Sex reversal can occur in XY humans with only a single functional WT1 or SF1 allele or a duplication of the chromosome region containing WNT4. In contrast, XY mice with only a single functional Wt1, Sf1, or Wnt4 allele, or mice that over-express Wnt4 from a transgene, reportedly are not sex-reversed. Because genetic background plays a critical role in testis differentiation, particularly in C57BL/6J (B6) mice, we tested the hypothesis that Wt1, Sf1, and Wnt4 are dosage sensitive in B6 XY mice. We found that reduced Wt1 or Sf1 dosage in B6 XYB6 mice impaired testis differentiation, but no ovarian tissue developed. If, however, a YAKR chromosome replaced the YB6 chromosome, these otherwise genetically identical B6 XY mice developed ovarian tissue. In contrast, reduced Wnt4 dosage increased the amount of testicular tissue present in Sf1+/− B6 XYAKR, Wt1+/− B6 XYAKR, B6 XYPOS, and B6 XYAKR fetuses. We propose that Wt1B6 and Sf1B6 are hypomorphic alleles of testis-determining pathway genes and that Wnt4B6 is a hypermorphic allele of an ovary-determining pathway gene. The latter hypothesis is supported by the finding that expression of Wnt4 and four other genes in the ovary-determining pathway are elevated in normal B6 XX E12.5 ovaries. We propose that B6 mice are sensitive to XY sex reversal, at least in part, because they carry Wt1B6 and/or Sf1B6 alleles that compromise testis differentiation and a Wnt4B6 allele that promotes ovary differentiation and thereby antagonizes testis differentiation. Addition of a “weak” Sry allele, such as the one on the YPOS chromosome, to the sensitized B6 background results in inappropriate development of ovarian tissue. We conclude that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, this dosage-sensitivity is genetic background-dependant, and the mouse strains described here are good models for the investigation of human dosage-sensitive XY sex reversal., Author Summary It has been proposed that mice do not adequately model human disorders of sex development because testis determination is gene dosage-sensitive in humans, but initial studies suggested it is gene dosage-insensitive in mice. For example, XY humans with reduced functional WT1 or SF1 gene-dosage or increased WNT4 gene-dosage can be sex reversed, whereas the equivalent XY mice were not sex-reversed on the genetic backgrounds previously reported. However, because testis determination in C57BL/6J mice is very sensitive to disruption, we tested the hypothesis that these genes are dosage-sensitive in C57BL/6J XY mice. We found that C57BL/6J-YAKR mice with reduced Wt1 or Sf1 gene-dosage were sex-reversed, whereas decreased Wnt4 gene-dosage partially rescued testis development in four genetic systems where C57BL/6J XY mice develop ovarian tissue. Our results demonstrate that Wt1, Sf1, and Wnt4 are dosage-sensitive in mice, that genetic background affects this sensitivity (as we suspect is true in humans), and that the mouse models described here are good models for human dosage-sensitive sex reversal. The results from these and other experiments lead to the hypothesis that the Wt1 and/or Sf1 alleles found in C57BL/6J mice are relatively “weak” testis-determining genes and their Wnt4 allele is a hyperactive ovary-determining gene.