1. A Broad Line-width, Compact, Millimeter-bright Molecular Emission Line Source near the Galactic Center
- Author
-
Adam Ginsburg, John Bally, Ashley T. Barnes, Cara Battersby, Nazar Budaiev, Natalie O. Butterfield, Paola Caselli, Laura Colzi, Katarzyna M. Dutkowska, Pablo García, Savannah Gramze, Jonathan D. Henshaw, Yue Hu, Desmond Jeff, Izaskun Jiménez-Serra, Jens Kauffmann, Ralf S. Klessen, Emily M. Levesque, Steven N. Longmore, Xing Lu, Elisabeth A. C. Mills, Mark R. Morris, Francisco Nogueras-Lara, Tomoharu Oka, Jaime E. Pineda, Thushara G. S. Pillai, Víctor M. Rivilla, Álvaro Sánchez-Monge, Miriam G. Santa-Maria, Howard A. Smith, Yoshiaki Sofue, Mattia C. Sormani, Grant R. Tremblay, Gijs Vermariën, Alexey Vikhlinin, Serena Viti, Dan Walker, Q. Daniel Wang, Fengwei Xu, and Qizhou Zhang
- Subjects
Galactic center ,Millimeter astronomy ,Millimeter-wave spectroscopy ,Astrophysics ,QB460-466 - Abstract
A compact source, G0.02467–0.0727, was detected in Atacama Large Millimeter/submillimeter Array 3 mm observations in continuum and very broad line emission. The continuum emission has a spectral index α ≈ 3.3, suggesting that the emission is from dust. The line emission is detected in several transitions of CS, SO, and SO _2 and exhibits a line width FWHM ≈ 160 km s ^−1 . The line profile appears Gaussian. The emission is weakly spatially resolved, coming from an area on the sky ≲1″ in diameter (≲10 ^4 au at the distance of the Galactic center, GC). The centroid velocity is v _LSR ≈ 40–50 km s ^−1 , which is consistent with a location in the GC. With multiple SO lines detected, and assuming local thermodynamic equilibrium (LTE) conditions, the gas temperature is T _LTE = 13 K, which is colder than seen in typical GC clouds, though we cannot rule out low-density, subthermally excited, warmer gas. Despite the high velocity dispersion, no emission is observed from SiO, suggesting that there are no strong (≳10 km s ^−1 ) shocks in the molecular gas. There are no detections at other wavelengths, including X-ray, infrared, and radio. We consider several explanations for the millimeter ultra-broad-line object (MUBLO), including protostellar outflow, explosive outflow, a collapsing cloud, an evolved star, a stellar merger, a high-velocity compact cloud, an intermediate-mass black hole, and a background galaxy. Most of these conceptual models are either inconsistent with the data or do not fully explain them. The MUBLO is, at present, an observationally unique object.
- Published
- 2024
- Full Text
- View/download PDF