1. Interplay between an absorbing phase transition and synchronization in a driven granular system
- Author
-
Maire, R., Plati, A., Stockinger, M., Trizac, E., Smallenburg, F., and Foffi, G.
- Subjects
Condensed Matter - Statistical Mechanics - Abstract
Absorbing phase transitions (APTs) are widespread in non-equilibrium systems, spanning condensed matter, epidemics, earthquakes, ecology, and chemical reactions. APTs feature an absorbing state in which the system becomes entrapped, along with a transition, either continuous or discontinuous, to an active state. Understanding which physical mechanisms determine the order of these transitions represents a challenging open problem in non-equilibrium statistical mechanics. Here, by numerical simulations and mean-field analysis, we show that a quasi-2d vibrofluidized granular system exhibits a novel form of APT. The absorbing phase is observed in the horizontal dynamics below a critical packing fraction, and can be continuous or discontinuous based on the emergent degree of synchronization in the vertical motion. Our results provide a direct representation of a feasible experimental scenario, showcasing a surprising interplay between dynamic phase transition and synchronization., Comment: 4 pages, 3 figures
- Published
- 2024