46 results on '"Stuart-Smith, R"'
Search Results
2. Taxonomic composition of mobile epifaunal invertebrate assemblages on diverse benthic microhabitats from temperate to tropical reefs
- Author
-
Fraser, K. M., Stuart-Smith, R. D., Ling, S. D., Heather, F. J., and Edgar, G. J.
- Published
- 2020
3. Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat
- Author
-
Stuart-Smith, R. F., Roe, G. H., Li, S., and Allen, M. R.
- Published
- 2021
- Full Text
- View/download PDF
4. Warming signals in temperate reef communities following more than a decade of ecological stability
- Author
-
Soler, G. A., primary, Edgar, G. J., additional, Barrett, N. S., additional, Stuart-Smith, R. D., additional, Oh, E., additional, Cooper, A., additional, Ridgway, K. R., additional, and Ling, S. D., additional
- Published
- 2022
- Full Text
- View/download PDF
5. Functional traits reveal early responses in marine reserves following protection from fishing
- Author
-
Coleman, M. A., Bates, A. E., Stuart-Smith, R. D., Malcolm, H. A., Harasti, D., Jordan, A., Knott, N. A., Edgar, G. J., and Kelaher, B. P.
- Published
- 2015
6. Extreme weather impacts of climate change: an attribution perspective
- Author
-
Clarke, B, Otto, F, Stuart-Smith, R, and Harrington, L
- Subjects
sense organs - Abstract
Extreme event attribution aims to elucidate the link between global climate change, extreme weather events, and the harms experienced on the ground by people, property, and nature. It therefore allows the disentangling of different drivers of extreme weather from human-induced climate change and hence provides valuable information to adapt to climate change and to assess loss and damage. However, providing such assessments systematically is currently out of reach. This is due to limitations in attribution science, including the capacity for studying different types of events, as well as the geographical heterogeneity of both climate and impact data availability. Here, we review current knowledge of the influences of climate change on five different extreme weather hazards (extreme temperatures, heavy rainfall, drought, wildfire, tropical cyclones), the impacts of recent extreme weather events of each type, and thus the degree to which various impacts are attributable to climate change. For instance, heat extremes have increased in likelihood and intensity worldwide due to climate change, with tens of thousands of deaths directly attributable. This is likely a significant underestimate due to the limited availability of impact information in lower- and middle-income countries. Meanwhile, tropical cyclone rainfall and storm surge height have increased for individual events and across all basins. In the North Atlantic basin, climate change amplified the rainfall of events that, combined, caused half a trillion USD in damages. At the same time, severe droughts in many parts of the world are not attributable to climate change. To advance our understanding of present-day extreme weather impacts due to climate change developments on several levels are required. These include improving the recording of extreme weather impacts around the world, improving the coverage of attribution studies across different events and regions, and using attribution studies to explore the contributions of both climate and non-climate drivers of impacts.
- Published
- 2022
7. Fish heating tolerance scales similarly across individual physiology and populations
- Author
-
Payne, N.L., Morley, S.A., Halsey, L.G., Smith, J.A., Stuart-Smith, R., Waldock, C., Bates, A.E., Payne, N.L., Morley, S.A., Halsey, L.G., Smith, J.A., Stuart-Smith, R., Waldock, C., and Bates, A.E.
- Abstract
Extrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.
- Published
- 2021
8. Delineating reef fish trophic guilds with global gut content data synthesis and phylogeny
- Author
-
Parravicini, V., Casey, J. M., Schiettekatte, N. M. D., Brandl, S. J., Pozas-Schacre, C., Carlot, J., Edgar, G. J., Graham, N. A. J., Harmelin-Vivien, M., Kulbicki, Michel, Strona, G., and Stuart-Smith, R. D.
- Abstract
Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.
- Published
- 2020
9. Small invertebrate consumers produce consistent size spectra across reef habitats and climatic zones
- Author
-
Fraser, K. M., primary, Stuart‐Smith, R. D., additional, Ling, S. D., additional, and Edgar, G. J., additional
- Published
- 2020
- Full Text
- View/download PDF
10. Toward a coordinated global observing system for marine macrophytes
- Author
-
Duffy, JE, Benedetti-Cecchi, L, Trinanes, JA, Muller-Karger, FE, Ambo-Rappe, R, Boström, C., Buschmann, AH, Byrnes, Jarrett E., Coles, RG, Creed, J, Cullen-Unsworth, L, Diaz-Pulido, G, Duarte, CM, Edgar, GJ, Fortes, MD, Goni, GJ, Hu, C, Huang, X, Hurd, CL, Konar, Brenda, Krause-Jensen, Dorte, Krumhansl, Kira A., McReadie, PI, Marsh, H, McKenzie, LJ, Mieszkowska, Nova, Miloslavich, Patricia, Montes, Enrique, Nakaoka, M, Norderhaug, Kjell Magnus, Nordlund, LM, Orth, RJ, Prathep, A, Putman, NF, Samper-Villarreal, J, Serrao, EA, Short, F, Pinto, Isabel Sousa, Steinberg, PD, Stuart-Smith, R, Unsworth, RKF, van Keulen, M, Van Tussenbroek, BI, Wang, M, Waycott, M, Weatherdon, LW, Wernberg, Thomas, and Yaakub, SM
- Abstract
In coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with stratified in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of workflow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will produce more effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations.
- Published
- 2019
11. Body size, reef area and temperature predict global reef-fish species richness across spatial scales
- Author
-
Barneche, D. R., Rezende, E. L., Parravicini, V., Maire, E., Edgar, G. J., Stuart-smith, R. D., Arias-gonzalez, J. E., Ferreira, C. E. L., Friedlander, A. M., Green, A. L., Luiz, O. J., Rodriguez-zaragoza, F. A., Vigliola, L., Kulbicki, M., Floeter, S. R., Barneche, D. R., Rezende, E. L., Parravicini, V., Maire, E., Edgar, G. J., Stuart-smith, R. D., Arias-gonzalez, J. E., Ferreira, C. E. L., Friedlander, A. M., Green, A. L., Luiz, O. J., Rodriguez-zaragoza, F. A., Vigliola, L., Kulbicki, M., and Floeter, S. R.
- Abstract
Aim To investigate biotic and abiotic correlates of reef-fish species richness across multiple spatial scales. Location Tropical reefs around the globe, including 485 sites in 109 sub-provinces spread across 14 biogeographic provinces. Time period Present. Major taxa studied 2,523 species of reef fish. Methods We compiled a database encompassing 13,050 visual transects. We used hierarchical linear Bayesian models to investigate whether fish body size, reef area, isolation, temperature, and anthropogenic impacts correlate with reef-fish species richness at each spatial scale (i.e., sites, sub-provinces, provinces). Richness was estimated using coverage-based rarefaction. We also tested whether species packing (i.e., transect-level species richness/m(2)) is correlated with province-level richness. Results Body size had the strongest effect on species richness across all three spatial scales. Reef area and temperature were both positively correlated with richness at all spatial scales. At the site scale only, richness decreased with reef isolation. Species richness was not correlated with proxies of human impacts. Species packing was correlated with species richness at the province level following a sub-linear power function. Province-level differences in species richness were also mirrored by patterns of body size distribution at the site scale. Species-rich provinces exhibited heterogeneous assemblages of small-bodied species with small range sizes, whereas species-poor provinces encompassed homogeneous assemblages composed by larger species with greater dispersal capacity. Main conclusions Our findings suggest that body size distribution, reef area and temperature are major predictors of species richness and accumulation across scales, consistent with recent theories linking home range to species-area relationships as well as metabolic effects on speciation rates. Based on our results, we hypothesize that in less diverse areas, species are larger and likely more dis
- Published
- 2019
- Full Text
- View/download PDF
12. Toward a coordinated global observing system for seagrasses and marine macroalgae
- Author
-
Duffy, J.E., Benedetti-Cecchi, L., Trinanes, J., Muller-Karger, F.E., Ambo-Rappe, R., Boström, C., Buschmann, A.H., Byrnes, J., Coles, R.G., Creed, J., Cullen-Unsworth, L.C., Diaz-Pulido, G., Duarte, C.M., Edgar, G.J., Fortes, M., Goni, G., Hu, C., Huang, X., Hurd, C.L., Johnson, C., Konar, B., Krause-Jensen, D., Krumhansl, K., Macreadie, P., Marsh, H., McKenzie, L.J., Mieszkowska, N., Miloslavich, P., Montes, E., Nakaoka, M., Norderhaug, K.M., Norlund, L.M., Orth, R.J., Prathep, A., Putman, N.F., Samper-Villarreal, J., Serrao, E.A., Short, F., Pinto, I.S., Steinberg, P., Stuart-Smith, R., Unsworth, R.K.F., van Keulen, M., van Tussenbroek, B.I., Wang, M., Waycott, M., Weatherdon, L.V., Wernberg, T., Yaakub, S.M., Duffy, J.E., Benedetti-Cecchi, L., Trinanes, J., Muller-Karger, F.E., Ambo-Rappe, R., Boström, C., Buschmann, A.H., Byrnes, J., Coles, R.G., Creed, J., Cullen-Unsworth, L.C., Diaz-Pulido, G., Duarte, C.M., Edgar, G.J., Fortes, M., Goni, G., Hu, C., Huang, X., Hurd, C.L., Johnson, C., Konar, B., Krause-Jensen, D., Krumhansl, K., Macreadie, P., Marsh, H., McKenzie, L.J., Mieszkowska, N., Miloslavich, P., Montes, E., Nakaoka, M., Norderhaug, K.M., Norlund, L.M., Orth, R.J., Prathep, A., Putman, N.F., Samper-Villarreal, J., Serrao, E.A., Short, F., Pinto, I.S., Steinberg, P., Stuart-Smith, R., Unsworth, R.K.F., van Keulen, M., van Tussenbroek, B.I., Wang, M., Waycott, M., Weatherdon, L.V., Wernberg, T., and Yaakub, S.M.
- Abstract
In coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with stratified in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including stand
- Published
- 2019
13. Disentangling the response of fishes to recreational fishing over 30 years within a fringing coral reef reserve network
- Author
-
Cresswell, A. K., Langlois, T. J., Wilson, S. K., Claudet, J., Thomson, D. P., Renton, M., Fulton, Christopher J., Fisher, R., Vanderklift, M. A., Babcock, R. C., Stuart-Smith, R. D., Haywood, M. D. E., Cresswell, A. K., Langlois, T. J., Wilson, S. K., Claudet, J., Thomson, D. P., Renton, M., Fulton, Christopher J., Fisher, R., Vanderklift, M. A., Babcock, R. C., Stuart-Smith, R. D., and Haywood, M. D. E.
- Abstract
Few studies assess the effects of recreational fishing in isolation from commercial fishing. We used meta-analysis to synthesise 4444 samples from 30 years (1987–2017) of fish surveys inside and outside a large network of highly protected reserves in the Ningaloo Marine Park, Western Australia, where the major fishing activity is recreational. Data were collected by different agencies, using varied survey designs and sampling methods. We contrasted the relative abundance and biomass of target and non-target fish groups between fished and reserve locations. We considered the influence of, and possible interactions between, seven additional variables: age and size of reserve, one of two reserve network configurations, reef habitat type, recreational fishing activity, shore-based fishing regulations and survey method. Taxa responded differently: the abundance and biomass inside reserves relative to outside was higher for targeted lethrinids, while other targeted (and non-targeted) fish groups were indistinguishable. Reef habitat was important for explaining lethrinid response to protection, and this factor interacted with reserve size, such that larger reserves were demonstrably more effective in the back reef and lagoon habitats. There was little evidence of changes in relative abundance and biomass of fishes with reserve age, or after rezoning and expansion of the reserve network. Our study demonstrates the complexities in quantifying fishing effects, highlighting some of the key factors and interactions that likely underlie the varied results in reserve assessments that should be considered in future reserve design and assessment.
- Published
- 2019
14. Body size, reef area and temperature predict global reef-fish species richness across spatial scales
- Author
-
Barneche, D. R., primary, Rezende, E. L., additional, Parravicini, V., additional, Maire, E., additional, Edgar, G. J., additional, Stuart-Smith, R. D., additional, Arias-González, J. E., additional, Ferreira, C. E. L., additional, Friedlander, A. M., additional, Green, A. L., additional, Luiz, O. J., additional, Rodríguez-Zaragoza, F. A., additional, Vigliola, L., additional, Kulbicki, M., additional, and Floeter, S. R., additional
- Published
- 2018
- Full Text
- View/download PDF
15. BioTIME: a database of biodiversity time series for the Anthropocene
- Author
-
Dornelas, M, Antão, LH, Moyes, F, Bates, AE, Magurran, AE, Adam, D, Akhmetzhanova, AA, Appeltans, W, Arcos, JM, Arnold, H, Ayyappan, N, Badihi, G, Baird, AH, Barbosa, M, Barreto, TE, Bässler, C, Bellgrove, Alecia, Belmaker, J, Benedetti-Cecchi, L, Bett, BJ, Bjorkman, AD, Błażewicz, M, Blowes, SA, Bloch, CP, Bonebrake, TC, Boyd, S, Bradford, M, Brooks, AJ, Brown, JH, Bruelheide, H, Budy, P, Carvalho, F, Castañeda-Moya, E, Chen, CA, Chamblee, JF, Chase, TJ, Siegwart Collier, L, Collinge, SK, Condit, R, Cooper, EJ, Cornelissen, JHC, Cotano, U, Kyle Crow, S, Damasceno, G, Davies, CH, Davis, RA, Day, FP, Degraer, S, Doherty, Timothy, Dunn, TE, Durigan, G, Duffy, JE, Edelist, D, Edgar, GJ, Elahi, R, Elmendorf, SC, Enemar, A, Ernest, SKM, Escribano, R, Estiarte, M, Evans, BS, Fan, T-Y, Turini Farah, F, Loureiro Fernandes, L, Farneda, FZ, Fidelis, A, Fitt, R, Fosaa, AM, Daher Correa Franco, GA, Frank, GE, Fraser, WR, García, H, Cazzolla Gatti, R, Givan, O, Gorgone-Barbosa, E, Gould, WA, Gries, C, Grossman, GD, Gutierréz, JR, Hale, S, Harmon, ME, Harte, J, Haskins, G, Henshaw, DL, Hermanutz, L, Hidalgo, P, Higuchi, P, Hoey, A, Van Hoey, G, Hofgaard, A, Holeck, K, Hollister, RD, Holmes, R, Hoogenboom, M, Hsieh, C-H, Hubbell, SP, Huettmann, F, Huffard, CL, Hurlbert, AH, Macedo Ivanauskas, N, Janík, D, Jandt, U, Jażdżewska, A, Johannessen, T, Johnstone, J, Jones, J, Jones, FAM, Kang, J, Kartawijaya, T, Keeley, EC, Kelt, DA, Kinnear, R, Klanderud, K, Knutsen, H, Koenig, CC, Kortz, AR, Král, K, Kuhnz, LA, Kuo, C-Y, Kushner, DJ, Laguionie-Marchais, C, Lancaster, LT, Min Lee, C, Lefcheck, JS, Lévesque, E, Lightfoot, D, Lloret, F, Lloyd, JD, López-Baucells, A, Louzao, M, Madin, JS, Magnússon, B, Malamud, S, Matthews, I, McFarland, KP, McGill, B, McKnight, D, McLarney, WO, Meador, J, Meserve, PL, Metcalfe, DJ, Meyer, CFJ, Michelsen, A, Milchakova, N, Moens, T, Moland, E, Moore, J, Mathias Moreira, C, Müller, J, Murphy, G, Myers-Smith, IH, Myster, RW, Naumov, A, Neat, F, Nelson, JA, Paul Nelson, M, Newton, SF, Norden, N, Oliver, JC, Olsen, EM, Onipchenko, VG, Pabis, K, Pabst, RJ, Paquette, A, Pardede, S, Paterson, DM, Pélissier, R, Peñuelas, J, Pérez-Matus, A, Pizarro, O, Pomati, F, Post, E, Prins, HHT, Priscu, JC, Provoost, P, Prudic, KL, Pulliainen, E, Ramesh, BR, Mendivil Ramos, O, Rassweiler, A, Rebelo, JE, Reed, DC, Reich, PB, Remillard, SM, Richardson, AJ, Richardson, JP, van Rijn, I, Rocha, R, Rivera-Monroy, VH, Rixen, C, Robinson, KP, Ribeiro Rodrigues, R, de Cerqueira Rossa-Feres, D, Rudstam, L, Ruhl, H, Ruz, CS, Sampaio, EM, Rybicki, N, Rypel, A, Sal, S, Salgado, B, Santos, FAM, Savassi-Coutinho, AP, Scanga, S, Schmidt, J, Schooley, R, Setiawan, F, Shao, K-T, Shaver, GR, Sherman, S, Sherry, TW, Siciński, J, Sievers, C, da Silva, AC, Rodrigues da Silva, F, Silveira, FL, Slingsby, J, Smart, T, Snell, SJ, Soudzilovskaia, NA, Souza, GBG, Maluf Souza, F, Castro Souza, V, Stallings, CD, Stanforth, R, Stanley, EH, Mauro Sterza, J, Stevens, M, Stuart-Smith, R, Rondon Suarez, Y, Supp, S, Yoshio Tamashiro, J, Tarigan, S, Thiede, GP, Thorn, S, Tolvanen, A, Teresa Zugliani Toniato, M, Totland, Ø, Twilley, RR, Vaitkus, G, Valdivia, N, Vallejo, MI, Valone, TJ, Van Colen, C, Vanaverbeke, J, Venturoli, F, Verheye, HM, Vianna, M, Vieira, RP, Vrška, T, Quang Vu, C, Van Vu, L, Waide, RB, Waldock, C, Watts, D, Webb, S, Wesołowski, T, White, EP, Widdicombe, CE, Wilgers, D, Williams, R, Williams, SB, Williamson, M, Willig, MR, Willis, TJ, Wipf, S, Woods, KD, Woehler, EJ, Zawada, K, Zettler, ML, Hickler, T, Dornelas, M, Antão, LH, Moyes, F, Bates, AE, Magurran, AE, Adam, D, Akhmetzhanova, AA, Appeltans, W, Arcos, JM, Arnold, H, Ayyappan, N, Badihi, G, Baird, AH, Barbosa, M, Barreto, TE, Bässler, C, Bellgrove, Alecia, Belmaker, J, Benedetti-Cecchi, L, Bett, BJ, Bjorkman, AD, Błażewicz, M, Blowes, SA, Bloch, CP, Bonebrake, TC, Boyd, S, Bradford, M, Brooks, AJ, Brown, JH, Bruelheide, H, Budy, P, Carvalho, F, Castañeda-Moya, E, Chen, CA, Chamblee, JF, Chase, TJ, Siegwart Collier, L, Collinge, SK, Condit, R, Cooper, EJ, Cornelissen, JHC, Cotano, U, Kyle Crow, S, Damasceno, G, Davies, CH, Davis, RA, Day, FP, Degraer, S, Doherty, Timothy, Dunn, TE, Durigan, G, Duffy, JE, Edelist, D, Edgar, GJ, Elahi, R, Elmendorf, SC, Enemar, A, Ernest, SKM, Escribano, R, Estiarte, M, Evans, BS, Fan, T-Y, Turini Farah, F, Loureiro Fernandes, L, Farneda, FZ, Fidelis, A, Fitt, R, Fosaa, AM, Daher Correa Franco, GA, Frank, GE, Fraser, WR, García, H, Cazzolla Gatti, R, Givan, O, Gorgone-Barbosa, E, Gould, WA, Gries, C, Grossman, GD, Gutierréz, JR, Hale, S, Harmon, ME, Harte, J, Haskins, G, Henshaw, DL, Hermanutz, L, Hidalgo, P, Higuchi, P, Hoey, A, Van Hoey, G, Hofgaard, A, Holeck, K, Hollister, RD, Holmes, R, Hoogenboom, M, Hsieh, C-H, Hubbell, SP, Huettmann, F, Huffard, CL, Hurlbert, AH, Macedo Ivanauskas, N, Janík, D, Jandt, U, Jażdżewska, A, Johannessen, T, Johnstone, J, Jones, J, Jones, FAM, Kang, J, Kartawijaya, T, Keeley, EC, Kelt, DA, Kinnear, R, Klanderud, K, Knutsen, H, Koenig, CC, Kortz, AR, Král, K, Kuhnz, LA, Kuo, C-Y, Kushner, DJ, Laguionie-Marchais, C, Lancaster, LT, Min Lee, C, Lefcheck, JS, Lévesque, E, Lightfoot, D, Lloret, F, Lloyd, JD, López-Baucells, A, Louzao, M, Madin, JS, Magnússon, B, Malamud, S, Matthews, I, McFarland, KP, McGill, B, McKnight, D, McLarney, WO, Meador, J, Meserve, PL, Metcalfe, DJ, Meyer, CFJ, Michelsen, A, Milchakova, N, Moens, T, Moland, E, Moore, J, Mathias Moreira, C, Müller, J, Murphy, G, Myers-Smith, IH, Myster, RW, Naumov, A, Neat, F, Nelson, JA, Paul Nelson, M, Newton, SF, Norden, N, Oliver, JC, Olsen, EM, Onipchenko, VG, Pabis, K, Pabst, RJ, Paquette, A, Pardede, S, Paterson, DM, Pélissier, R, Peñuelas, J, Pérez-Matus, A, Pizarro, O, Pomati, F, Post, E, Prins, HHT, Priscu, JC, Provoost, P, Prudic, KL, Pulliainen, E, Ramesh, BR, Mendivil Ramos, O, Rassweiler, A, Rebelo, JE, Reed, DC, Reich, PB, Remillard, SM, Richardson, AJ, Richardson, JP, van Rijn, I, Rocha, R, Rivera-Monroy, VH, Rixen, C, Robinson, KP, Ribeiro Rodrigues, R, de Cerqueira Rossa-Feres, D, Rudstam, L, Ruhl, H, Ruz, CS, Sampaio, EM, Rybicki, N, Rypel, A, Sal, S, Salgado, B, Santos, FAM, Savassi-Coutinho, AP, Scanga, S, Schmidt, J, Schooley, R, Setiawan, F, Shao, K-T, Shaver, GR, Sherman, S, Sherry, TW, Siciński, J, Sievers, C, da Silva, AC, Rodrigues da Silva, F, Silveira, FL, Slingsby, J, Smart, T, Snell, SJ, Soudzilovskaia, NA, Souza, GBG, Maluf Souza, F, Castro Souza, V, Stallings, CD, Stanforth, R, Stanley, EH, Mauro Sterza, J, Stevens, M, Stuart-Smith, R, Rondon Suarez, Y, Supp, S, Yoshio Tamashiro, J, Tarigan, S, Thiede, GP, Thorn, S, Tolvanen, A, Teresa Zugliani Toniato, M, Totland, Ø, Twilley, RR, Vaitkus, G, Valdivia, N, Vallejo, MI, Valone, TJ, Van Colen, C, Vanaverbeke, J, Venturoli, F, Verheye, HM, Vianna, M, Vieira, RP, Vrška, T, Quang Vu, C, Van Vu, L, Waide, RB, Waldock, C, Watts, D, Webb, S, Wesołowski, T, White, EP, Widdicombe, CE, Wilgers, D, Williams, R, Williams, SB, Williamson, M, Willig, MR, Willis, TJ, Wipf, S, Woods, KD, Woehler, EJ, Zawada, K, Zettler, ML, and Hickler, T
- Published
- 2018
16. BioTIME:a database of biodiversity time series for the Anthropocene
- Author
-
Dornelas, M. (Maria), Antao, L. H. (Laura H.), Moyes, F. (Faye), Bates, A. E. (Amanda E.), Magurran, A. E. (Anne E.), Adam, D. (Dusan), Akhmetzhanova, A. A. (Asem A.), Appeltans, W. (Ward), Arcos, J. M. (Jose Manuel), Arnold, H. (Haley), Ayyappan, N. (Narayanan), Badihi, G. (Gal), Baird, A. H. (Andrew H.), Barbosa, M. (Miguel), Barreto, T. E. (Tiago Egydio), Baessler, C. (Claus), Bellgrove, A. (Alecia), Belmaker, J. (Jonathan), Benedetti-Cecchi, L. (Lisandro), Bett, B. J. (Brian J.), Bjorkman, A. D. (Anne D.), Blazewicz, M. (Magdalena), Blowes, S. A. (Shane A.), Bloch, C. P. (Christopher P.), Bonebrake, T. C. (Timothy C.), Boyd, S. (Susan), Bradford, M. (Matt), Brooks, A. J. (Andrew J.), Brown, J. H. (James H.), Bruelheide, H. (Helge), Budy, P. (Phaedra), Carvalho, F. (Fernando), Castaneda-Moya, E. (Edward), Chen, C. A. (Chaolun Allen), Chamblee, J. F. (John F.), Chase, T. J. (Tory J.), Siegwart Collier, L. (Laura), Collinge, S. K. (Sharon K.), Condit, R. (Richard), Cooper, E. J. (Elisabeth J.), Cornelissen, J. H. (J. Hans C.), Cotano, U. (Unai), Crow, S. K. (Shannan Kyle), Damasceno, G. (Gabriella), Davies, C. H. (Claire H.), Davis, R. A. (Robert A.), Day, F. P. (Frank P.), Degraer, S. (Steven), Doherty, T. S. (Tim S.), Dunn, T. E. (Timothy E.), Durigan, G. (Giselda), Duffy, J. E. (J. Emmett), Edelist, D. (Dor), Edgar, G. J. (Graham J.), Elahi, R. (Robin), Elmendorf, S. C. (Sarah C.), Enemar, A. (Anders), Ernest, S. K. (S. K. Morgan), Escribano, R. (Ruben), Estiarte, M. (Marc), Evans, B. S. (Brian S.), Fan, T.-Y. (Tung-Yung), Farah, F. T. (Fabiano Turini), Fernandes, L. L. (Luiz Loureiro), Farneda, F. Z. (Fabio Z.), Fidelis, A. (Alessandra), Fitt, R. (Robert), Fosaa, A. M. (Anna Maria), Daher Correa Franco, G. A. (Geraldo Antonio), Frank, G. E. (Grace E.), Fraser, W. R. (William R.), Garcia, H. (Hernando), Gatti, R. C. (Roberto Cazzolla), Givan, O. (Or), Gorgone-Barbosa, E. (Elizabeth), Gould, W. A. (William A.), Gries, C. (Corinna), Grossman, G. D. (Gary D.), Gutierrez, J. R. (Julio R.), Hale, S. (Stephen), Harmon, M. E. (Mark E.), Harte, J. (John), Haskins, G. (Gary), Henshaw, D. L. (Donald L.), Hermanutz, L. (Luise), Hidalgo, P. (Pamela), Higuchi, P. (Pedro), Hoey, A. (Andrew), Van Hoey, G. (Gert), Hofgaard, A. (Annika), Holeck, K. (Kristen), Hollister, R. D. (Robert D.), Holmes, R. (Richard), Hoogenboom, M. (Mia), Hsieh, C.-h. (Chih-hao), Hubbell, S. P. (Stephen P.), Huettmann, F. (Falk), Huffard, C. L. (Christine L.), Hurlbert, A. H. (Allen H.), Ivanauskas, N. M. (Natalia Macedo), Janik, D. (David), Jandt, U. (Ute), Jazdzewska, A. (Anna), Johannessen, T. (Tore), Johnstone, J. (Jill), Jones, J. (Julia), Jones, F. A. (Faith A. M.), Kang, J. (Jungwon), Kartawijaya, T. (Tasrif), Keeley, E. C. (Erin C.), Kelt, D. A. (Douglas A.), Kinnear, R. (Rebecca), Klanderud, K. (Kari), Knutsen, H. (Halvor), Koenig, C. C. (Christopher C.), Kortz, A. R. (Alessandra R.), Kral, K. (Kamil), Kuhnz, L. A. (Linda A.), Kuo, C.-Y. (Chao-Yang), Kushner, D. J. (David J.), Laguionie-Marchais, C. (Claire), Lancaster, L. T. (Lesley T.), Min Lee, C. (Cheol), Lefcheck, J. S. (Jonathan S.), Levesque, E. (Esther), Lightfoot, D. (David), Lloret, F. (Francisco), Lloyd, J. D. (John D.), Lopez-Baucells, A. (Adria), Louzao, M. (Maite), Madin, J. S. (Joshua S.), Magnusson, B. (Borgpor), Malamud, S. (Shahar), Matthews, I. (Iain), McFarland, K. P. (Kent P.), McGill, B. (Brian), McKnight, D. (Diane), McLarney, W. O. (William O.), Meador, J. (Jason), Meserve, P. L. (Peter L.), Metcalfe, D. J. (Daniel J.), Meyer, C. F. (Christoph F. J.), Michelsen, A. (Anders), Milchakova, N. (Nataliya), Moens, T. (Tom), Moland, E. (Even), Moore, J. (Jon), Moreira, C. M. (Carolina Mathias), Mueller, J. (Joerg), Murphy, G. (Grace), Myers-Smith, I. H. (Isla H.), Myster, R. W. (Randall W.), Naumov, A. (Andrew), Neat, F. (Francis), Nelson, J. A. (James A.), Paul Nelson, M. (Michael), Newton, S. F. (Stephen F.), Norden, N. (Natalia), Oliver, J. C. (Jeffrey C.), Olsen, E. M. (Esben M.), Onipchenko, V. G. (Vladimir G.), Pabis, K. (Krzysztof), Pabst, R. J. (Robert J.), Paquette, A. (Alain), Pardede, S. (Sinta), Paterson, D. M. (David M.), Pelissier, R. (Raphael), Penuelas, J. (Josep), Perez-Matus, A. (Alejandro), Pizarro, O. (Oscar), Pomati, F. (Francesco), Post, E. (Eric), Prins, H. H. (Herbert H. T.), Priscu, J. C. (John C.), Provoost, P. (Pieter), Prudic, K. L. (Kathleen L.), Erkki, P. (Pulliainen), Ramesh, B. R. (B. R.), Mendivil Ramos, O. (Olivia), Rassweiler, A. (Andrew), Rebelo, J. E. (Jose Eduardo), Reed, D. C. (Daniel C.), Reich, P. B. (Peter B.), Remillard, S. M. (Suzanne M.), Richardson, A. J. (Anthony J.), Richardson, J. P. (J. Paul), van Rijn, I. (Itai), Rocha, R. (Ricardo), Rivera-Monroy, V. H. (Victor H.), Rixen, C. (Christian), Robinson, K. P. (Kevin P.), Rodrigues, R. R. (Ricardo Ribeiro), Rossa-Feres, D. d. (Denise de Cerqueira), Rudstam, L. (Lars), Ruhl, H. (Henry), Ruz, C. S. (Catalina S.), Sampaio, E. M. (Erica M.), Rybicki, N. (Nancy), Rypel, A. (Andrew), Sal, S. (Sofia), Salgado, B. (Beatriz), Santos, F. A. (Flavio A. M.), Savassi-Coutinho, A. P. (Ana Paula), Scanga, S. (Sara), Schmidt, J. (Jochen), Schooley, R. (Robert), Setiawan, F. (Fakhrizal), Shao, K.-T. (Kwang-Tsao), Shaver, G. R. (Gaius R.), Sherman, S. (Sally), Sherry, T. W. (Thomas W.), Sicinski, J. (Jacek), Sievers, C. (Caya), da Silva, A. C. (Ana Carolina), da Silva, F. R. (Fernando Rodrigues), Silveira, F. L. (Fabio L.), Slingsby, J. (Jasper), Smart, T. (Tracey), Snell, S. J. (Sara J.), Soudzilovskaia, N. A. (Nadejda A.), Souza, G. B. (Gabriel B. G.), Souza, F. M. (Flaviana Maluf), Souza, V. C. (Vinicius Castro), Stallings, C. D. (Christopher D.), Stanforth, R. (Rowan), Stanley, E. H. (Emily H.), Sterza, J. M. (Jose Mauro), Stevens, M. (Maarten), Stuart-Smith, R. (Rick), Rondon Suarez, Y. (Yzel), Supp, S. (Sarah), Yoshio Tamashiro, J. (Jorge), Tarigan, S. (Sukmaraharja), Thiede, G. P. (Gary P.), Thorn, S. (Simon), Tolvanen, A. (Anne), Zugliani Toniato, M. T. (Maria Teresa), Totland, O. (Orjan), Twilley, R. R. (Robert R.), Vaitkus, G. (Gediminas), Valdivia, N. (Nelson), Vallejo, M. I. (Martha Isabel), Valone, T. J. (Thomas J.), Van Colen, C. (Carl), Vanaverbeke, J. (Jan), Venturoli, F. (Fabio), Verheye, H. M. (Hans M.), Vianna, M. (Marcelo), Vieira, R. P. (Rui P.), Vrska, T. (Tomas), Vu, C. Q. (Con Quang), Vu, L. V. (Lien Van), Waide, R. B. (Robert B.), Waldock, C. (Conor), Watts, D. (Dave), Webb, S. (Sara), Wesolowski, T. (Tomasz), White, E. P. (Ethan P.), Widdicombe, C. E. (Claire E.), Wilgers, D. (Dustin), Williams, R. (Richard), Williams, S. B. (Stefan B.), Williamson, M. (Mark), Willig, M. R. (Michael R.), Willis, T. J. (Trevor J.), Wipf, S. (Sonja), Woods, K. D. (Kerry D.), Woehler, E. J. (Eric J.), Zawada, K. (Kyle), Zettler, M. L. (Michael L.), Dornelas, M. (Maria), Antao, L. H. (Laura H.), Moyes, F. (Faye), Bates, A. E. (Amanda E.), Magurran, A. E. (Anne E.), Adam, D. (Dusan), Akhmetzhanova, A. A. (Asem A.), Appeltans, W. (Ward), Arcos, J. M. (Jose Manuel), Arnold, H. (Haley), Ayyappan, N. (Narayanan), Badihi, G. (Gal), Baird, A. H. (Andrew H.), Barbosa, M. (Miguel), Barreto, T. E. (Tiago Egydio), Baessler, C. (Claus), Bellgrove, A. (Alecia), Belmaker, J. (Jonathan), Benedetti-Cecchi, L. (Lisandro), Bett, B. J. (Brian J.), Bjorkman, A. D. (Anne D.), Blazewicz, M. (Magdalena), Blowes, S. A. (Shane A.), Bloch, C. P. (Christopher P.), Bonebrake, T. C. (Timothy C.), Boyd, S. (Susan), Bradford, M. (Matt), Brooks, A. J. (Andrew J.), Brown, J. H. (James H.), Bruelheide, H. (Helge), Budy, P. (Phaedra), Carvalho, F. (Fernando), Castaneda-Moya, E. (Edward), Chen, C. A. (Chaolun Allen), Chamblee, J. F. (John F.), Chase, T. J. (Tory J.), Siegwart Collier, L. (Laura), Collinge, S. K. (Sharon K.), Condit, R. (Richard), Cooper, E. J. (Elisabeth J.), Cornelissen, J. H. (J. Hans C.), Cotano, U. (Unai), Crow, S. K. (Shannan Kyle), Damasceno, G. (Gabriella), Davies, C. H. (Claire H.), Davis, R. A. (Robert A.), Day, F. P. (Frank P.), Degraer, S. (Steven), Doherty, T. S. (Tim S.), Dunn, T. E. (Timothy E.), Durigan, G. (Giselda), Duffy, J. E. (J. Emmett), Edelist, D. (Dor), Edgar, G. J. (Graham J.), Elahi, R. (Robin), Elmendorf, S. C. (Sarah C.), Enemar, A. (Anders), Ernest, S. K. (S. K. Morgan), Escribano, R. (Ruben), Estiarte, M. (Marc), Evans, B. S. (Brian S.), Fan, T.-Y. (Tung-Yung), Farah, F. T. (Fabiano Turini), Fernandes, L. L. (Luiz Loureiro), Farneda, F. Z. (Fabio Z.), Fidelis, A. (Alessandra), Fitt, R. (Robert), Fosaa, A. M. (Anna Maria), Daher Correa Franco, G. A. (Geraldo Antonio), Frank, G. E. (Grace E.), Fraser, W. R. (William R.), Garcia, H. (Hernando), Gatti, R. C. (Roberto Cazzolla), Givan, O. (Or), Gorgone-Barbosa, E. (Elizabeth), Gould, W. A. (William A.), Gries, C. (Corinna), Grossman, G. D. (Gary D.), Gutierrez, J. R. (Julio R.), Hale, S. (Stephen), Harmon, M. E. (Mark E.), Harte, J. (John), Haskins, G. (Gary), Henshaw, D. L. (Donald L.), Hermanutz, L. (Luise), Hidalgo, P. (Pamela), Higuchi, P. (Pedro), Hoey, A. (Andrew), Van Hoey, G. (Gert), Hofgaard, A. (Annika), Holeck, K. (Kristen), Hollister, R. D. (Robert D.), Holmes, R. (Richard), Hoogenboom, M. (Mia), Hsieh, C.-h. (Chih-hao), Hubbell, S. P. (Stephen P.), Huettmann, F. (Falk), Huffard, C. L. (Christine L.), Hurlbert, A. H. (Allen H.), Ivanauskas, N. M. (Natalia Macedo), Janik, D. (David), Jandt, U. (Ute), Jazdzewska, A. (Anna), Johannessen, T. (Tore), Johnstone, J. (Jill), Jones, J. (Julia), Jones, F. A. (Faith A. M.), Kang, J. (Jungwon), Kartawijaya, T. (Tasrif), Keeley, E. C. (Erin C.), Kelt, D. A. (Douglas A.), Kinnear, R. (Rebecca), Klanderud, K. (Kari), Knutsen, H. (Halvor), Koenig, C. C. (Christopher C.), Kortz, A. R. (Alessandra R.), Kral, K. (Kamil), Kuhnz, L. A. (Linda A.), Kuo, C.-Y. (Chao-Yang), Kushner, D. J. (David J.), Laguionie-Marchais, C. (Claire), Lancaster, L. T. (Lesley T.), Min Lee, C. (Cheol), Lefcheck, J. S. (Jonathan S.), Levesque, E. (Esther), Lightfoot, D. (David), Lloret, F. (Francisco), Lloyd, J. D. (John D.), Lopez-Baucells, A. (Adria), Louzao, M. (Maite), Madin, J. S. (Joshua S.), Magnusson, B. (Borgpor), Malamud, S. (Shahar), Matthews, I. (Iain), McFarland, K. P. (Kent P.), McGill, B. (Brian), McKnight, D. (Diane), McLarney, W. O. (William O.), Meador, J. (Jason), Meserve, P. L. (Peter L.), Metcalfe, D. J. (Daniel J.), Meyer, C. F. (Christoph F. J.), Michelsen, A. (Anders), Milchakova, N. (Nataliya), Moens, T. (Tom), Moland, E. (Even), Moore, J. (Jon), Moreira, C. M. (Carolina Mathias), Mueller, J. (Joerg), Murphy, G. (Grace), Myers-Smith, I. H. (Isla H.), Myster, R. W. (Randall W.), Naumov, A. (Andrew), Neat, F. (Francis), Nelson, J. A. (James A.), Paul Nelson, M. (Michael), Newton, S. F. (Stephen F.), Norden, N. (Natalia), Oliver, J. C. (Jeffrey C.), Olsen, E. M. (Esben M.), Onipchenko, V. G. (Vladimir G.), Pabis, K. (Krzysztof), Pabst, R. J. (Robert J.), Paquette, A. (Alain), Pardede, S. (Sinta), Paterson, D. M. (David M.), Pelissier, R. (Raphael), Penuelas, J. (Josep), Perez-Matus, A. (Alejandro), Pizarro, O. (Oscar), Pomati, F. (Francesco), Post, E. (Eric), Prins, H. H. (Herbert H. T.), Priscu, J. C. (John C.), Provoost, P. (Pieter), Prudic, K. L. (Kathleen L.), Erkki, P. (Pulliainen), Ramesh, B. R. (B. R.), Mendivil Ramos, O. (Olivia), Rassweiler, A. (Andrew), Rebelo, J. E. (Jose Eduardo), Reed, D. C. (Daniel C.), Reich, P. B. (Peter B.), Remillard, S. M. (Suzanne M.), Richardson, A. J. (Anthony J.), Richardson, J. P. (J. Paul), van Rijn, I. (Itai), Rocha, R. (Ricardo), Rivera-Monroy, V. H. (Victor H.), Rixen, C. (Christian), Robinson, K. P. (Kevin P.), Rodrigues, R. R. (Ricardo Ribeiro), Rossa-Feres, D. d. (Denise de Cerqueira), Rudstam, L. (Lars), Ruhl, H. (Henry), Ruz, C. S. (Catalina S.), Sampaio, E. M. (Erica M.), Rybicki, N. (Nancy), Rypel, A. (Andrew), Sal, S. (Sofia), Salgado, B. (Beatriz), Santos, F. A. (Flavio A. M.), Savassi-Coutinho, A. P. (Ana Paula), Scanga, S. (Sara), Schmidt, J. (Jochen), Schooley, R. (Robert), Setiawan, F. (Fakhrizal), Shao, K.-T. (Kwang-Tsao), Shaver, G. R. (Gaius R.), Sherman, S. (Sally), Sherry, T. W. (Thomas W.), Sicinski, J. (Jacek), Sievers, C. (Caya), da Silva, A. C. (Ana Carolina), da Silva, F. R. (Fernando Rodrigues), Silveira, F. L. (Fabio L.), Slingsby, J. (Jasper), Smart, T. (Tracey), Snell, S. J. (Sara J.), Soudzilovskaia, N. A. (Nadejda A.), Souza, G. B. (Gabriel B. G.), Souza, F. M. (Flaviana Maluf), Souza, V. C. (Vinicius Castro), Stallings, C. D. (Christopher D.), Stanforth, R. (Rowan), Stanley, E. H. (Emily H.), Sterza, J. M. (Jose Mauro), Stevens, M. (Maarten), Stuart-Smith, R. (Rick), Rondon Suarez, Y. (Yzel), Supp, S. (Sarah), Yoshio Tamashiro, J. (Jorge), Tarigan, S. (Sukmaraharja), Thiede, G. P. (Gary P.), Thorn, S. (Simon), Tolvanen, A. (Anne), Zugliani Toniato, M. T. (Maria Teresa), Totland, O. (Orjan), Twilley, R. R. (Robert R.), Vaitkus, G. (Gediminas), Valdivia, N. (Nelson), Vallejo, M. I. (Martha Isabel), Valone, T. J. (Thomas J.), Van Colen, C. (Carl), Vanaverbeke, J. (Jan), Venturoli, F. (Fabio), Verheye, H. M. (Hans M.), Vianna, M. (Marcelo), Vieira, R. P. (Rui P.), Vrska, T. (Tomas), Vu, C. Q. (Con Quang), Vu, L. V. (Lien Van), Waide, R. B. (Robert B.), Waldock, C. (Conor), Watts, D. (Dave), Webb, S. (Sara), Wesolowski, T. (Tomasz), White, E. P. (Ethan P.), Widdicombe, C. E. (Claire E.), Wilgers, D. (Dustin), Williams, R. (Richard), Williams, S. B. (Stefan B.), Williamson, M. (Mark), Willig, M. R. (Michael R.), Willis, T. J. (Trevor J.), Wipf, S. (Sonja), Woods, K. D. (Kerry D.), Woehler, E. J. (Eric J.), Zawada, K. (Kyle), and Zettler, M. L. (Michael L.)
- Abstract
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km² (158 cm²) to 100 km² (1,000,000,000,000 cm²). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format: .csv and .SQL.
- Published
- 2018
17. BioTIME: A database of biodiversity time series for the Anthropocene
- Author
-
Dornelas, M., Antão, L. H., Moyes, F., Bates, A. E., Magurran, A. E., Adam, D., Akhmetzhanova, A. A., Appeltans, W., Arcos, J. M., Arnold, H., Ayyappan, N., Badihi, G., Baird, A. H., Barbosa, M., Barreto, T. E., Bässler, C., Bellgrove, A., Belmaker, J., Benedetti-Cecchi, L., Bett, B. J., Bjorkman, A. D., Błażewicz, M., Blowes, S. A., Bloch, C. P., Bonebrake, T. C., Boyd, S., Bradford, M., Brooks, A. J., Brown, J. H., Bruelheide, H., Budy, P., Carvalho, F., Castañeda-Moya, E., Chen, C. A., Chamblee, J. F., Chase, T. J., Siegwart Collier, L., Collinge, S. K., Condit, R., Cooper, E. J., Cornelissen, J. H. C., Cotano, U., Kyle Crow, S., Damasceno, G., Davies, C. H., Davis, R. A., Day, F. P., Degraer, S., Doherty, T. S., Dunn, T. E., Durigan, G., Duffy, J. E., Edelist, D., Edgar, G. J., Elahi, R., Elmendorf, S. C., Enemar, A., Ernest, S. K. M., Escribano, R., Estiarte, M., Evans, B. S., Fan, T. Y., Turini Farah, F., Loureiro Fernandes, L., Farneda, F. Z., Fidelis, A., Fitt, R., Fosaa, A. M., Daher Correa Franco, G. A., Frank, G. E., Fraser, W. R., García, H., Cazzolla Gatti, R., Givan, O., Gorgone-Barbosa, E., Gould, W. A., Gries, C., Grossman, G. D., Gutierréz, J. R., Hale, S., Harmon, M. E., Harte, J., Haskins, G., Henshaw, D. L., Hermanutz, L., Hidalgo, P., Higuchi, P., Hoey, A., Van Hoey, G., Hofgaard, A., Holeck, K., Hollister, R. D., Holmes, R., Hoogenboom, M., Hsieh, C. H., Hubbell, S. P., Huettmann, F., Huffard, C. L., Hurlbert, A. H., Macedo Ivanauskas, N., Janík, D., Jandt, U., Jażdżewska, A., Johannessen, T., Johnstone, J., Jones, J., Jones, F. A. M., Kang, J., Kartawijaya, T., Keeley, E. C., Kelt, D. A., Kinnear, R., Klanderud, K., Knutsen, H., Koenig, C. C., Kortz, A. R., Král, K., Kuhnz, L. A., Kuo, C. Y., Kushner, D. J., Laguionie-Marchais, C., Lancaster, L. T., Min Lee, C., Lefcheck, J. S., Lévesque, E., Lightfoot, D., Lloret, F., Lloyd, J. D., López-Baucells, A., Louzao, M., Madin, J. S., Magnússon, B., Malamud, S., Matthews, I., McFarland, K. P., McGill, B., McKnight, D., McLarney, W. O., Meador, J., Meserve, P. L., Metcalfe, D. J., Meyer, C. F. J., Michelsen, A., Milchakova, N., Moens, T., Moland, E., Moore, J., Mathias Moreira, C., Müller, J., Murphy, G., Myers-Smith, I. H., Myster, R. W., Naumov, A., Neat, F., Nelson, J. A., Paul Nelson, M., Newton, S. F., Norden, N., Oliver, J. C., Olsen, E. M., Onipchenko, V. G., Pabis, K., Pabst, R. J., Paquette, A., Pardede, S., Paterson, D. M., Pélissier, R., Peñuelas, J., Pérez-Matus, A., Pizarro, O., Pomati, F., Post, E., Prins, H. H. T., Priscu, J. C., Provoost, P., Prudic, K. L., Pulliainen, E., Ramesh, B. R., Mendivil Ramos, O., Rassweiler, A., Rebelo, J. E., Reed, D. C., Reich, P. B., Remillard, S. M., Richardson, A. J., Richardson, J. P., van Rijn, I., Rocha, R., Rivera-Monroy, V. H., Rixen, C., Robinson, K. P., Ribeiro Rodrigues, R., de Cerqueira Rossa-Feres, D., Rudstam, L., Ruhl, H., Ruz, C. S., Sampaio, E. M., Rybicki, N., Rypel, A., Sal, S., Salgado, B., Santos, F. A. M., Savassi-Coutinho, A. P., Scanga, S., Schmidt, J., Schooley, R., Setiawan, F., Shao, K. T., Shaver, G. R., Sherman, S., Sherry, T. W., Siciński, J., Sievers, C., da Silva, A. C., Rodrigues da Silva, F., Silveira, F. L., Slingsby, J., Smart, T., Snell, S. J., Soudzilovskaia, N. A., Souza, G. B. G., Maluf Souza, F., Castro Souza, V., Stallings, C. D., Stanforth, R., Stanley, E. H., Mauro Sterza, J., Stevens, M., Stuart-Smith, R., Rondon Suarez, Y., Supp, S., Yoshio Tamashiro, J., Tarigan, S., Thiede, G. P., Thorn, S., Tolvanen, A., Teresa Zugliani Toniato, M., Totland, Ø, Twilley, R. R., Vaitkus, G., Valdivia, N., Vallejo, M. I., Valone, T. J., Van Colen, C., Vanaverbeke, J., Venturoli, F., Verheye, H. M., Vianna, M., Vieira, R. P., Vrška, T., Quang Vu, C., Van Vu, L., Waide, R. B., Waldock, C., Watts, D., Webb, S., Wesołowski, T., White, E. P., Widdicombe, C. E., Wilgers, D., Williams, R., Williams, S. B., Williamson, M., Willig, M. R., Willis, T. J., Wipf, S., Woods, K. D., Woehler, E. J., Zawada, K., Zettler, M. L., Dornelas, M., Antão, L. H., Moyes, F., Bates, A. E., Magurran, A. E., Adam, D., Akhmetzhanova, A. A., Appeltans, W., Arcos, J. M., Arnold, H., Ayyappan, N., Badihi, G., Baird, A. H., Barbosa, M., Barreto, T. E., Bässler, C., Bellgrove, A., Belmaker, J., Benedetti-Cecchi, L., Bett, B. J., Bjorkman, A. D., Błażewicz, M., Blowes, S. A., Bloch, C. P., Bonebrake, T. C., Boyd, S., Bradford, M., Brooks, A. J., Brown, J. H., Bruelheide, H., Budy, P., Carvalho, F., Castañeda-Moya, E., Chen, C. A., Chamblee, J. F., Chase, T. J., Siegwart Collier, L., Collinge, S. K., Condit, R., Cooper, E. J., Cornelissen, J. H. C., Cotano, U., Kyle Crow, S., Damasceno, G., Davies, C. H., Davis, R. A., Day, F. P., Degraer, S., Doherty, T. S., Dunn, T. E., Durigan, G., Duffy, J. E., Edelist, D., Edgar, G. J., Elahi, R., Elmendorf, S. C., Enemar, A., Ernest, S. K. M., Escribano, R., Estiarte, M., Evans, B. S., Fan, T. Y., Turini Farah, F., Loureiro Fernandes, L., Farneda, F. Z., Fidelis, A., Fitt, R., Fosaa, A. M., Daher Correa Franco, G. A., Frank, G. E., Fraser, W. R., García, H., Cazzolla Gatti, R., Givan, O., Gorgone-Barbosa, E., Gould, W. A., Gries, C., Grossman, G. D., Gutierréz, J. R., Hale, S., Harmon, M. E., Harte, J., Haskins, G., Henshaw, D. L., Hermanutz, L., Hidalgo, P., Higuchi, P., Hoey, A., Van Hoey, G., Hofgaard, A., Holeck, K., Hollister, R. D., Holmes, R., Hoogenboom, M., Hsieh, C. H., Hubbell, S. P., Huettmann, F., Huffard, C. L., Hurlbert, A. H., Macedo Ivanauskas, N., Janík, D., Jandt, U., Jażdżewska, A., Johannessen, T., Johnstone, J., Jones, J., Jones, F. A. M., Kang, J., Kartawijaya, T., Keeley, E. C., Kelt, D. A., Kinnear, R., Klanderud, K., Knutsen, H., Koenig, C. C., Kortz, A. R., Král, K., Kuhnz, L. A., Kuo, C. Y., Kushner, D. J., Laguionie-Marchais, C., Lancaster, L. T., Min Lee, C., Lefcheck, J. S., Lévesque, E., Lightfoot, D., Lloret, F., Lloyd, J. D., López-Baucells, A., Louzao, M., Madin, J. S., Magnússon, B., Malamud, S., Matthews, I., McFarland, K. P., McGill, B., McKnight, D., McLarney, W. O., Meador, J., Meserve, P. L., Metcalfe, D. J., Meyer, C. F. J., Michelsen, A., Milchakova, N., Moens, T., Moland, E., Moore, J., Mathias Moreira, C., Müller, J., Murphy, G., Myers-Smith, I. H., Myster, R. W., Naumov, A., Neat, F., Nelson, J. A., Paul Nelson, M., Newton, S. F., Norden, N., Oliver, J. C., Olsen, E. M., Onipchenko, V. G., Pabis, K., Pabst, R. J., Paquette, A., Pardede, S., Paterson, D. M., Pélissier, R., Peñuelas, J., Pérez-Matus, A., Pizarro, O., Pomati, F., Post, E., Prins, H. H. T., Priscu, J. C., Provoost, P., Prudic, K. L., Pulliainen, E., Ramesh, B. R., Mendivil Ramos, O., Rassweiler, A., Rebelo, J. E., Reed, D. C., Reich, P. B., Remillard, S. M., Richardson, A. J., Richardson, J. P., van Rijn, I., Rocha, R., Rivera-Monroy, V. H., Rixen, C., Robinson, K. P., Ribeiro Rodrigues, R., de Cerqueira Rossa-Feres, D., Rudstam, L., Ruhl, H., Ruz, C. S., Sampaio, E. M., Rybicki, N., Rypel, A., Sal, S., Salgado, B., Santos, F. A. M., Savassi-Coutinho, A. P., Scanga, S., Schmidt, J., Schooley, R., Setiawan, F., Shao, K. T., Shaver, G. R., Sherman, S., Sherry, T. W., Siciński, J., Sievers, C., da Silva, A. C., Rodrigues da Silva, F., Silveira, F. L., Slingsby, J., Smart, T., Snell, S. J., Soudzilovskaia, N. A., Souza, G. B. G., Maluf Souza, F., Castro Souza, V., Stallings, C. D., Stanforth, R., Stanley, E. H., Mauro Sterza, J., Stevens, M., Stuart-Smith, R., Rondon Suarez, Y., Supp, S., Yoshio Tamashiro, J., Tarigan, S., Thiede, G. P., Thorn, S., Tolvanen, A., Teresa Zugliani Toniato, M., Totland, Ø, Twilley, R. R., Vaitkus, G., Valdivia, N., Vallejo, M. I., Valone, T. J., Van Colen, C., Vanaverbeke, J., Venturoli, F., Verheye, H. M., Vianna, M., Vieira, R. P., Vrška, T., Quang Vu, C., Van Vu, L., Waide, R. B., Waldock, C., Watts, D., Webb, S., Wesołowski, T., White, E. P., Widdicombe, C. E., Wilgers, D., Williams, R., Williams, S. B., Williamson, M., Willig, M. R., Willis, T. J., Wipf, S., Woods, K. D., Woehler, E. J., Zawada, K., and Zettler, M. L.
- Abstract
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format:.csv and.SQL.
- Published
- 2018
18. Small invertebrate consumers produce consistent size spectra across reef habitats and climatic zones.
- Author
-
Fraser, K. M., Stuart‐Smith, R. D., Ling, S. D., and Edgar, G. J.
- Subjects
- *
CLIMATIC zones , *CORALS , *REEFS , *CORAL bleaching , *HABITATS , *ALCYONACEA , *BIOLOGICAL extinction - Abstract
Changes in invertebrate body size‐distributions that follow loss of habitat‐forming species can potentially affect a range of ecological processes, including predation and competition. In the marine environment, small crustaceans and other mobile invertebrates ('epifauna') represent a basal component in reef food webs, with a pivotal secondary production role that is strongly influenced by their body size‐distribution. Ongoing degradation of reef habitats that affect invertebrate size‐distributions, particularly transformation of coral and kelp habitat to algal turf, may thus fundamentally affect secondary production. Here we explored variation in size spectra of shallow epifaunal assemblages (i.e. the slope and intercept of the linear relationship between log abundance and body size at the assemblage level) across 21 reef microhabitats distributed along an extensive eastern Australian climatic gradient from the tropical northern Great Barrier Reef to cool temperate Tasmania. When aggregated across microhabitats at the site scale, invertebrate body size spectra (0.125–8 mm range) were consistently log‐linear (R2 ranging 0.87–0.98). Size spectra differed between, but not within, major groups of microhabitats, and exhibited little variability between tropical and temperate biomes. Nevertheless, size spectra showed significant tropical/temperate differences in slopes for epifauna sampled on macroalgal habitats, and in elevation for soft coral and sponge habitats. Our results reveal epifaunal size spectra to be a highly predictable macro‐ecological feature. Given that variation in epifaunal size spectra among groups of microhabitats was greater than variation between tropical and temperate biomes, we postulate that ocean warming will not greatly alter epifaunal size spectra directly. However, transformation of tropical coral and temperate macroalgal habitats to algal turfs due to warming will alter reef food web dynamics through redistribution of the size of prey available to fishes. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
19. A new wave of marine evidence-based management: emerging challenges and solutions to transform monitoring, evaluating, and reporting
- Author
-
Addison, P F E, primary, Collins, D J, additional, Trebilco, R, additional, Howe, S, additional, Bax, N, additional, Hedge, P, additional, Jones, G, additional, Miloslavich, P, additional, Roelfsema, C, additional, Sams, M, additional, Stuart-Smith, R D, additional, Scanes, P, additional, von Baumgarten, P, additional, and McQuatters-Gollop, A, additional
- Published
- 2017
- Full Text
- View/download PDF
20. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges
- Author
-
Mellin, C., Mouillot, D., Kulbicki, M., Mcclanahan, T. R., Vigliola, L., Bradshaw, C. J. A., Brainard, R. E., Chabanet, P., Edgar, G. J., Fordham, D. A., Friedlander, A. M., Parravicini, V., Sequeira, A. M. M., Stuart-smith, R. D., Wantiez, L., Caley, M. J., Mellin, C., Mouillot, D., Kulbicki, M., Mcclanahan, T. R., Vigliola, L., Bradshaw, C. J. A., Brainard, R. E., Chabanet, P., Edgar, G. J., Fordham, D. A., Friedlander, A. M., Parravicini, V., Sequeira, A. M. M., Stuart-smith, R. D., Wantiez, L., and Caley, M. J.
- Abstract
Coral reefs are among the most species-rich and threatened ecosystems on Earth, yet the extent to which human stressors determine species occurrences, compared with biogeography or environmental conditions, remains largely unknown. With ever-increasing human-mediated disturbances on these ecosystems, an important question is not only how many species can inhabit local communities, but also which biological traits determine species that can persist (or not) above particular disturbance thresholds. Here we show that human pressure and seasonal climate variability are disproportionately and negatively associated with the occurrence of large-bodied and geographically small-ranging fishes within local coral reef communities. These species are 67% less likely to occur where human impact and temperature seasonality exceed critical thresholds, such as in the marine biodiversity hotspot: the Coral Triangle. Our results identify the most sensitive species and critical thresholds of human and climatic stressors, providing opportunity for targeted conservation intervention to prevent local extinctions.
- Published
- 2016
- Full Text
- View/download PDF
21. Humans and seasonal climate variability threaten large-bodied coral reef fish with small ranges
- Author
-
Mellin, C., primary, Mouillot, D., additional, Kulbicki, M., additional, McClanahan, T. R., additional, Vigliola, L., additional, Bradshaw, C. J. A., additional, Brainard, R. E., additional, Chabanet, P., additional, Edgar, G. J., additional, Fordham, D. A., additional, Friedlander, A. M., additional, Parravicini, V., additional, Sequeira, A. M. M., additional, Stuart-Smith, R. D., additional, Wantiez, L., additional, and Caley, M. J., additional
- Published
- 2016
- Full Text
- View/download PDF
22. A new wave of marine evidence-based management: emerging challenges and solutions to transform monitoring, evaluating, and reporting.
- Author
-
Addison, P. F. E., Collins, D. J., Trebilco, R., Howe, S., Bax, N., Hedge, P., Jones, G., Miloslavich, P., Roelfsema, C., Sams, M., Stuart-Smith, R. D., Scanes, P., von Baumgarten, P., and McQuatters-Gollop, A.
- Subjects
MARINE resources conservation ,MARINE parks & reserves ,MARINE pollution ,ENVIRONMENTAL protection ,BIG data - Abstract
Sustainable management and conservation of the world's oceans requires effective monitoring, evaluation, and reporting (MER). Despite the growing political and social imperative for these activities, there are some persistent and emerging challenges that marine practitioners face in undertaking these activities. In 2015, a diverse group of marine practitioners came together to discuss the emerging challenges associated with marine MER, and potential solutions to address these challenges. Three emerging challenges were identified: (i) the need to incorporate environmental, social and economic dimensions in evaluation and reporting; (ii) the implications of big data, creating challenges in data management and interpretation; and (iii) dealing with uncertainty throughout MER activities. We point to key solutions to address these challenges across MER activities: (i) integrating models into marine management systems to help understand, interpret, and manage the environmental and socio-economic dimensions of uncertain and complex marine systems; (ii) utilizing big data sources and new technologies to collect, process, store, and analyze data; and (iii) applying approaches to evaluate, account for, and report on the multiple sources and types of uncertainty. These solutions point towards a potential for a new wave of evidence-based marine management, through more innovative monitoring, rigorous evaluation and transparent reporting. Effective collaboration and institutional support across the science- management-policy interface will be crucial to deal with emerging challenges, and implement the tools and approaches embedded within these solutions. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
23. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes
- Author
-
Mora, C, Aburto-Oropeza, O, Ayala-Bocos, A, Ayotte, PM, Banks, S, Bauman, AG, Beger, M, Bessudo, S, Booth, DJ, Brokovich, E, Brooks, A, Chabanet, P, Cinner, JE, Cortés, J, Cruz-Motta, JJ, Cupul-Magaña, A, DeMartini, EE, Edgar, GJ, Feary, DA, Ferse, SCA, Friedlander, AM, Gaston, KJ, Gough, C, Graham, NAJ, Green, A, Guzman, H, Hardt, M, Kulbicki, M, Letourneur, Y, Ĺpez-Pérez, A, Loreau, M, Loya, Y, Martinez, C, Mascareñas-Osorio, I, Morove, T, Nadon, MO, Nakamura, Y, Paredes, G, Polunin, NVC, Pratchett, MS, Reyes Bonilla, H, Rivera, F, Sala, E, Sandin, SA, Soler, G, Stuart-Smith, R, Tessier, E, Tittensor, DP, Tupper, M, Usseglio, P, Vigliola, L, Wantiez, L, Williams, I, Wilson, SK, Zapata, FA, Mora, C, Aburto-Oropeza, O, Ayala-Bocos, A, Ayotte, PM, Banks, S, Bauman, AG, Beger, M, Bessudo, S, Booth, DJ, Brokovich, E, Brooks, A, Chabanet, P, Cinner, JE, Cortés, J, Cruz-Motta, JJ, Cupul-Magaña, A, DeMartini, EE, Edgar, GJ, Feary, DA, Ferse, SCA, Friedlander, AM, Gaston, KJ, Gough, C, Graham, NAJ, Green, A, Guzman, H, Hardt, M, Kulbicki, M, Letourneur, Y, Ĺpez-Pérez, A, Loreau, M, Loya, Y, Martinez, C, Mascareñas-Osorio, I, Morove, T, Nadon, MO, Nakamura, Y, Paredes, G, Polunin, NVC, Pratchett, MS, Reyes Bonilla, H, Rivera, F, Sala, E, Sandin, SA, Soler, G, Stuart-Smith, R, Tessier, E, Tittensor, DP, Tupper, M, Usseglio, P, Vigliola, L, Wantiez, L, Williams, I, Wilson, SK, and Zapata, FA
- Abstract
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas. © 2011 Mora et al.
- Published
- 2011
24. Research challenges to improve the management and conservation of subtropical reefs to tackle climate change threats: (Findings of a workshop conducted in Coffs Harbour, Australia on 13 September 2010)
- Author
-
Beger, M, Babcock, R, Booth, DJ, Bucher, D, Condie, SA, Creese, B, Cvitanovic, C, Dalton, SJ, Harrison, P, Hoey, A, Jordan, A, Loder, J, Malcolm, H, Purcell, SW, Roelfsma, C, Sachs, P, Smith, SDA, Sommer, B, Stuart-Smith, R, Thomson, D, Wallace, CC, Zann, M, Pandolfi, JM, Beger, M, Babcock, R, Booth, DJ, Bucher, D, Condie, SA, Creese, B, Cvitanovic, C, Dalton, SJ, Harrison, P, Hoey, A, Jordan, A, Loder, J, Malcolm, H, Purcell, SW, Roelfsma, C, Sachs, P, Smith, SDA, Sommer, B, Stuart-Smith, R, Thomson, D, Wallace, CC, Zann, M, and Pandolfi, JM
- Abstract
This paper reports on a workshop conducted in Australia in 2010, entitled 'Management, Conservation, and Scientific Challenges on Subtropical Reefs under Climate Change'. The workshop brought together 26 experts actively involved in the science and management of subtropical reefs. Its primary aim was to identify the areas of research that need to be most urgently addressed to improve the decision-making framework for managers of subtropical reefs. The main findings of the workshop were a sustainable subtropical reefs declaration that highlights seven research priorities for subtropical reefs. These are to (i) conduct research and management activities across local government, state and bioregion borders; (ii) understand natural variability of environmental conditions; (iii) quantify socio-economic factors and ecosystem services; (iv) benchmark cross-realm connectivity; (v) know marine population connectivity; (vi) habitat mapping and ecological research; and (v) determine refugia. These findings are hoped to form a basis for focussing research efforts, leveraging funds and assisting managers with allocation of resources. © 2011 Ecological Society of Australia.
- Published
- 2011
25. Is fecundity the ultimate cause of female-biased size dimorphism in a dragon lizard?
- Author
-
Stuart-Smith, J., primary, Swain, R., additional, Stuart-Smith, R. D., additional, and Wapstra, E., additional
- Published
- 2007
- Full Text
- View/download PDF
26. The effects of turbidity and complex habitats on the feeding of a galaxiid fish are clear and simple
- Author
-
Stuart-Smith, R. D., primary, Stuart-Smith, J. F., additional, White, R. W. G., additional, and Barmuta, L. A., additional
- Published
- 2007
- Full Text
- View/download PDF
27. Nocturnal and diurnal feeding by Galaxias auratus, a lentic galaxiid fish
- Author
-
Stuart-Smith, R. D., primary, Barmuta, L. A., additional, and White, R. W. G., additional
- Published
- 2006
- Full Text
- View/download PDF
28. Increasing turbidity significantly alters the diet of brown trout: a multi-year longitudinal study
- Author
-
Stuart-Smith, R. D., primary, Richardson, A. M. M., additional, and White, R. W. G., additional
- Published
- 2004
- Full Text
- View/download PDF
29. Establishing the foundation for the global observing system for marine life
- Author
-
Satterthwaite, E. V., Bax, N. J., Miloslavich, P., Ratnarajah, L., Canonico, G., Dunn, D., Simmons, S. E., Carini, R. J., Evans, K., Allain, V., Appeltans, W., Batten, S., Benedetti-Cecchi, L., Bernard, A. T. F., Bristol, S., Benson, A., Buttigieg, P. L., Gerhardinger, L. C., Chiba, S., Davies, T. E., Duffy, J. E., Giron-Nava, A., Hsu, A. J., Kraberg, A. C., Kudela, R. M., Lear, D., Montes, E., Muller-Karger, F. E., O’Brien, T. D., Obura, D., Provoost, P., Pruckner, S., Rebelo, Lisa-Maria, Selig, E. R., Kjesbu, O. S., Starger, C., Stuart-Smith, R. D., Vierros, M., Waller, J., Weatherdon, L. V., Wellman, T. P., Zivian, A., Satterthwaite, E. V., Bax, N. J., Miloslavich, P., Ratnarajah, L., Canonico, G., Dunn, D., Simmons, S. E., Carini, R. J., Evans, K., Allain, V., Appeltans, W., Batten, S., Benedetti-Cecchi, L., Bernard, A. T. F., Bristol, S., Benson, A., Buttigieg, P. L., Gerhardinger, L. C., Chiba, S., Davies, T. E., Duffy, J. E., Giron-Nava, A., Hsu, A. J., Kraberg, A. C., Kudela, R. M., Lear, D., Montes, E., Muller-Karger, F. E., O’Brien, T. D., Obura, D., Provoost, P., Pruckner, S., Rebelo, Lisa-Maria, Selig, E. R., Kjesbu, O. S., Starger, C., Stuart-Smith, R. D., Vierros, M., Waller, J., Weatherdon, L. V., Wellman, T. P., and Zivian, A.
30. Establishing the foundation for the global observing system for marine life
- Author
-
Satterthwaite, E. V., Bax, N. J., Miloslavich, P., Ratnarajah, L., Canonico, G., Dunn, D., Simmons, S. E., Carini, R. J., Evans, K., Allain, V., Appeltans, W., Batten, S., Benedetti-Cecchi, L., Bernard, A. T. F., Bristol, S., Benson, A., Buttigieg, P. L., Gerhardinger, L. C., Chiba, S., Davies, T. E., Duffy, J. E., Giron-Nava, A., Hsu, A. J., Kraberg, A. C., Kudela, R. M., Lear, D., Montes, E., Muller-Karger, F. E., O’Brien, T. D., Obura, D., Provoost, P., Pruckner, S., Rebelo, Lisa-Maria, Selig, E. R., Kjesbu, O. S., Starger, C., Stuart-Smith, R. D., Vierros, M., Waller, J., Weatherdon, L. V., Wellman, T. P., Zivian, A., Satterthwaite, E. V., Bax, N. J., Miloslavich, P., Ratnarajah, L., Canonico, G., Dunn, D., Simmons, S. E., Carini, R. J., Evans, K., Allain, V., Appeltans, W., Batten, S., Benedetti-Cecchi, L., Bernard, A. T. F., Bristol, S., Benson, A., Buttigieg, P. L., Gerhardinger, L. C., Chiba, S., Davies, T. E., Duffy, J. E., Giron-Nava, A., Hsu, A. J., Kraberg, A. C., Kudela, R. M., Lear, D., Montes, E., Muller-Karger, F. E., O’Brien, T. D., Obura, D., Provoost, P., Pruckner, S., Rebelo, Lisa-Maria, Selig, E. R., Kjesbu, O. S., Starger, C., Stuart-Smith, R. D., Vierros, M., Waller, J., Weatherdon, L. V., Wellman, T. P., and Zivian, A.
31. BioTIME: A database of biodiversity time series for the Anthropocene
- Author
-
Grace E. Frank, Alecia Bellgrove, Flaviana Maluf Souza, Fakhrizal Setiawan, Vladimir G. Onipchenko, Miguel Barbosa, J. Emmett Duffy, Robert A. Davis, Giselda Durigan, Jan Vanaverbeke, Ricardo Rocha, Ana Paula Savassi-Coutinho, Francis Neat, Emily H. Stanley, Erkki Pulliainen, Vinicius Castro Souza, Stephen F. Newton, N. A. Mil'chakova, Annika Hofgaard, James A. Nelson, Elisabeth J. Cooper, Lisandro Benedetti-Cecchi, Sonja Wipf, Anders Enemar, Gabriel Barros Gonçalves de Souza, Claire Laguionie-Marchais, Dušan Adam, Robert N. L. Fitt, Christopher P. Bloch, Claus Bässler, Gediminas Vaitkus, Magdalena Błażewicz, Robert R. Twilley, Richard Condit, B.R. Ramesh, Chaolun Allen Chen, Grace E. P. Murphy, Kevin P. Robinson, Gal Badihi, Lars G. Rudstam, J. Jonathan Moore, David M. Paterson, Sarah R. Supp, Claire E. Widdicombe, Suzanne M. Remillard, Hans M. Verheye, Jill F. Johnstone, Claire H. Davies, Shane A. Blowes, Mark E. Harmon, Rick D. Stuart-Smith, Andrew J. Brooks, Gert Van Hoey, José Eduardo Rebelo, Anna Maria Fosaa, Tim S. Doherty, Jasper A. Slingsby, Francesco Pomati, Raphaël Pélissier, Ward Appeltans, José Manuel Arcos, Phaedra Budy, Victor H. Rivera-Monroy, Maria Teresa Zugliani Toniato, Anthony J. Richardson, Luiz Fernando Loureiro Fernandes, Christopher D. Stallings, Rowan Stanforth, David J. Kushner, A. A. Akhmetzhanova, Geraldo Antônio Daher Corrêa Franco, Alessandra Fidelis, Elizabeth Gorgone-Barbosa, Dave Watts, S.A. Tarigan, Timothy C. Bonebrake, Kent P. McFarland, Jonathan Belmaker, Shahar Malamud, Kamil Král, John D. Lloyd, Diane M. McKnight, Alessandra Rocha Kortz, Luise Hermanutz, Tore Johannessen, N. Ayyappan, Brian J. Bett, Haley Arnold, Fernando Rodrigues da Silva, Peter L. Meserve, Francisco Lloret, Nadejda A. Soudzilovskaia, Michael R. Willig, Linda A. Kuhnz, Esther Lévesque, Kwang-Tsao Shao, Sofía Sal, Robert D. Hollister, Andrew Rassweiler, Christoph F. J. Meyer, Jeffrey C. Oliver, Isla H. Myers-Smith, Graham J. Edgar, Jacek Siciński, Beatriz Salgado, Fábio Venturoli, Matt Bradford, Borgþór Magnússon, Edward Castañeda-Moya, Anne D. Bjorkman, Eric Post, Alain Paquette, Or Givan, Jonathan S. Lefcheck, Falk Huettmann, Fábio Lang da Silveira, Roberto Cazzolla Gatti, Thomas J. Valone, Sarah C. Elmendorf, Sinta Pardede, Esben Moland Olsen, Laura Siegwart Collier, Flavio Antonio Maës dos Santos, Andrew H. Baird, Cheol Min Lee, Robert B. Waide, Olivia Mendivil Ramos, David C. Lightfoot, Stefan B. Williams, Ute Jandt, David Janík, Stephen S. Hale, Robin Elahi, Andrew L. Rypel, S. K. Morgan Ernest, Jörg Müller, Gaius R. Shaver, Anna Jażdżewska, José Mauro Sterza, Maarten Stevens, Denise de Cerqueira Rossa-Feres, Dor Edelist, Martha Isabel Vallejo, Michael Paul Nelson, Conor Waldock, Ricardo Ribeiro Rodrigues, Sally Sherman, Dustin J. Wilgers, Sharon K. Collinge, Kristen T. Holeck, Josep Peñuelas, Douglas A. Kelt, Tiago Egydio Barreto, Faye Moyes, Robert L. Schooley, Peter B. Reich, Jason Meador, Anders Michelsen, J. Paul Richardson, Sara J. Snell, Julio R. Gutiérrez, Chih-hao Hsieh, Gary D. Grossman, Hernando García, Ana Carolina da Silva, Kyle J. A. Zawada, Richard T. Holmes, John C. Priscu, Christine L. Huffard, Christian Rixen, William O. McLarney, Julia A. Jones, Anne Tolvanen, William A. Gould, Maite Louzao, Alejandro Pérez-Matus, Donald L. Henshaw, Kathleen L. Prudic, Herbert H. T. Prins, Helge Bruelheide, Catalina S. Ruz, Rui P. Vieira, Gary P. Thiede, Erin C. Keeley, James H. Brown, William R. Fraser, Pieter Provoost, Andrew S. Hoey, Robert J. Pabst, Kerry D. Woods, Fabiano Turini Farah, Nancy B. Rybicki, Sara E. Scanga, Trevor J. Willis, Daniel J. Metcalfe, Mark Williamson, Joshua S. Madin, Tasrif Kartawijaya, Brian J. McGill, Erica M. Sampaio, Shannan K. Crow, Stephen P. Hubbell, Jochen Schmidt, Daniel C. Reed, Steven Degraer, Laura H. Antão, Krzysztof Pabis, Christopher C. Koenig, Fernando Carvalho, Marcelo Vianna, Anne E. Magurran, Marc Estiarte, Rebecca Kinnear, Tracey Smart, Lesley T. Lancaster, Frank P. Day, Natalia Norden, Unai Cotano, Fábio Z. Farneda, Nelson Valdivia, Corinna Gries, Tomasz Wesołowski, Pedro Higuchi, Jungwon Kang, Randall W. Myster, Itai van Rijn, Oscar Pizarro, Michael L. Zettler, Simon Thorn, Thomas W. Sherry, Timothy E. Dunn, Tung-Yung Fan, Susan Boyd, Adrià López-Baucells, Tomáš Vrška, Tory J. Chase, Ruben Escribano, R. Williams, Carolina Mathias Moreira, John F. Chamblee, Con Quang Vu, Halvor Knutsen, Amanda E. Bates, Maria Dornelas, Kari Klanderud, Jorge Yoshio Tamashiro, Tom Moens, Sara L. Webb, Iain Matthews, Carl Van Colen, Chao-Yang Kuo, Caya Sievers, Faith A. M. Jones, Gary Haskins, Eric J. Woehler, J. Hans C. Cornelissen, Allen H. Hurlbert, Mia O. Hoogenboom, Pamela Hidalgo, Henry A. Ruhl, Brian S. Evans, Ørjan Totland, Lien Van Vu, Yzel Rondon Súarez, Gabriella Damasceno, Even Moland, John Harte, Andrew Naumov, Ethan P. White, Natália Macedo Ivanauskas, Systems Ecology, International Oceanographic Data and Information Exchange (IODE) of the Intergovernmental Oceanographic Commission of UNESCO, Oostende, Safety science group, Delft University of Technology (TU Delft), Institut Français de Pondichéry (IFP), Centre National de la Recherche Scientifique (CNRS)-Ministère de l'Europe et des Affaires étrangères (MEAE), Department of Biology [Pisa], University of Pisa - Università di Pisa, CSIRO Land and Water, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Institute of Biology/Geobotany and Botanical Garden, Martin-Luther-Universität Halle Wittenberg (MLU), Management Unit of the Mathematical Model of the North Sea, Royal Belgian Insitute of Natural Sciences, Floresta Estadual Assis, Global Ecology Unit CREAF-CEAB-CSIC, Universitat Autònoma de Barcelona [Barcelona] (UAB), National Museum of Marine Biology and Aquarium, Universidade de São Paulo (USP), Polar Oceans Research Group [USA], Department of Zoology, Tel Aviv University [Tel Aviv], Norwegian Institute for Nature Research (NINA), EWHALE Laboratory of Biology and Wildlife Department, Institute of Arctic Biology-University of Alaska [Fairbanks] (UAF), Laboratory of Polar Biology and Oceanobiology, University of Lódź, Dept Ecol Evol Biol, Univ California SC (EEB-UCSC), University of California [Santa Cruz] (UCSC), University of California-University of California, Département de chimie-biologie & Centre d’études nordiques [CANADA], Université du Québec à Trois-Rivières (UQTR), Human Communication Technologies Research Laboratory (UBC), University of British Columbia (UBC), Instituto Espanol de Oceanografia, Instituto Español de Oceanografía, Department of Biology [Copenhagen], Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Institute of Marine Research, Flødevigen Marine Research Station, Computer Laboratory [Cambridge], University of Cambridge [UK] (CAM), Aarhus University [Aarhus], Evolution et Diversité Biologique (EDB), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre for Forest Research (CFR), Université du Québec à Montréal (UQAM), The Centre for Applied Genomics, Toronto, University of Toronto-The Hospital for Sick Children-Department of Molecular Genetics-McLaughlin Centre, Botanique et Modélisation de l'Architecture des Plantes et des Végétations (UMR AMAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD [France-Sud]), Centro de Investigación Oceanográfica en el Pacífico Sur Oriental (COPAS), Universidad de Concepción [Chile], Department of Biology, Pennsylvania State University (Penn State), Penn State System-Penn State System, Department of Biological Science [Tallahassee], Florida State University [Tallahassee] (FSU), Department of Forest Resources, University of Minnesota [Twin Cities], University of Minnesota System-University of Minnesota System, WSL Institute for Snow and Avalanche Research SLF, Communication Systems Group [Zurich], Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Academia Sinica, Facultad Ciencias del Mar, universidad catolica del Norte, Marine Biology Section, Ghent University [Belgium] (UGENT), Department of Avian Ecology, Wrocław University, Plymouth Marine Laboratory (PML), Plymouth Marine Laboratory, Institute for Marine and Antarctic Studies [Horbat] (IMAS), University of Tasmania (UTAS), European Project: 610028,EC:FP7:ERC,ERC-2013-SyG,IMBALANCE-P(2014), Dornelas, Maria, University of St Andrews. School of Biology, University of St Andrews. Fish Behaviour and Biodiversity Research Group, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. Scottish Oceans Institute, University of St Andrews. Institute of Behavioural and Neural Sciences, University of St Andrews. St Andrews Sustainability Institute, University of St Andrews. Centre for Research into Ecological & Environmental Modelling, University of St Andrews. Sediment Ecology Research Group, University of St Andrews. Centre for Higher Education Research, Ministère de l'Europe et des Affaires étrangères (MEAE)-Centre National de la Recherche Scientifique (CNRS), Universitat Autònoma de Barcelona (UAB), Universidade de São Paulo = University of São Paulo (USP), Tel Aviv University (TAU), University of California [Santa Cruz] (UC Santa Cruz), University of California (UC)-University of California (UC), University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Flødevigen Research Station (IMR), Institute of Marine Research [Bergen] (IMR), University of Bergen (UiB)-University of Bergen (UiB), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université du Québec à Montréal = University of Québec in Montréal (UQAM), The Hospital for sick children [Toronto] (SickKids)-University of Toronto-Department of Molecular Genetics-McLaughlin Centre, Universidad de Concepción - University of Concepcion [Chile], University of Minnesota [Twin Cities] (UMN), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Universiteit Gent = Ghent University (UGENT), University of Wrocław [Poland] (UWr), Institute for Marine and Antarctic Studies [Hobart] (IMAS), University of Tasmania [Hobart, Australia] (UTAS), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, University of Toronto-The Hospital for sick children [Toronto] (SickKids)-Department of Molecular Genetics-McLaughlin Centre, Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD [France-Sud]), Universiteit Gent = Ghent University [Belgium] (UGENT), Dornelas M., Antao L.H., Moyes F., Bates A.E., Magurran A.E., Adam D., Akhmetzhanova A.A., Appeltans W., Arcos J.M., Arnold H., Ayyappan N., Badihi G., Baird A.H., Barbosa M., Barreto T.E., Bassler C., Bellgrove A., Belmaker J., Benedetti-Cecchi L., Bett B.J., Bjorkman A.D., Blazewicz M., Blowes S.A., Bloch C.P., Bonebrake T.C., Boyd S., Bradford M., Brooks A.J., Brown J.H., Bruelheide H., Budy P., Carvalho F., Castaneda-Moya E., Chen C.A., Chamblee J.F., Chase T.J., Siegwart Collier L., Collinge S.K., Condit R., Cooper E.J., Cornelissen J.H.C., Cotano U., Kyle Crow S., Damasceno G., Davies C.H., Davis R.A., Day F.P., Degraer S., Doherty T.S., Dunn T.E., Durigan G., Duffy J.E., Edelist D., Edgar G.J., Elahi R., Elmendorf S.C., Enemar A., Ernest S.K.M., Escribano R., Estiarte M., Evans B.S., Fan T.-Y., Turini Farah F., Loureiro Fernandes L., Farneda F.Z., Fidelis A., Fitt R., Fosaa A.M., Daher Correa Franco G.A., Frank G.E., Fraser W.R., Garcia H., Cazzolla Gatti R., Givan O., Gorgone-Barbosa E., Gould W.A., Gries C., Grossman G.D., Gutierrez J.R., Hale S., Harmon M.E., Harte J., Haskins G., Henshaw D.L., Hermanutz L., Hidalgo P., Higuchi P., Hoey A., Van Hoey G., Hofgaard A., Holeck K., Hollister R.D., Holmes R., Hoogenboom M., Hsieh C.-H., Hubbell S.P., Huettmann F., Huffard C.L., Hurlbert A.H., Macedo Ivanauskas N., Janik D., Jandt U., Jazdzewska A., Johannessen T., Johnstone J., Jones J., Jones F.A.M., Kang J., Kartawijaya T., Keeley E.C., Kelt D.A., Kinnear R., Klanderud K., Knutsen H., Koenig C.C., Kortz A.R., Kral K., Kuhnz L.A., Kuo C.-Y., Kushner D.J., Laguionie-Marchais C., Lancaster L.T., Min Lee C., Lefcheck J.S., Levesque E., Lightfoot D., Lloret F., Lloyd J.D., Lopez-Baucells A., Louzao M., Madin J.S., Magnusson B., Malamud S., Matthews I., McFarland K.P., McGill B., McKnight D., McLarney W.O., Meador J., Meserve P.L., Metcalfe D.J., Meyer C.F.J., Michelsen A., Milchakova N., Moens T., Moland E., Moore J., Mathias Moreira C., Muller J., Murphy G., Myers-Smith I.H., Myster R.W., Naumov A., Neat F., Nelson J.A., Paul Nelson M., Newton S.F., Norden N., Oliver J.C., Olsen E.M., Onipchenko V.G., Pabis K., Pabst R.J., Paquette A., Pardede S., Paterson D.M., Pelissier R., Penuelas J., Perez-Matus A., Pizarro O., Pomati F., Post E., Prins H.H.T., Priscu J.C., Provoost P., Prudic K.L., Pulliainen E., Ramesh B.R., Mendivil Ramos O., Rassweiler A., Rebelo J.E., Reed D.C., Reich P.B., Remillard S.M., Richardson A.J., Richardson J.P., van Rijn I., Rocha R., Rivera-Monroy V.H., Rixen C., Robinson K.P., Ribeiro Rodrigues R., de Cerqueira Rossa-Feres D., Rudstam L., Ruhl H., Ruz C.S., Sampaio E.M., Rybicki N., Rypel A., Sal S., Salgado B., Santos F.A.M., Savassi-Coutinho A.P., Scanga S., Schmidt J., Schooley R., Setiawan F., Shao K.-T., Shaver G.R., Sherman S., Sherry T.W., Sicinski J., Sievers C., da Silva A.C., Rodrigues da Silva F., Silveira F.L., Slingsby J., Smart T., Snell S.J., Soudzilovskaia N.A., Souza G.B.G., Maluf Souza F., Castro Souza V., Stallings C.D., Stanforth R., Stanley E.H., Mauro Sterza J., Stevens M., Stuart-Smith R., Rondon Suarez Y., Supp S., Yoshio Tamashiro J., Tarigan S., Thiede G.P., Thorn S., Tolvanen A., Teresa Zugliani Toniato M., Totland O., Twilley R.R., Vaitkus G., Valdivia N., Vallejo M.I., Valone T.J., Van Colen C., Vanaverbeke J., Venturoli F., Verheye H.M., Vianna M., Vieira R.P., Vrska T., Quang Vu C., Van Vu L., Waide R.B., Waldock C., Watts D., Webb S., Wesolowski T., White E.P., Widdicombe C.E., Wilgers D., Williams R., Williams S.B., Williamson M., Willig M.R., Willis T.J., Wipf S., Woods K.D., Woehler E.J., Zawada K., Zettler M.L., The Wellcome Trust, European Research Council, and University of St Andrews. Centre for Biological Diversity
- Subjects
Data Papers ,0106 biological sciences ,Range (biology) ,QH301 Biology ,temporal ,NERC ,Biodiversity ,Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480 [VDP] ,BIALOWIEZA NATIONAL-PARK ,special ,computer.software_genre ,[SDV.BID.SPT]Life Sciences [q-bio]/Biodiversity/Systematics, Phylogenetics and taxonomy ,01 natural sciences ,species richness ,SDG 15 - Life on Land ,biodiversity ,Global and Planetary Change ,B003-ecology ,Database ,Ecology ,Sampling (statistics) ,SIMULATED HERBIVORY ,supporting technologies ,LAND-BRIDGE ISLANDS ,[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanics ,PE&RC ,global ,PRIMEVAL TEMPERATE FOREST ,Geography ,POPULATION TRENDS ,turnover ,Data Paper ,SECONDARY FOREST ,Evolution ,ESTUARINE COASTAL LAGOON ,010603 evolutionary biology ,QH301 ,[SDV.EE.ECO]Life Sciences [q-bio]/Ecology, environment/Ecosystems ,Behavior and Systematics ,Anthropocene ,spatial ,Ecology, Evolution, Behavior and Systematics ,VDP::Mathematics and natural science: 400::Zoology and botany: 480 ,species richne ,14. Life underwater ,SDG 14 - Life Below Water ,NE/L002531/1 ,ZA4450 ,Relative species abundance ,ZA4450 Databases ,010604 marine biology & hydrobiology ,RCUK ,Biology and Life Sciences ,DAS ,15. Life on land ,DECIDUOUS FOREST ,Taxon ,Fish ,13. Climate action ,MCP ,Wildlife Ecology and Conservation ,LONG-TERM CHANGE ,Species richness ,[SDE.BE]Environmental Sciences/Biodiversity and Ecology ,computer ,BIRD COMMUNITY DYNAMICS ,VDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480 - Abstract
Motivation The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene. Main types of variables included The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record. Spatial location and grain BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2). Time period and grain BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year. Major taxa and level of measurement BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates. Software format .csv and .SQL., Global Ecology and Biogeography, 27 (7), ISSN:1466-822X, ISSN:1466-8238
- Published
- 2018
32. Author Correction: Aerial additive manufacturing with multiple autonomous robots.
- Author
-
Zhang K, Chermprayong P, Xiao F, Tzoumanikas D, Dams B, Kay S, Kocer BB, Burns A, Orr L, Alhinai T, Choi C, Darekar DD, Li W, Hirschmann S, Soana V, Ngah SA, Grillot C, Sareh S, Choubey A, Margheri L, Pawar VM, Ball RJ, Williams C, Shepherd P, Leutenegger S, Stuart-Smith R, and Kovac M
- Published
- 2024
- Full Text
- View/download PDF
33. Climate risk assessments must engage with the law.
- Author
-
Wetzer T, Stuart-Smith R, and Dibley A
- Abstract
Legal actions determine the allocation and magnitude of climate-related financial risk exposures.
- Published
- 2024
- Full Text
- View/download PDF
34. Invited Perspective: Stranger Danger-Health-Damaging Variable Temperatures.
- Author
-
Woodward A and Stuart-Smith R
- Subjects
- Temperature
- Published
- 2023
- Full Text
- View/download PDF
35. Warming signals in temperate reef communities following more than a decade of ecological stability.
- Author
-
Soler GA, Edgar GJ, Barrett NS, Stuart-Smith RD, Oh E, Cooper A, Ridgway KR, and Ling SD
- Subjects
- Animals, Biodiversity, Invertebrates, Temperature, Fishes, Coral Reefs, Ecosystem, Seaweed
- Abstract
Ecosystem structure and function are increasingly threatened by changing climate, with profound effects observed globally in recent decades. Based on standardized visual censuses of reef biodiversity, we describe 27 years of community-level change for fishes, mobile macroinvertebrates and macroalgae in the Tasmanian ocean-warming hotspot. Significant ecological change was observed across 94 reef sites (5-10 m depth range) spanning four coastal regions between three periods (1992-95, 2006-07, 2017-19), which occurred against a background of pronounced sea temperature rise (+0.80°C on average). Overall, fish biomass increased, macroinvertebrate species richness and abundance decreased and macroalgal cover decreased, particularly during the most recent decade. While reef communities were relatively stable and warming was slight between the 1990s and mid-2000s (+0.12°C mean temperature rise), increased abundances of warm affinity fishes and invertebrates accompanied warming during the most recent decade (+0.68°C rise). However, significant rises in the community temperature index (CTI) were only found for fishes, invertebrates and macroalgae in some regions. Coastal warming was associated with increased fish biomass of non-targeted species in fished zones but had little effect on reef communities within marine reserves. Higher abundances of larger fishes and lobsters inside reserves appeared to negate impacts of 'thermophilization'.
- Published
- 2022
- Full Text
- View/download PDF
36. Aerial additive manufacturing with multiple autonomous robots.
- Author
-
Zhang K, Chermprayong P, Xiao F, Tzoumanikas D, Dams B, Kay S, Kocer BB, Burns A, Orr L, Alhinai T, Choi C, Darekar DD, Li W, Hirschmann S, Soana V, Ngah SA, Grillot C, Sareh S, Choubey A, Margheri L, Pawar VM, Ball RJ, Williams C, Shepherd P, Leutenegger S, Stuart-Smith R, and Kovac M
- Abstract
Additive manufacturing methods
1-4 using static and mobile robots are being developed for both on-site construction5-8 and off-site prefabrication9,10 . Here we introduce a method of additive manufacturing, referred to as aerial additive manufacturing (Aerial-AM), that utilizes a team of aerial robots inspired by natural builders11 such as wasps who use collective building methods12,13 . We present a scalable multi-robot three-dimensional (3D) printing and path-planning framework that enables robot tasks and population size to be adapted to variations in print geometry throughout a building mission. The multi-robot manufacturing framework allows for autonomous three-dimensional printing under human supervision, real-time assessment of printed geometry and robot behavioural adaptation. To validate autonomous Aerial-AM based on the framework, we develop BuilDrones for depositing materials during flight and ScanDrones for measuring the print quality, and integrate a generic real-time model-predictive-control scheme with the Aerial-AM robots. In addition, we integrate a dynamically self-aligning delta manipulator with the BuilDrone to further improve the manufacturing accuracy to five millimetres for printing geometry with precise trajectory requirements, and develop four cementitious-polymeric composite mixtures suitable for continuous material deposition. We demonstrate proof-of-concept prints including a cylinder 2.05 metres high consisting of 72 layers of a rapid-curing insulation foam material and a cylinder 0.18 metres high consisting of 28 layers of structural pseudoplastic cementitious material, a light-trail virtual print of a dome-like geometry, and multi-robot simulations. Aerial-AM allows manufacturing in-flight and offers future possibilities for building in unbounded, at-height or hard-to-access locations., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
37. Fish heating tolerance scales similarly across individual physiology and populations.
- Author
-
Payne NL, Morley SA, Halsey LG, Smith JA, Stuart-Smith R, Waldock C, and Bates AE
- Subjects
- Animals, Global Warming, Population Density, Species Specificity, Temperature, Body Temperature Regulation, Climate, Fishes physiology, Thermotolerance
- Abstract
Extrapolating patterns from individuals to populations informs climate vulnerability models, yet biological responses to warming are uncertain at both levels. Here we contrast data on the heating tolerances of fishes from laboratory experiments with abundance patterns of wild populations. We find that heating tolerances in terms of individual physiologies in the lab and abundance in the wild decline with increasing temperature at the same rate. However, at a given acclimation temperature or optimum temperature, tropical individuals and populations have broader heating tolerances than temperate ones. These congruent relationships implicate a tight coupling between physiological and demographic processes underpinning macroecological patterns, and identify vulnerability in both temperate and tropical species.
- Published
- 2021
- Full Text
- View/download PDF
38. National-scale marine bioregions for the Southwest Pacific.
- Author
-
Beger M, Wendt H, Sullivan J, Mason C, LeGrand J, Davey K, Jupiter S, Ceccarelli DM, Dempsey A, Edgar G, Feary DA, Fenner D, Gauna M, Grice H, Kirmani SN, Mangubhai S, Purkis S, Richards ZT, Rotjan R, Stuart-Smith R, Sykes H, Yakub N, Bauman AG, Hughes A, Raubani J, Lewis A, and Fernandes L
- Subjects
- Cluster Analysis, Oceans and Seas, Pacific Ocean, Biodiversity, Conservation of Natural Resources, Coral Reefs
- Abstract
Existing marine bioregions covering the Pacific Ocean are conceptualised at spatial scales that are too broad for national marine spatial planning. Here, we developed the first combined oceanic and coastal marine bioregionalisation at national scales, delineating 262 deep-water and 103 reef-associated bioregions across the southwest Pacific. The deep-water bioregions were informed by thirty biophysical environmental variables. For reef-associated environments, records for 806 taxa at 7369 sites were used to predict the probability of observing taxa based on environmental variables. Both deep-water and reef-associated bioregions were defined with cluster analysis applied to the environmental variables and predicted species observation probabilities, respectively to classify areas with high taxonomic similarity. Local experts further refined the delineation of the bioregions at national scales for four countries. This work provides marine bioregions that enable the design of ecologically representative national systems of marine protected areas within offshore and inshore environments in the Pacific., (Copyright © 2019. Published by Elsevier Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
39. A review of collective robotic construction.
- Author
-
Petersen KH, Napp N, Stuart-Smith R, Rus D, and Kovac M
- Abstract
The increasing need for safe, inexpensive, and sustainable construction, combined with novel technological enablers, has made large-scale construction by robot teams an active research area. Collective robotic construction (CRC) specifically concerns embodied, autonomous, multirobot systems that modify a shared environment according to high-level user-specified goals. CRC tightly integrates architectural design, the construction process, mechanisms, and control to achieve scalability and adaptability. This review gives a comprehensive overview of research trends, open questions, and performance metrics., (Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2019
- Full Text
- View/download PDF
40. BioTIME: A database of biodiversity time series for the Anthropocene.
- Author
-
Dornelas M, Antão LH, Moyes F, Bates AE, Magurran AE, Adam D, Akhmetzhanova AA, Appeltans W, Arcos JM, Arnold H, Ayyappan N, Badihi G, Baird AH, Barbosa M, Barreto TE, Bässler C, Bellgrove A, Belmaker J, Benedetti-Cecchi L, Bett BJ, Bjorkman AD, Błażewicz M, Blowes SA, Bloch CP, Bonebrake TC, Boyd S, Bradford M, Brooks AJ, Brown JH, Bruelheide H, Budy P, Carvalho F, Castañeda-Moya E, Chen CA, Chamblee JF, Chase TJ, Siegwart Collier L, Collinge SK, Condit R, Cooper EJ, Cornelissen JHC, Cotano U, Kyle Crow S, Damasceno G, Davies CH, Davis RA, Day FP, Degraer S, Doherty TS, Dunn TE, Durigan G, Duffy JE, Edelist D, Edgar GJ, Elahi R, Elmendorf SC, Enemar A, Ernest SKM, Escribano R, Estiarte M, Evans BS, Fan TY, Turini Farah F, Loureiro Fernandes L, Farneda FZ, Fidelis A, Fitt R, Fosaa AM, Daher Correa Franco GA, Frank GE, Fraser WR, García H, Cazzolla Gatti R, Givan O, Gorgone-Barbosa E, Gould WA, Gries C, Grossman GD, Gutierréz JR, Hale S, Harmon ME, Harte J, Haskins G, Henshaw DL, Hermanutz L, Hidalgo P, Higuchi P, Hoey A, Van Hoey G, Hofgaard A, Holeck K, Hollister RD, Holmes R, Hoogenboom M, Hsieh CH, Hubbell SP, Huettmann F, Huffard CL, Hurlbert AH, Macedo Ivanauskas N, Janík D, Jandt U, Jażdżewska A, Johannessen T, Johnstone J, Jones J, Jones FAM, Kang J, Kartawijaya T, Keeley EC, Kelt DA, Kinnear R, Klanderud K, Knutsen H, Koenig CC, Kortz AR, Král K, Kuhnz LA, Kuo CY, Kushner DJ, Laguionie-Marchais C, Lancaster LT, Min Lee C, Lefcheck JS, Lévesque E, Lightfoot D, Lloret F, Lloyd JD, López-Baucells A, Louzao M, Madin JS, Magnússon B, Malamud S, Matthews I, McFarland KP, McGill B, McKnight D, McLarney WO, Meador J, Meserve PL, Metcalfe DJ, Meyer CFJ, Michelsen A, Milchakova N, Moens T, Moland E, Moore J, Mathias Moreira C, Müller J, Murphy G, Myers-Smith IH, Myster RW, Naumov A, Neat F, Nelson JA, Paul Nelson M, Newton SF, Norden N, Oliver JC, Olsen EM, Onipchenko VG, Pabis K, Pabst RJ, Paquette A, Pardede S, Paterson DM, Pélissier R, Peñuelas J, Pérez-Matus A, Pizarro O, Pomati F, Post E, Prins HHT, Priscu JC, Provoost P, Prudic KL, Pulliainen E, Ramesh BR, Mendivil Ramos O, Rassweiler A, Rebelo JE, Reed DC, Reich PB, Remillard SM, Richardson AJ, Richardson JP, van Rijn I, Rocha R, Rivera-Monroy VH, Rixen C, Robinson KP, Ribeiro Rodrigues R, de Cerqueira Rossa-Feres D, Rudstam L, Ruhl H, Ruz CS, Sampaio EM, Rybicki N, Rypel A, Sal S, Salgado B, Santos FAM, Savassi-Coutinho AP, Scanga S, Schmidt J, Schooley R, Setiawan F, Shao KT, Shaver GR, Sherman S, Sherry TW, Siciński J, Sievers C, da Silva AC, Rodrigues da Silva F, Silveira FL, Slingsby J, Smart T, Snell SJ, Soudzilovskaia NA, Souza GBG, Maluf Souza F, Castro Souza V, Stallings CD, Stanforth R, Stanley EH, Mauro Sterza J, Stevens M, Stuart-Smith R, Rondon Suarez Y, Supp S, Yoshio Tamashiro J, Tarigan S, Thiede GP, Thorn S, Tolvanen A, Teresa Zugliani Toniato M, Totland Ø, Twilley RR, Vaitkus G, Valdivia N, Vallejo MI, Valone TJ, Van Colen C, Vanaverbeke J, Venturoli F, Verheye HM, Vianna M, Vieira RP, Vrška T, Quang Vu C, Van Vu L, Waide RB, Waldock C, Watts D, Webb S, Wesołowski T, White EP, Widdicombe CE, Wilgers D, Williams R, Williams SB, Williamson M, Willig MR, Willis TJ, Wipf S, Woods KD, Woehler EJ, Zawada K, Zettler ML, and Hickler T
- Abstract
Motivation: The BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene., Main Types of Variables Included: The database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record., Spatial Location and Grain: BioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km
2 (158 cm2 ) to 100 km2 (1,000,000,000,000 cm2 )., Time Period and Grain: BioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year., Major Taxa and Level of Measurement: BioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates., Software Format: .csv and .SQL.- Published
- 2018
- Full Text
- View/download PDF
41. Pollution signature for temperate reef biodiversity is short and simple.
- Author
-
Ling SD, Davey A, Reeves SE, Gaylard S, Davies PL, Stuart-Smith RD, and Edgar GJ
- Subjects
- Animals, Australia, Ecosystem, Environmental Pollutants analysis, Environmental Pollutants toxicity, Environmental Pollution adverse effects, Fishes, Invertebrates, Metals, Heavy analysis, Seaweed, Sewage analysis, Biodiversity, Coral Reefs, Metals, Heavy toxicity, Plastics toxicity, Sewage adverse effects
- Abstract
Pollution increasingly impacts healthy functioning of marine ecosystems globally. Here we quantify concentrations of major pollutant types (heavy metals/sewage/petrochemicals/plastics) as accumulated within marine sediments on and/or immediately adjacent to shallow reefs for 42 sites spanning coastal population centres across south-eastern Australia. Gradients in pollutants were revealed, but few pollutants co-varied, while increasing wave exposure ostensibly diluted concentrations of all pollutants except microplastics. Examination of reef biodiversity indicators revealed that maximum size of fauna and flora, a key life-history parameter summarised by the Community shortness index, plus declining functional and species richness, were the most sensitive bioindicators of pollutants - for which heavy metals and nutrient-enrichment were most pervasive. Results indicate that assemblages of biogenic habitat formers and associated fauna collapse from "long and complicated" to "short and simplified" configurations in response to increasing pollution, and this community signature may form an effective bioindicator to track human-driven degradation., (Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
42. Toward autonomous architecture: The convergence of digital design, robotics, and the built environment.
- Author
-
Pawar VM, Stuart-Smith R, and Scully P
- Abstract
The way we design, construct, and inhabit buildings is changing-moving toward greater integration of robotic and autonomous systems that challenge our preconceived notions of how buildings are made, what they are, or what they should be., (Copyright © 2017, American Association for the Advancement of Science.)
- Published
- 2017
- Full Text
- View/download PDF
43. A Standardised Vocabulary for Identifying Benthic Biota and Substrata from Underwater Imagery: The CATAMI Classification Scheme.
- Author
-
Althaus F, Hill N, Ferrari R, Edwards L, Przeslawski R, Schönberg CH, Stuart-Smith R, Barrett N, Edgar G, Colquhoun J, Tran M, Jordan A, Rees T, and Gowlett-Holmes K
- Subjects
- Algorithms, Animals, Biota, Conservation of Natural Resources, Ecosystem, Environmental Monitoring methods, Invertebrates
- Abstract
Imagery collected by still and video cameras is an increasingly important tool for minimal impact, repeatable observations in the marine environment. Data generated from imagery includes identification, annotation and quantification of biological subjects and environmental features within an image. To be long-lived and useful beyond their project-specific initial purpose, and to maximize their utility across studies and disciplines, marine imagery data should use a standardised vocabulary of defined terms. This would enable the compilation of regional, national and/or global data sets from multiple sources, contributing to broad-scale management studies and development of automated annotation algorithms. The classification scheme developed under the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) project provides such a vocabulary. The CATAMI classification scheme introduces Australian-wide acknowledged, standardised terminology for annotating benthic substrates and biota in marine imagery. It combines coarse-level taxonomy and morphology, and is a flexible, hierarchical classification that bridges the gap between habitat/biotope characterisation and taxonomy, acknowledging limitations when describing biological taxa through imagery. It is fully described, documented, and maintained through curated online databases, and can be applied across benthic image collection methods, annotation platforms and scoring methods. Following release in 2013, the CATAMI classification scheme was taken up by a wide variety of users, including government, academia and industry. This rapid acceptance highlights the scheme's utility and the potential to facilitate broad-scale multidisciplinary studies of marine ecosystems when applied globally. Here we present the CATAMI classification scheme, describe its conception and features, and discuss its utility and the opportunities as well as challenges arising from its use.
- Published
- 2015
- Full Text
- View/download PDF
44. Broad-scale impacts of salmon farms on temperate macroalgal assemblages on rocky reefs.
- Author
-
Oh ES, Edgar GJ, Kirkpatrick JB, Stuart-Smith RD, and Barrett NS
- Subjects
- Animals, Anthozoa, Chlorophyta physiology, Ecosystem, Environment, Oceans and Seas, Seaweed, Tasmania, Aquaculture methods, Salmon
- Abstract
Intensive fish culture in open sea pens delivers large amounts of nutrients to coastal environments. Relative to particulate waste impacts, the ecological impacts of dissolved wastes are poorly known despite their potential to substantially affect nutrient-assimilating components of surrounding ecosystems. Broad-scale enrichment effects of salmonid farms on Tasmanian reef communities were assessed by comparing macroalgal cover at four fixed distances from active fish farm leases across 44 sites. Macroalgal assemblages differed significantly between sites immediately adjacent (100m) to fish farms and reference sites at 5km distance, while sites at 400m and 1km exhibited intermediate characteristics. Epiphyte cover varied consistently with fish farm impacts in both sheltered and exposed locations. The green algae Chaetomorpha spp. predominated near fish farms at swell-exposed sites, whereas filamentous green algae showed elevated densities near sheltered farms. Cover of canopy-forming perennial algae appeared unaffected by fish farm impacts., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
45. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.
- Author
-
Sunday JM, Pecl GT, Frusher S, Hobday AJ, Hill N, Holbrook NJ, Edgar GJ, Stuart-Smith R, Barrett N, Wernberg T, Watson RA, Smale DA, Fulton EA, Slawinski D, Feng M, Radford BT, Thompson PA, and Bates AE
- Subjects
- Animals, Australia, Body Size, Diet veterinary, Food Chain, Homing Behavior, Likelihood Functions, Linear Models, Marine Biology, Motor Activity, Oceans and Seas, Population Density, Reproduction, Climate Change, Ecosystem, Fishes physiology, Invertebrates physiology, Temperature
- Abstract
Species' ranges are shifting globally in response to climate warming, with substantial variability among taxa, even within regions. Relationships between range dynamics and intrinsic species traits may be particularly apparent in the ocean, where temperature more directly shapes species' distributions. Here, we test for a role of species traits and climate velocity in driving range extensions in the ocean-warming hotspot of southeast Australia. Climate velocity explained some variation in range shifts, however, including species traits more than doubled the variation explained. Swimming ability, omnivory and latitudinal range size all had positive relationships with range extension rate, supporting hypotheses that increased dispersal capacity and ecological generalism promote extensions. We find independent support for the hypothesis that species with narrow latitudinal ranges are limited by factors other than climate. Our findings suggest that small-ranging species are in double jeopardy, with limited ability to escape warming and greater intrinsic vulnerability to stochastic disturbances., (© 2015 John Wiley & Sons Ltd/CNRS.)
- Published
- 2015
- Full Text
- View/download PDF
46. Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes.
- Author
-
Mora C, Aburto-Oropeza O, Ayala Bocos A, Ayotte PM, Banks S, Bauman AG, Beger M, Bessudo S, Booth DJ, Brokovich E, Brooks A, Chabanet P, Cinner JE, Cortés J, Cruz-Motta JJ, Cupul Magaña A, Demartini EE, Edgar GJ, Feary DA, Ferse SC, Friedlander AM, Gaston KJ, Gough C, Graham NA, Green A, Guzman H, Hardt M, Kulbicki M, Letourneur Y, López Pérez A, Loreau M, Loya Y, Martinez C, Mascareñas-Osorio I, Morove T, Nadon MO, Nakamura Y, Paredes G, Polunin NV, Pratchett MS, Reyes Bonilla H, Rivera F, Sala E, Sandin SA, Soler G, Stuart-Smith R, Tessier E, Tittensor DP, Tupper M, Usseglio P, Vigliola L, Wantiez L, Williams I, Wilson SK, and Zapata FA
- Subjects
- Animals, Biomass, Conservation of Natural Resources, Ecosystem, Environment, Humans, Population Density, Biodiversity, Coral Reefs, Fishes
- Abstract
Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.