CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Estudos transversais na área da saúde usualmente possuem desfecho binário e a regressão logística é a primeira opção para responder as perguntas do pesquisador. No entanto, algumas condições levam a não adequação do modelo, em sua forma padrão, para o tratamento do desfecho binário. A presença de cura, isso é, quando sabemos que uma parcela desconhecida da população não está mais em risco de desenvolver o evento de interesse, é um exemplo deste tipo de situação. O presente trabalho foi desenvolvido na linha de pesquisa “Metodologia e estatística na pesquisa em traumatismos dentários”, parceria estabelecida, desde 2015, entre o Programa Traumatismos Dentários da Faculdade de Odontologia da UFMG (PTD FAO UFMG) e o Departamento de Estatística do ICEx UFMG. O principal interesse dos pesquisadores foi estabelecer fatores de risco para a presença de Reabsorção Radicular Externa Inflamatória (RREI). A regressão logística foi a metodologia indicada para o estudo da associação entre fatores clínicos e radiográficos, medidos na primeira consulta do paciente no PTD FAO UFMG, e o desfecho de interesse, a RREI. Entretanto, a RREI só é esperada naqueles casos em que há necrose pulpar e infecção do canal radicular, ou seja, dentes cuja cicatrização pulpar for favorável não estão sob risco de desenvolver RREI. Como esta definição não é possível na consulta inicial, ou seja, no momento da coleta dos dados, caracteriza-se a presença de fração de cura latente, e que pode levar à inadequação do modelo logístico usual. Diop et al. (2011) afirmam que o problema de cura com resposta binária pode ser encarado como um modelo ZIB (Zero-inflated Binomial). Considerando-se que na casuística do projeto, um mesmo indivíduo pode apresentar mais de um dente traumatizado, o desafio do projeto foi ajustar um modelo logístico binário com fator de cura na presença de conglomerados. Para tanto, foi utilizado a metodologia apresentada por Hall e Zhang (2004), em que os autores flexibilizam o algoritmo EM (expectation-maximization) para acomodação de mais de uma medição por indivíduo em modelos zero inflacionados. Neste trabalho, apresentamos o modelo de regressão logística com fator de cura latente, que tem a mesma forma do binomial inflacionados de zeros. Em seguida, estendemos o modelo para acomodar conglomerados, que representam um ou mais dentes por paciente, e, finalmente, apresentamos a aplicação desta metodologia para analisar a casuística da FO-UFMG. Cross-sectional studies in the health area usually have a binary outcome and logistic regression is the first option to answer the researcher’s questions. However, some conditions lead to the model not being adequate, in its standard form, for the treatment of the binary outcome. The presence of a cure, that is, when we know that an unknown portion of the population is no longer at risk of developing the event of interest, is an example of this type of situation. This work was developed in the line of research "Methodology and statistics in research on dental trauma", a partnership established since 2015 between the Dental Trauma Program of the UFMG School of Dentistry (PTD FAO UFMG) and the ICEx-Statistics Department. UFMG. The researchers’ main interest was to establish risk factors for the presence of Inflammatory External Root Resorption (IRR). Logistic regression was the methodology indicated for the study of the association between clinical and radiographic factors, measured in the patient’s first consultation at the PTD FAO UFMG, and the outcome of interest, the RREI. However, RREI is only expected in those cases in which there is pulp necrosis and root canal infection, that is, teeth whose pulp healing is favorable are not at risk of developing RREI. As this definition is not possible in the initial consultation, that is, at the time of data collection, the presence of a latent cure fraction is characterized, which can lead to the inadequacy of the usual logistic model. Diop et al. (2011) claim that the binary response healing problem can be seen as a ZIB (Zero-inflated Binomial) model. Considering that in the project’s casuistry, the same individual may have more than one traumatized tooth, the project challenge was to adjust a binary logistic model with a cure factor in the presence of conglomerates. For this purpose, the methodology presented by Hall e Zhang (2004), in which the authors make the EM algorithm more flexible to accommodate more than one measurement per individual in zero-inflated models. In this work, we present the logistic regression model with latent cure factor, which has the same shape as the zero-inflated binomial. Then, we extend the model to accommodate clusters, which represent one or more teeth per patient, and, finally, we present the application of thisCross-sectional studies in the health area usually have a binary outcome and logistic regression is the first option to answer the researcher’s questions. However, some conditions lead to the model not being adequate, in its standard form, for the treatment of the binary outcome. The presence of a cure, that is, when we know that an unknown portion of the population is no longer at risk of developing the event of interest, is an example of this type of situation. This work was developed in the line of research "Methodology and statistics in research on dental trauma", a partnership established since 2015 between the Dental Trauma Program of the UFMG School of Dentistry (PTD FAO UFMG) and the ICEx-Statistics Department. UFMG. The researchers’ main interest was to establish risk factors for the presence of Inflammatory External Root Resorption (IRR). Logistic regression was the methodology indicated for the study of the association between clinical and radiographic factors, measured in the patient’s first consultation at the PTD FAO UFMG, and the outcome of interest, the RREI. However, RREI is only expected in those cases in which there is pulp necrosis and root canal infection, that is, teeth whose pulp healing is favorable are not at risk of developing RREI. As this definition is not possible in the initial consultation, that is, at the time of data collection, the presence of a latent cure fraction is characterized, which can lead to the inadequacy of the usual logistic model. Diop et al. (2011) claim that the binary response healing problem can be seen as a ZIB (Zero-inflated Binomial) model. Considering that in the project’s casuistry, the same individual may have more than one traumatized tooth, the project challenge was to adjust a binary logistic model with a cure factor in the presence of conglomerates. For this purpose, the methodology presented by Hall e Zhang (2004), in which the authors make the EM algorithm more flexible to accommodate more than one measurement per individual in zero-inflated models. In this work, we present the logistic regression model with latent cure factor, which has the same shape as the zero-inflated binomial. Then, we extend the model to accommodate clusters, which represent one or more teeth per patient, and, finally, we present the application of this methodology to analyze the case series at FO-UFMG m