1. Imaging the Breathing of a Platinum Nanoparticle in Electrochemical Environment
- Author
-
Atlan, Clément, Chatelier, Corentin, Dupraz, Maxime, Martens, Isaac, Viola, Arnaud, Li, Ni, Gao, Lu, Leake, Steven J., Schülli, Tobias U., Eymery, Joël, Maillard, Frédéric, Richard, Marie-Ingrid, Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), European Synchroton Radiation Facility [Grenoble] (ESRF), Electrochimie Interfaciale et Procédés (EIP), Laboratoire d'Electrochimie et de Physico-chimie des Matériaux et des Interfaces (LEPMI), Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Institut de Chimie du CNRS (INC)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Eindhoven University of Technology [Eindhoven] (TU/e), ANR-19-ENER-0008,BRIDGE,Vers l'intégration de catalyseurs performants dans des électrodes de pile à combustible efficaces(2019), and European Project: 818823,CARINE
- Subjects
Condensed Matter - Materials Science ,Strain 3D ,Coherent diffraction imaging ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Platinum and palladium catalysts ,Electrocatalysis in situ and operando ,[CHIM.CATA]Chemical Sciences/Catalysis - Abstract
Surface strain is widely used in gas phase catalysis and electrocatalysis to control the binding energies of adsorbates on metal surfaces. However, $in$ $situ$ or $operando$ strain measurements are experimentally challenging, especially on nanomaterials. Here, we take advantage of the 4$^{th}$ generation Extremely Brilliant Source at the European Synchrotron Radiation Facility (ESRF-EBS, Grenoble, France) to quantify the distribution of strain inside a Pt nanoparticle, and to determine its morphology in an electrochemical environment. Our results show for the first time evidence of heterogeneous and potential-dependent strain distribution between highly-coordinated ({100} and {111} facets) and under-coordinated atoms (edges and corners) as well as evidence of strain propagation from the surface to the bulk of the nanoparticle. These results provide dynamic structural insights to better simulate and design efficient nanocatalysts for energy storage and conversion applications.
- Published
- 2022