurore, Usui, Tomohiro, Kminek, G., Meyer, M., Beaty, D., Carrier, B. L., Haltigin, T., Hays, Lindsay, Cockell, C., Glavin, D. P., Grady, M., Hauber, Ernst, Marty, B., Pratt, Lisa, Regberg, Aaron, Smith, Alvin, Summons, R E, Swindle, T. D., Tosca, N. J., Udry, Arya, Velbel, Michael, Wadhwa, M., Westall, F., Zorzano, M.-P., Royal Ontario Museum, NASA Johnson Space Center (JSC), NASA, The Natural History Museum [London] (NHM), University of Glasgow, The University of New Mexico [Albuquerque], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Bologna, Université libre de Bruxelles (ULB), European Space Agency (ESA), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), NASA Headquarters, California Institute of Technology (CALTECH), Canadian Space Agency (CSA), University of Edinburgh, NASA Goddard Space Flight Center (GSFC), The Open University [Milton Keynes] (OU), German Aerospace Center (DLR), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Indiana University [Bloomington], Indiana University System, Massachusetts Institute of Technology (MIT), University of Arizona, University of Cambridge [UK] (CAM), University of Nevada [Las Vegas] (WGU Nevada), Michigan State University [East Lansing], Michigan State University System, Smithsonian Institution, Arizona State University [Tempe] (ASU), Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), University of Aberdeen, Tait K. T., McCubbin F. M., Smith C. L., Agee C. B., Busemann H., Cavalazzi B., Debaille V., Hutzler A., Usui T., Kminek G., Meyer M. A., Beaty D. W., Carrier B. L., Haltigin T., Hays L. E., Cockell C. S., Glavin D. P., Grady M. M., Hauber E., Marty B., Pratt L. M., Regberg A. B., Smith A. L., Summons R. E., Swindle T. D., and Tosca N. J.
- Subjects
geology ,laboratory experiments ,Extraterrestrial Environment ,Mars Sample Return Planning Group 2 (MSPG2) ,astrobiology ,Mars ,Dust ,curation ,sample return ,Space Flight ,exploration ,Agricultural and Biological Sciences (miscellaneous) ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,sample receiving facility ,Exobiology ,Gases - Abstract
The Mars Sample Return Planning Group 2 (MSPG2) was tasked with identifying the steps that encompass all the curation activities that would happen within the MSR Sample Receiving Facility (SRF) and any anticipated curation-related requirements. An area of specific interest is the necessary analytical instrumentation. The SRF would be a Biosafety Level-4 facility where the returned MSR flight hardware would be opened, the sample tubes accessed, and the martian sample material extracted from the tubes. Characterization of the essential attributes of each sample would be required to provide enough information to prepare a sample catalog used in guiding the preparation of sample-related proposals by the world's research community and informing decisions by the sample allocation committee. The sample catalog would be populated with data and information generated during all phases of activity, including data derived concurrent with Mars 2020 sample-collecting rover activity, sample transport to Earth, and initial sample characterization within the SRF. We conclude that initial sample characterization can best be planned as a set of three sequential phases, which we have called Pre-Basic Characterization (Pre-BC), Basic Characterization (BC), and Preliminary Examination (PE), each of which requires a certain amount of instrumentation. Data on specific samples and subsamples obtained during sample safety assessments and time-sensitive scientific investigations would also be added to the catalog. There are several areas where future work would be beneficial to prepare for the receipt of samples, which would include the design of a sample tube isolation chamber and a strategy for opening the sample tubes and removing dust from the tube exteriors. Executive Summary All material collected from Mars (gases, dust, rock, regolith) would need to be carefully handled, stored, and analyzed following Earth return to minimize the alteration or contamination that could occur on Earth and maximize the scientific information that can be attained from the samples now and into the future. A Sample Receiving Facility (SRF) is where the Earth Entry System (EES) would be opened and the sample tubes opened and processed after they land on Earth. Samples should be accessible for research in biocontainment for time-sensitive studies and eventually, when deemed safe for release after sterilization or biohazard assessment, should be transferred out of biocontainment for allocation to scientific investigators in outside laboratories. There are two main mechanisms for allocation of samples outside the SRF: 1) Wait until the implementation of the Sample Safety Assessment Protocol (Planetary Protection) results concludes that the samples are non-hazardous, 2) Render splits of the samples non-hazardous by means of sterilization. To make these samples accessible, a series of observations and analytical measurements need to be completed to produce a sample catalog for the scientific community. Specialist members of the Mars Sample Return Planning Group Phase 2 (MSPG2), referred to here as the Curation Focus Group, have identified four curation goals that encompass all of the activities within the SRF: 1.Documentation of the state of the sample tubes and their contents prior to opening, 2.Inventory and tracking of the mass of each sample, 3.Preliminary assessment of lithology and any macroscopic forms of heterogeneity (on all the samples, non-invasive, in pristine isolators), 4.Sufficient characterization of the essential attributes of each sample to prepare a sample catalog and respond to requests by the sample allocation committee (partial samples, invasive, outside of pristine isolators). The sample catalog will provide data for the scientific community to make informed requests for samples for scientific investigations and for the approval of allocations of appropriate samples to satisfy these requests. The sample catalog would be populated with data and information generated during all phases of activity, including data derived from the landed Mars 2020 mission, during sample collection and transport to Earth, and reception within the Sample Receiving Facility. Data on specific samples and subsamples would also be generated during curation activities carried out within the Sample Receiving Facility and during sample safety assessments, time-sensitive studies, and a series of initial sample characterization steps we refer to as Pre-Basic Characterization (Pre-BC), Basic Characterization (BC), and Preliminary Examination (PE) phases. A significant portion of the Curation Focus Group's efforts was to determine which instrumentation would be required to produce a sample catalog for the scientific community and how and when certain instrumentation should be used. The goal is to provide enough information for the PIs to request material for their studies but to avoid facilitating studies that target scientific research that is better left to peer-reviewed competitive processes. We reviewed the proposed scientific objectives of the International MSR Objectives and Samples Team (iMOST) (Beaty
- Published
- 2021
- Full Text
- View/download PDF
14. Proteorhodopsin Photosystem Gene Expression Enables Photophosphorylation in a Heterologous Host
- Author
-
Martinez, A., Bradley, A. S., Waldbauer, J. R., Summons, R. E., and DeLong, E. F.
- Published
- 2007
- Full Text
- View/download PDF
15. First Detection of Non-Chlorinated Organic Molecules Indigenous to a Martian Sample
- Author
-
Freissinet, C, Glavin, D. P, Buch, A, Szopa, C, Summons, R. E, Eigenbrode, J. L, Archer, P. D., Jr, Brinckerhoff, W. B, Brunner, A. E, Cabane, M, Franz, H. B, Kashyap, S, Malespin, C. A, Martin, M, Millan, M, Miller, K, Navarro-González, R, Prats, B. D, Steele, A, Teinturier, S, and Mahaffy, P. R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Sample Analysis at Mars (SAM) instrument onboard Curiosity can perform pyrolysis of martian solid samples, and analyze the volatiles by direct mass spectrometry in evolved gas analysis (EGA) mode, or separate the components in the GCMS mode (coupling the gas chromatograph and the mass spectrometer instruments). In addition, SAM has a wet chemistry laboratory designed for the extraction and identification of complex and refractory organic molecules in the solid samples. The chemical derivatization agent used, N-methyl-N-tert-butyldimethylsilyl- trifluoroacetamide (MTBSTFA), was sealed inside seven Inconel metal cups present in SAM. Although none of these foil-capped derivatization cups have been punctured on Mars for a full wet chemistry experiment, an MTBSTFA leak was detected and the resultant MTBSTFA vapor inside the instrument has been used for a multi-sol MTBSTFA derivatization (MD) procedure instead of direct exposure to MTBSTFA liquid by dropping a solid sample directly into a punctured wet chemistry cup. Pyr-EGA, Pyr-GCMS and Der-GCMS experiments each led to the detection and identification of a variety of organic molecules in diverse formations of Gale Crater.
- Published
- 2016
16. Effect of the Presence of Chlorates and Perchlorates on the Pyrolysis of Organic Compounds: Implications for Measurements Done with the SAM Experiment Onboard the Curiosity Rover
- Author
-
Millan, M, Szopa, C, Buch, A, Belmahdi, I, Coll, P, Glavin, D. P, Freissinet, C, Archer, P. D., Jr, Sutter, B, Summons, R. E, and Mahaffy, P
- Subjects
Inorganic, Organic And Physical Chemistry ,Lunar And Planetary Science And Exploration - Abstract
The Mars Science Laboratory (MSL) Curiosity Rover carries a suite of instruments, one of which is the Sample Analysis at Mars (SAM) experiment. SAM is devoted to the in situ molecular analysis of gases evolving from solid samples collected by Curiosity on Mars surface/sub-surface. Among its three analytical devices, SAM has a gaschromatograph coupled to a quadrupole mass spectrometer (GC-QMS). The GC-QMS is devoted to the separation and identification of organic and inorganic material. Before proceeding to the GC-QMS analysis, the solid sample collected by Curiosity is subjected to a thermal treatment thanks to the pyrolysis oven to release the volatiles into the gas processing system. Depending on the sample, a derivatization method by wet chemistry: MTBSTFA of TMAH can also be applied to analyze the most refractory compounds. The GC is able to separate the organic molecules which are then detected and identified by the QMS (Figure 1). For the second time after the Viking landers in 1976, SAM detected chlorinated organic compounds with the pyrolysis GC-QMS experiment. The detection of perchlorates salts (ClO4-) in soil at the Phoenix Landing site suggests that the chlorohydrocarbons detected could come from the reaction of organics with oxychlorines. Indeed, laboratory pyrolysis experiments have demonstrated that oxychlorines decomposed into molecular oxygen and volatile chlorine (HCl and/or Cl2) when heated which then react with the organic matter in the solid samples by oxidation and/or chlorination processes.
- Published
- 2016
17. The Effect of Ammonium on Photosynthesis and the Pathway of Ammonium Assimilation in Gymnodinium microadriaticum in vitro and in Symbiosis with Tridacnid Clams and Corals
- Author
-
Summons, R. E., Boag, T. S., and Osmond, C. B.
- Published
- 1986
18. Evidence for the Glutamine Synthetase/Glutamate Synthase Pathway during the Photorespiratory Nitrogen Cycle in Spinach Leaves
- Author
-
Woo, K. C. and Summons, R. E.
- Published
- 1982
19. A Molecular Organic Carbon Isotope Record of Miocene Climate Changes
- Author
-
Schoell, M., Schouten, S., de Leeuw, J. W., and Summons, R. E.
- Published
- 1994
20. Carbon and Sulfur Isotopic Signatures of Ancient Life and Environment at the Microbial Scale: Neoarchean Shales and Carbonates
- Author
-
Williford, K. H, Ushikubo, T, Lepot, K, Kitajima, K, Hallmann, C, Spicuzza, M. J, Kozdon, R, Eigenbrode, J. L, Summons, R. E, and Valley, J. W
- Subjects
Lunar And Planetary Science And Exploration ,Life Sciences (General) - Abstract
An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three- and four-isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of delta(sup 13)C, delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS delta(sup 13)C measurement of organic matter is identified. Small (2-3 microns) organic domains in carbonate matrices are analyzed with sub-permil accuracy and precision. Separate 20- to 50-micron domains of kerogen in a single approx. 0.5 cu cm sample of the approx. 2.7 Ga Tumbiana Formation have delta(sup 13)C = −52.3 +/- 0.1per mille and −34.4 +/- 0.1per mille, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the approx. 2.6 Ga Jeerinah Formation and the approx. 2.5 Ga Mount McRae Shale is systematically 13C-enriched relative to co-occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Delta(sup 33)S and more extreme spatial gradients in Delta(sup 33)S and Delta(sup 36)S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of delta(sup 34)S, Delta(sup 33)S, and Delta(sup 36)S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass-independent sulfur isotope fractionation (S-MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S-MIF during the first half of the planet's history.
- Published
- 2015
- Full Text
- View/download PDF
21. The Scientific Importance of Returning Airfall Dust as a Part of Mars Sample Return (MSR)
- Author
-
Grady, M., Summons, R E, Swindle, T. D., Westall, F., Kminek, G., Meyer, M., Beaty, D., Carrier, B. L., Haltigin, T., Hays, Lindsay, Agee, Carl, Busemann, H., Cavalazzi, B., Cockell, C., Debaille, V, Glavin, D P, Hauber, Ernst, Hutzler, Aurore, Marty, B., McCubbin, F. M., Pratt, Lisa, Regberg, Aaron, Smith, Alvin, Smith, C., Tait, Kimberly, Tosca, N. J., Udry, Arya, Usui, Tomohiro, Velbel, Michael, Wadhwa, M., Zorzano, M.-P., The Open University [Milton Keynes] (OU), Massachusetts Institute of Technology (MIT), University of Arizona, Centre de biophysique moléculaire (CBM), Université d'Orléans (UO)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), European Space Agency (ESA), NASA Headquarters, California Institute of Technology (CALTECH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Canadian Space Agency (CSA), The University of New Mexico [Albuquerque], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), University of Bologna, University of Edinburgh, Université libre de Bruxelles (ULB), NASA Goddard Space Flight Center (GSFC), German Aerospace Center (DLR), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, Indiana University [Bloomington], Indiana University System, NASA, The Natural History Museum [London] (NHM), University of Glasgow, Royal Ontario Museum, University of Cambridge [UK] (CAM), University of Nevada [Las Vegas] (WGU Nevada), Japan Aerospace Exploration Agency [Sagamihara] (JAXA), Michigan State University [East Lansing], Michigan State University System, Smithsonian Institution, Arizona State University [Tempe] (ASU), University of Aberdeen, and Grady Monica M., Summons Roger E., Swindle Timothy D., Westall Frances, Kminek Gerhard, Meyer Michael A., Beaty David W., Carrier Brandi L., Haltigin Timothy, Hays Lindsay E., Agee Carl B., Busemann Henner, Cavalazzi Barbara, Cockell Charles S., Vinciane Debaille, Glavin Daniel P., Hauber Ernst, Hutzler Aurore, Marty Bernard, McCubbin Francis M., Pratt Lisa M., Regberg Aaron B., Smith Alvin L., Smith Caroline L., Tait Kimberly T., Tosca Nicholas J., Udry Arya, Usui Tomohiro, Velbel Michael A., Wadhwa Meenakshi, Zorzano Maria-Paz
- Subjects
geology ,Extraterrestrial Environment ,MSR Sample Receiving Facility, MSR Campaign elements ,surface-atmosphere interaction ,Atmosphere ,Earth, Planet ,Mars ,Dust ,sample return ,Agricultural and Biological Sciences (miscellaneous) ,MSR Campaign ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Humans ,samples ,global circulation ,mineralogy ,surface processes ,laboratory analysis - Abstract
International audience; Dust transported in the martian atmosphere is of intrinsic scientific interest and has relevance for the planning of human missions in the future. The MSR Campaign, as currently designed, presents an important opportunity to return serendipitous, airfall dust. The tubes containing samples collected by the Perseverance rover would be placed in cache depots on the martian surface perhaps as early as 2023-24 for recovery by a subsequent mission no earlier than 2028-29, and possibly as late as 2030-31. Thus, the sample tube surfaces could passively collect dust for multiple years. This dust is deemed to be exceptionally valuable as it would inform our knowledge and understanding of Mars' global mineralogy, surface processes, surface-atmosphere interactions, and atmospheric circulation. Preliminary calculations suggest that the total mass of such dust on a full set of tubes could be as much as 100 mg and, therefore, sufficient for many types of laboratory analyses. Two planning steps would optimize our ability to take advantage of this opportunity: (1) the dust-covered sample tubes should be loaded into the Orbiting Sample container (OS) with minimal cleaning and (2) the capability to recover this dust early in the workflow within an MSR Sample Receiving Facility (SRF) would need to be established. A further opportunity to advance dust/atmospheric science using MSR, depending upon the design of the MSR Campaign elements, may lie with direct sampling and the return of airborne dust.
- Published
- 2021
- Full Text
- View/download PDF
22. Volatile and Organic Compositions of Sedimentary Rocks in Yellowknife Bay, Gale Crater, Mars
- Author
-
Ming, D. W., Archer, P. D., Jr., Glavin, D. P., Eigenbrode, J. L., Franz, H. B., Sutter, B., Brunner, A. E., Stern, J. C., Freissinet, C., McAdam, A. C., Mahaffy, P. R., Cabane, M., Coll, P., Campbell, J. L., Atreya, S. K., Niles, P. B., Bell, J. F., III, Bish, D. L., Brinckerhoff, W. B., Buch, A., Conrad, P. G., Des Marais, D. J., Ehlmann, B. L., Fairén, A. G., Farley, K., Flesch, G. J., Francois, P., Gellert, R., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., Leshin, L. A., Lewis, K. W., McLennan, S. M., Miller, K. E., Moersch, J., Morris, R. V., Navarro-González, R., Pavlov, A. A., Perrett, G. M., Pradler, I., Squyres, S. W., Summons, R. E., Steele, A., Stolper, E. M., Sumner, D. Y., Szopa, C., Teinturier, S., Trainer, M. G., Treiman, A. H., Vaniman, D. T., Vasavada, A. R., Webster, C. R., Wray, J. J., and Yingst, R. A.
- Published
- 2014
23. Carbon and Sulfur Isotopic Composition of Yellowknife Bay Sediments: Measurements by the Sample Analysis at Mars (SAM) Quadrupole Mass Spectrometer
- Author
-
Franz, H. B, Mahaffy, P. R, Stern, J. C, Eigenbrode, J. L, Steele, A, Ming, D. W, McAdam, A. C, Freissinet, C, Glavin, D. P, Archer, P. D, Brunner, A. E, Grotzinger,J. P, Jones, J. H, Leshin, L. A, Miller, K, Morris, R. V, Navarro-Gonzalez, R, Niles, P. B, Owen, T. C, Summons, R. E, Sutter, B, and Webster, C. R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Since landing at Gale Crater in Au-gust 2012, the Sample Analysis at Mars (SAM) instru-ment suite on the Mars Science Laboratory (MSL) “Curiosity” rover has analyzed solid samples from the martian regolith in three locations, beginning with a scoop of aeolian deposits from the Rocknest (RN) sand shadow. Curiosity subsequently traveled to Yellowknife Bay, where SAM analyzed samples from two separate holes drilled into the Sheepbed Mudstone, designated John Klein (JK) and Cumberland (CB). Evolved gas analysis (EGA) of all samples revealed the presence of H2O as well as O-, C- and S-bearing phas-es, in most cases at abundances below the detection limit of the CheMin instrument. In the absence of definitive mineralogical identification by CheMin, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases through examination of tem-peratures at which gases are evolved from solid sam-ples. In addition, the isotopic composition of these gas-es may be used to identify possible formation scenarios and relationships between phases. Here we report C and S isotope ratios for CO2 and SO2 evolved from the JK and CB mudstone samples as measured with SAM’s quadrupole mass spectrometer (QMS) and draw com-parisons to RN.
- Published
- 2014
24. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone
- Author
-
Glavin, D, Freissnet, C, Eigenbrode, J, Miller, K, Martin, M, Summons, R. E, Steele, A, Archer, D, Brunner, A, Buch, A, Cabane, M, Coll, P, Conrad, P, Coscia, D, Dworkin, J, Grotzinger, J, Mahaffy, P, McKay, C, Ming, D, Navarro-Gonzalez, R, Sutter, B, Szopa, C, and Teinturier, S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mudstone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.
- Published
- 2014
25. Organic Molecules in the Sheepbed Mudstone, Gale Crater, Mars
- Author
-
Freissinet, C, Glavin, D. P, Mahaffy, P. R, Miller, K. E, Eigenbrode, J. L, Summons, R. E, Brunner, A. E, Buch, A, Szopa, C, Archer, P. D, Franz, H. B, and Steele, A
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic volatiles thermally released from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy. Here we report on various chlorinated hydrocarbons (chloromethanes, chlorobenzene and dichloroalkanes) detected at elevated levels above instrument background at the Cumberland (CB) drill site, and discuss their possible sources.
- Published
- 2014
26. Oxidation of the Ediacaran Ocean
- Author
-
Fike, D. A., Grotzinger, J. P., Pratt, L. M., and Summons, R. E.
- Published
- 2006
- Full Text
- View/download PDF
27. Investigating the Origin of Chlorohydrocarbons Detected by the Sample Analysis at Mars (SAM) Instrument at Rocknest
- Author
-
Glavin, D, Archer, D, Brunner, A, Buch, A, Cabane, M, Coll, P, Conrad, P, Coscia, D, Dworkin, J, Eigenbrode, J, Freissinet, C, Mahaffy, P, Martin, M, McKay, C, Miller, K, Ming, D, Navarro-Gonzalez, R, Steele, A, Summons, R. E, and Sutter, B
- Subjects
Lunar And Planetary Science And Exploration - Published
- 2013
28. Detection of Organic Constituents Including Chloromethylpropene in the Analyses of the ROCKNEST Drift by Sample Analysis at Mars (SAM)
- Author
-
Eigenbrode, J. L, Glavin, D, Coll, P, Summons, R. E, Mahaffy, P, Archer, D, Brunner, A, Conrad, P, Freissinet, C, Martin, M, McKay, C, Hurowitz, J, Evans, J, Anderson, M, Jandura, L, Brown, K, Logan C, Kuhn, S, Anderson, R, Beegle, L, Blakkolb, B, Katz, I, Limonadi, D, Rainen, R, and Umland, J
- Subjects
Geophysics - Abstract
key challenge in assessing the habitability of martian environments is the detection of organic matter - a requirement of all life as we know it. The Curiosity rover, which landed on August 6, 2012 in Gale Crater of Mars, includes the Sample Analysis at Mars (SAM) instrument suite capable of in situ analysis of gaseous organic components thermally evolved from sediment samples collected, sieved, and delivered by the MSL rover. On Sol 94, SAM received its first solid sample: scooped sediment from Rocknest that was sieved to <150 m particle size. Multiple 10-40 mg portions of the scoop #5 sample were delivered to SAM for analyses. Prior to their introduction, a blank (empty cup) analysis was performed. This blank served 1) to clean the analytical instrument of SAMinternal materials that accumulated in the gas processing system since integration into the rover, and 2) to characterize the background signatures of SAM. Both the blank and the Rocknest samples showed the presence of hydrocarbon components.
- Published
- 2013
29. Influence of Calcium Perchlorate on Organics Under SAM‐Like Pyrolysis Conditions: Constraints on the Nature of Martian Organics
- Author
-
Millan, M., primary, Szopa, C., additional, Buch, A., additional, Summons, R. E., additional, Navarro‐Gonzalez, R., additional, Mahaffy, P. R., additional, and Johnson, S. S., additional
- Published
- 2020
- Full Text
- View/download PDF
30. Biomarkers as Tracers for Life on Early Earth and Mars
- Author
-
Simoneit, Bernd R. T., Summons, R. E., and Jahnke, L. L.
- Published
- 1998
- Full Text
- View/download PDF
31. Analysis of faecal substrates sheds light into coprostanol origin, preservation and diagenesis
- Author
-
Sistiaga, A., Poyet, M., Groussin, M., Collins, M., Summons, R. E., Sistiaga, A., Poyet, M., Groussin, M., Collins, M., and Summons, R. E.
- Abstract
Cholesterol plays an essential role in eukaryotic life as a structural building block of cell membranes and for signalling1-2, and it is the precursor of vital biomolecules including bile acids or vitamin D3. While the mechanisms of cholesterol homeostasis have been largely investigated but the role of microbiome-related functions on cholesterol metabolism are still poorly understood. The gastro-intestinal tract hosts millions of bacteria, viruses, archaea, parasites and fungi that influence the metabolic abilities of their host. Many of these microbes generate metabolites that the enzymes from the host are not capable of producing4. In most individuals, much of cholesterol in the gut undergoes microbial conversion to its major metabolite in faeces, coprostanol. Coprostanol, a 5β-stanol, is uniquely formed through microbial saturation of its precursor Δ5 - sterol cholesterol by specific bacteria present in the gut of mammals5, and it's generation depends primarily on the diet, the endogenous cholesterol biosynthesis and the efficiency of the gut microbial action, which produces a specific chemical signature6-7. Coprostanol, is the result of the conversion of dietary and de novo synthesized cholesterol6. This microbial conversion occurs in most humans, and prevents the reabsorption of cholesterol in the colon, which can be an advantage against cholesterol-related cardiovascular diseases4. Nevertheless, the microbial actors behind this conversion are yet to be elucidated, and only a few cholesterol reducing bacteria, mainly Bacteroides and Eubacterium, have proven to be able to convert cholesterol into coprostanol in vitro8-9. Further, the genes or enzymes involved in this conversion remain poorly investigated. Once excreted, coprostanol is believed to remain mostly intact during early diagenesis, which together with the characteristic distribution of coprostanol and its homolog
- Published
- 2019
32. Compound-specific Isotope Analysis of Cyanobacterial Pure cultures and Microbial Mats: Effects of Photorespiration?
- Author
-
Jahnke, L. L and Summons, R. E
- Subjects
Life Sciences (General) - Abstract
Microbial mats are considered modern homologs of Precambrian stromatolites. The carbon isotopic compositions of organic matter and biomarker lipids provide clues to the depositional environments of ancient mat ecosystems. As the source of primary carbon fixation for over two billion years, an understanding of cyanobacterial lipid biosynthesis, associated isotopic discriminations, and the influence of physiological factors on growth and isotope expression is essential to help us compare modern microbial ecosystems to their ancient counterparts. Here, we report on the effects of photorespiration (PR) on the isotopic composition of cyanobacteria and biomarker lipids, and on potential PR effects associated with the composition of various microbial mats. The high light, high O2 and limiting CO2 conditions often present at the surface of microbial mats are known to support PR in cyanobacteria. The oxygenase function of ribulose bisphosphate carboxylase/oxygenase can result in photoexcretion of glycolate and subsequent degration by heterotrophic bacteria. We have found evidence which supports an isotopic depletion (increased apparent E) scaled to O2 level associated with growth of Phormidium luridum at low CO2 concentrations (less than 0.04%). Similar to previous studies, isotopic differences between biomass and lipid biomarkers, and between lipid classes were positively correlated with overall fractionation, and should provide a means of estimating the influence of PR on overall isotopic composition of microbial mats. Several examples of microbial mats growing in the hydrothermal waters of Yellowstone National Park and the hypersaline marine evaporation ponds at Guerrero Negro, Baja Sur Mexico will be compared with a view to PR as a possible explanation of the relatively heavy C-isotope composition of hypersaline mats.
- Published
- 2006
33. Inhibitors of cytokinin metabolism III. The inhibition of cytokininN-glucosylation in radish cotyledons
- Author
-
Tao, G. -Q., Letham, D. S., Hocart, C. H., and Summons, R. E.
- Published
- 1991
- Full Text
- View/download PDF
34. Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives
- Author
-
Jahnke, L. L, Eder, W, Huber, R, Hope, J. M, Hinrichs, K. U, Hayes, J. M, Des Marais, D. J, Cady, S. L, and Summons, R. E
- Subjects
Life Sciences (General) - Abstract
The molecular and isotopic compositions of lipid biomarkers of cultured Aquificales genera have been used to study the community and trophic structure of the hyperthermophilic pink streamers and vent biofilm from Octopus Spring. Thermocrinis ruber, Thermocrinis sp. strain HI 11/12, Hydrogenobacter thermophilus TK-6, Aquifex pyrophilus, and Aquifex aeolicus all contained glycerol-ether phospholipids as well as acyl glycerides. The n-C(20:1) and cy-C(21) fatty acids dominated all of the Aquificales, while the alkyl glycerol ethers were mainly C(18:0). These Aquificales biomarkers were major constituents of the lipid extracts of two Octopus Spring samples, a biofilm associated with the siliceous vent walls, and the well-known pink streamer community (PSC). Both the biofilm and the PSC contained mono- and dialkyl glycerol ethers in which C(18) and C(20) alkyl groups were prevalent. Phospholipid fatty acids included both the Aquificales n-C(20:1) and cy-C(21), plus a series of iso-branched fatty acids (i-C(15:0) to i-C(21:0)), indicating an additional bacterial component. Biomass and lipids from the PSC were depleted in (13)C relative to source water CO(2) by 10.9 and 17.2 per thousand, respectively. The C(20-21) fatty acids of the PSC were less depleted than the iso-branched fatty acids, 18.4 and 22.6 per thousand, respectively. The biomass of T. ruber grown on CO(2) was depleted in (13)C by only 3.3 per thousand relative to C source. In contrast, biomass was depleted by 19.7 per thousand when formate was the C source. Independent of carbon source, T. ruber lipids were heavier than biomass (+1.3 per thousand). The depletion in the C(20-21) fatty acids from the PSC indicates that Thermocrinis biomass must be similarly depleted and too light to be explained by growth on CO(2). Accordingly, Thermocrinis in the PSC is likely to have utilized formate, presumably generated in the spring source region.
- Published
- 2001
- Full Text
- View/download PDF
35. Carbon Isotopic Fractionation Associated with Cyanobacterial Biomarkers: 2-Methylhopanoids and Methyl-Branched Alkanes
- Author
-
Jahnke, L. L, Summons, R. E, Hope, J. M, and Cullings, K. W
- Subjects
Geophysics - Abstract
This paper reports the carbon isotopic fractionations associated with the biosynthesis of biomarker lipids in a number of cyanobacteria obtained from culture collections and isolated from the coniform mats of Yellowstone National Park. Additional information is contained in the original extended abstract.
- Published
- 2001
36. Composition of Hydrothermal Vent Microbial Communities as Revealed by Analyses of Signature Lipids, Stable Carbon Isotopes and Aquificales Cultures
- Author
-
Jahnke, L. L, Eder, W, Huber, Robert, Hinrichs, K-U, Hayes, J. M, DesMarais, D. J, Cady, S. L, Hope, J. M, and Summons, R. E
- Subjects
Geophysics - Abstract
This paper describes a study of lipid biomarker composition and carbon isotopic fractionation in cultured Aquificales and natural analogues from Yellowstone National Park. Additional information is contained in the original extended abstract.
- Published
- 2001
37. Analysis of Faecal Substrates Sheds Light into Coprostanol Origin, Preservation and Diagenesis
- Author
-
Sistiaga, A., primary, Poyet, M., additional, Groussin, M., additional, Collins, M., additional, and Summons, R. E., additional
- Published
- 2019
- Full Text
- View/download PDF
38. Molecular Characterization and Effect of Diagenesis and Maduration of Melanin in the Fossil Record
- Author
-
Herrera, J., primary, Sistiaga, A., additional, Vinther, J., additional, Brown, C. M., additional, Henderson, D. M., additional, and Summons, R. E., additional
- Published
- 2019
- Full Text
- View/download PDF
39. Biomarker Insights into the End-Triassic Mass Extinction in the Sw Uk – an Oversimplified Iconic Carbon Isotope Excursion
- Author
-
Fox, C. P., primary, Whiteside, J. H., additional, Olsen, P. E., additional, Cui, X., additional, Summons, R. E., additional, and Grice, K., additional
- Published
- 2019
- Full Text
- View/download PDF
40. Organic Geochemical Perspectives on Hydrothermalism at Olduvai Gorge, 1.7 Mya
- Author
-
Sistiaga, A., primary, Husain, F., additional, Uribelarrea, D., additional, Martín-Perea, D. M., additional, Ferland, T., additional, Freeman, K. H., additional, Diez-Martín, F., additional, Baquedano, E., additional, Mabulla, A., additional, Domínguez-Rodrigo, M., additional, and Summons, R. E., additional
- Published
- 2019
- Full Text
- View/download PDF
41. Biomarker Taphonomy in Holocene-Age Concretions
- Author
-
Mojarro, A., primary, Cui, X., additional, Vinther, J., additional, and Summons, R. E., additional
- Published
- 2019
- Full Text
- View/download PDF
42. 2-Methylhopanoids: Biomarkers for Cyanobacteria and for Oxygenic Photosynthesis
- Author
-
Summons, R. E, Jahnke, L. L, Hope, J. M, and Logan, G. A
- Subjects
Life Sciences (General) - Abstract
This paper reports new biomarker and carbon isotopic data for cultured cyanobacteria, cyano-bacterially- dominated ecosystems and ancient sedi-ments and petroleum. We found that cyanobacteria are the predominant source of a distinctive membrane lipid biomarker, namely 2- methylbacteriohopanepolyol (2-Me-BHP). We then sought evidence for a geochemical record of the fossil hydrocarbon analogues of these compounds (2- methylhopanes) and found a trend toward their in-creased relative abundance in marine sediments going back through geological time to 2500 Ma. We conclude that cyanobacteria were the dominant form of phytoplankton and source of molecular oxygen in the Proterozoic ocean. Extending the geological record of cyanobacteria further to Archean times is now a matter of finding a suitably preserved rock record. Additional information is contained in the original extended abstract.
- Published
- 1999
43. Lipid biomarkers for bacterial ecosystems: studies of cultured organisms, hydrothermal environments and ancient sediments
- Author
-
Summons, R. E, Jahnke, L. L, and Simoneit, B. R
- Subjects
Life Sciences (General) - Abstract
This paper forms part of our long-term goal of using molecular structure and carbon isotopic signals preserved as hydrocarbons in ancient sediments to improve understanding of the early evolution of Earth's surface environment. We are particularly concerned with biomarkers which are informative about aerobiosis. Here, we combine bacterial biochemistry with the organic geochemistry of contemporary and ancient hydrothermal ecosystems to construct models for the nature, behaviour and preservation potential of primitive microbial communities. We use a combined molecular and isotopic approach to characterize lipids produced by cultured bacteria and test a variety of culture conditions which affect their biosynthesis. This information is then compared with lipid mixtures isolated from contemporary hot springs and evaluated for the kinds of chemical change that would accompany burial and incorporation into the sedimentary record. In this study we have shown that growth temperature does not appear to alter isotopic fractionation within the lipid classes produced by a methanotropic bacterium. We also found that cultured cyanobacteria biosynthesize diagnostic methylalkanes and dimethylalkanes with the latter only made when growing under low pCO2. In an examination of a microbial mat sample from Octopus Spring, Yellowstone National Park (USA), we could readily identify chemical structures with 13C contents which were diagnostic for the phototrophic organisms such as cyanobacteria and Chloroflexus. We could not, however, find molecular evidence for operation of a methane cycle in the particular mat samples we studied.
- Published
- 1996
44. Terminal Proterozoic reorganization of biogeochemical cycles
- Author
-
Logan, G. A, Hayes, J. M, Hieshima, G. B, and Summons, R. E
- Subjects
Geosciences (General) - Abstract
The Proterozoic aeon (2,500-540 million years ago) saw episodic increases in atmospheric oxygen content, the evolution of multicellular life and, at its close, an enormous radiation of animal diversity. These profound biological and environmental changes must have been linked, but the underlying mechanisms have been obscure. Here we show that hydrocarbons extracted from Proterozoic sediments in several locations worldwide are derived mainly from bacteria or other heterotrophs rather than from photosynthetic organisms. Biodegradation of algal products in sedimenting matter was therefore unusually complete, indicating that organic material was extensively reworked as it sank slowly through the water column. We propose that a significant proportion of this reworking will have been mediated by sulphate-reducing bacteria, forming sulphide. The production of sulphide and consumption of oxygen near the ocean surface will have inhibited transport of O2 to the deep ocean. We find that preservation of algal-lipid skeletons improves at the beginning of the Cambrian, reflecting the increase in transport by rapidly sinking faecal pellets. We suggest that this rapid removal of organic matter will have increased oxygenation of surface waters, leading to a descent of the O2-sulphide interface to the sea floor and to marked changes in the marine environment, ultimately contributing to the Cambrian radiation.
- Published
- 1995
- Full Text
- View/download PDF
45. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers
- Author
-
Summons, R. E, Jahnke, L. L, and Roksandic, Z
- Subjects
Exobiology - Abstract
Experiments with cultured aerobic methane oxidising bacteria confirm that their biomarker lipids will be significantly depleted in 13C compared to the substrate. The methanotrophic bacteria Methylococcus capsulatus and Methylomonas methanica, grown on methane and using the RuMP cycle for carbon assimilation, show maximum 13C fractionation of approximately 30% in the resultant biomass. In M. capsulatus, the maximum fractionation is observed in the earliest part of the exponential growth stage and decreases to approximately 16% as cells approach stationary phase. This change may be associated with a shift from the particulate form to the soluble form of the methane monooxygenase enzyme. Less than maximum fractionation is observed when cells are grown with reduced methane availability. Biomass of M. capsulatus grown on methanol was depleted by 9% compared to the substrate. Additional strong 13C fractionation takes place during polyisoprenoid biosynthesis in methanotrophs. The delta 13C values of individual hopanoid and steroid biomarkers produced by these organisms were as much as l0% more negative than total biomass. In individual cultures, squalene was 13C-enriched by as much as 14% compared to the triterpane skeleton of bacteriohopaneaminopentol. Much of the isotopic dispersion in lipid metabolites could be attributed to shifts in their relative abundances, combined with an overall reduction in fractionation during the growth cycle. In cells grown on methanol, where there was no apparent effect of growth stage on overall fractionation there were still significant isotopic differences between closely related lipids including a 5.3% difference between the hopane and 3 beta-methylhopane skeletons. Hopane and sterane polyisoprenoids were also 13C-depleted compared to fatty acids. These observations have significant implications for the interpretation of specific compound isotopic signatures now being measured for hydrocarbons and other lipids present in sediments and petroleum. In particular, biomarker lipids produced by a single organism do not necessarily have the same carbon isotopic composition.
- Published
- 1994
- Full Text
- View/download PDF
46. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis
- Author
-
Freeman, K. H, Boreham, C. J, Summons, R. E, and Hayes, J. M
- Subjects
Geosciences (General) - Abstract
Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.
- Published
- 1994
- Full Text
- View/download PDF
47. An isotopic biogeochemical study of the Green River oil shale
- Author
-
Collister, J. W, Summons, R. E, Lichtfouse, E, and Hayes, J. M
- Subjects
Exobiology - Abstract
Thirty-five different samples from three different sulfur cycles were examined in this stratigraphically oriented study of the Shell 22x-l well (U.S.G.S. C177 core) in the Piceance Basin, Colorado. Carbon isotopic compositions of constituents of Green River bitumens indicate mixing of three main components: products of primary photoautotrophs and their immediate consumers (delta approximately -30% vs PDB), products of methanotrophic bacteria (delta approximately -85%), and products of unknown bacteria (delta approximately -40%). For individual compounds synthesized by primary producers, delta-values ranged from -28 to -32%. 13C contents of individual primary products (beta-carotane, steranes, acyclic isoprenoids, tricyclic triterpenoids) were not closely correlated, suggesting diverse origins for these materials. 13C contents of numerous hopanoids were inversely related to sulfur abundance, indicating that they derived both from methanotrophs and from other bacteria, with abundances of methanotrophs depressed when sulfur was plentiful in the paleoenvironment. gamma-Cerane coeluted with 3 beta(CH3),17 alpha(H),21 beta(H)-hopane, but delta-values could be determined after deconvolution. gamma-Cerane (delta approximately -25%) probably derives from a eukaryotic heterotroph grazing on primary materials, the latter compound (delta approximately -90%) must derive from methanotrophic organisms. 13C contents of n-alkanes in bitumen differed markedly from those of paraffins generated pyrolytically. Isotopic and quantitative relationships suggest that alkanes released by pyrolysis derived from a resistant biopolymer of eukaryotic origin and that this was a dominant constituent of total organic carbon.
- Published
- 1992
- Full Text
- View/download PDF
48. A Field Guide to Finding Fossils on Mars
- Author
-
McMahon, S., primary, Bosak, T., additional, Grotzinger, J. P., additional, Milliken, R. E., additional, Summons, R. E., additional, Daye, M., additional, Newman, S. A., additional, Fraeman, A., additional, Williford, K. H., additional, and Briggs, D. E. G., additional
- Published
- 2018
- Full Text
- View/download PDF
49. The “Dirty Ice” of the McMurdo Ice Shelf: Analogues for biological oases during the Cryogenian
- Author
-
Hawes, I., primary, Jungblut, A. D., additional, Matys, E. D., additional, and Summons, R. E., additional
- Published
- 2018
- Full Text
- View/download PDF
50. O-glucosylzeatin and Related Compounds—A New Group of Cytokinin Metabolites
- Author
-
LETHAM, D. S., PARKER, C. W., DUKE, C. C., SUMMONS, R. E., and MacLEOD, J. K.
- Published
- 1977
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.