41 results on '"Stephanie C. Casey"'
Search Results
2. Therapeutically targeting type I interferon directly to XCR1+ dendritic cells reveals the role of cDC1s in anti-drug antibodies
- Author
-
Paul Noe, Joy H. Wang, Kyu Chung, Zhiyong Cheng, Jessica J. Field, Xiaomeng Shen, Stephanie C. Casey, Christa L. Cortesio, Cinthia V. Pastuskovas, Hyewon Phee, Kristin V. Tarbell, Jackson G. Egen, and Amy-Jo Casbon
- Subjects
immunogenicity ,interferon ,immunotherapy ,dendritic cells ,conventional type I DCs ,antibody IFN fusion ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Conventional type 1 dendritic cells (cDC1s) are superior in antigen cross-presentation and priming CD8+ T cell anti-tumor immunity and thus, are a target of high interest for cancer immunotherapy. Type I interferon (IFN) is a potent inducer of antigen cross-presentation, but, unfortunately, shows only modest results in the clinic given the short half-life and high toxicity of current type I IFN therapies, which limit IFN exposure in the tumor. CD8+ T cell immunity is dependent on IFN signaling in cDC1s and preclinical studies suggest targeting IFN directly to cDC1s may be sufficient to drive anti-tumor immunity. Here, we engineered an anti-XCR1 antibody (Ab) and IFN mutein (IFNmut) fusion protein (XCR1Ab-IFNmut) to determine whether systemic delivery could drive selective and sustained type I IFN signaling in cDC1s leading to anti-tumor activity and, in parallel, reduced systemic toxicity. We found that the XCR1Ab-IFNmut fusion specifically enhanced cDC1 activation in the tumor and spleen compared to an untargeted control IFN. However, multiple treatments with the XCR1Ab-IFNmut fusion resulted in robust anti-drug antibodies (ADA) and loss of drug exposure. Using other cDC1-targeting Ab-IFNmut fusions, we found that localizing IFN directly to cDC1s activates their ability to promote ADA responses, regardless of the cDC1 targeting antigen. The development of ADA remains a major hurdle in immunotherapy drug development and the cellular and molecular mechanisms governing the development of ADA responses in humans is not well understood. Our results reveal a role of cDC1s in ADA generation and highlight the potential ADA challenges with targeting immunostimulatory agents to this cellular compartment.
- Published
- 2023
- Full Text
- View/download PDF
3. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies
- Author
-
Daniel F. Liefwalker, Meital Ryan, Zhichao Wang, Khyatiben V. Pathak, Seema Plaisier, Vidhi Shah, Bobby Babra, Gabrielle S. Dewson, Ian K. Lai, Adriane R. Mosley, Patrick T. Fueger, Stephanie C. Casey, Lei Jiang, Patrick Pirrotte, Srividya Swaminathan, and Rosalie C. Sears
- Subjects
c-MYC ,BCR-ABL ,RAS ,Lymphoma ,T-ALL ,Cancer metabolism ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Abstract Background Metabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles. We examined cells from mouse models of MYC-, RAS-, and BCR-ABL-driven lymphoid malignancies and find a convergence on de novo lipogenesis. We explore the potential role of MYC in mediating lipogenesis by 13C glucose tracing and untargeted metabolic profiling. Inhibition of lipogenesis leads to cell death both in vitro and in vivo and does not induce cell death of normal splenocytes. Methods We analyzed RNA-seq data sets for common metabolic convergence in lymphoma and leukemia. Using in vitro cell lines derived in from conditional MYC, RAS, and BCR-ABL transgenic murine models and oncogene-driven human cell lines, we determined gene regulation, metabolic profiles, and sensitivity to inhibition of lipogenesis in lymphoid malignancies. We utilize preclinical murine models and transgenic primary model of T-ALL to determine the effect of lipogenesis blockade across BCR-ABL-, RAS-, and c-MYC-driven lymphoid malignancies. Statistical significance was calculated using unpaired t-tests and one-way ANOVA. Results This study illustrates that de novo lipid biogenesis is a shared feature of several lymphoma subtypes. Using cell lines derived from conditional MYC, RAS, and BCR-ABL transgenic murine models, we demonstrate shared responses to inhibition of lipogenesis by the acetyl-coA carboxylase inhibitor 5-(tetradecloxy)-2-furic acid (TOFA), and other lipogenesis inhibitors. We performed metabolic tracing studies to confirm the influence of c-MYC and TOFA on lipogenesis. We identify specific cell death responses to TOFA in vitro and in vivo and demonstrate delayed engraftment and progression in vivo in transplanted lymphoma cell lines. We also observe delayed progression of T-ALL in a primary transgenic mouse model upon TOFA administration. In a panel of human cell lines, we demonstrate sensitivity to TOFA treatment as a metabolic liability due to the general convergence on de novo lipogenesis in lymphoid malignancies driven by MYC, RAS, or BCR-ABL. Importantly, cell death was not significantly observed in non-malignant cells in vivo. Conclusions These studies suggest that de novo lipogenesis may be a common survival strategy for many lymphoid malignancies and may be a clinically exploitable metabolic liability. Trial registration This study does not include any clinical interventions on human subjects.
- Published
- 2021
- Full Text
- View/download PDF
4. Engineered IL-21 Cytokine Muteins Fused to Anti-PD-1 Antibodies Can Improve CD8+ T Cell Function and Anti-tumor Immunity
- Author
-
Shanling Shen, Gail Sckisel, Anupama Sahoo, Almin Lalani, Doug Den Otter, Josh Pearson, Jason DeVoss, Jay Cheng, Stephanie C. Casey, Ryan Case, Melissa Yang, Ray Low, Mark Daris, Bin Fan, Neeraj J. Agrawal, and Khaled Ali
- Subjects
cancer ,engineered cytokine ,IL-21 ,PD-1 ,bifunctional fusion ,immunotherapy ,Immunologic diseases. Allergy ,RC581-607 - Abstract
Inhibitors that block the programmed cell death-1 (PD-1) pathway can potentiate endogenous antitumor immunity and have markedly improved cancer survival rates across a broad range of indications. However, these treatments work for only a minority of patients. The efficacy of anti-PD-1 inhibitors may be extended by cytokines, however, the incorporation of cytokines into therapeutic regimens has significant challenges. In their natural form when administered as recombinant proteins, cytokine treatments are often associated with low response rates. Most cytokines have a short half-life which limits their exposure and efficacy. In addition, cytokines can activate counterregulatory pathways, in the case of immune-potentiating cytokines this can lead to immune suppression and thereby diminish their potential efficacy. Improving the drug-like properties of natural cytokines using protein engineering can yield synthetic cytokines with improved bioavailability and tissue targeting, allowing for enhanced efficacy and reduced off-target effects. Using structure guided engineering we have designed a novel class of antibody-cytokine fusion proteins consisting of a PD-1 targeting antibody fused together with an interleukin-21 (IL-21) cytokine mutein. Our bifunctional fusion proteins can block PD-1/programmed death-ligand 1 (PD-L1) interaction whilst simultaneously delivering IL-21 cytokine to PD-1 expressing T cells. Targeted delivery of IL-21 can improve T cell function in a manner that is superior to anti-PD-1 monotherapy. Fusion of engineered IL-21 variants to anti-PD1 antibodies can improve the drug-like properties of IL-21 cytokine leading to improved cytokine serum half-life allowing for less frequent dosing. In addition, we show that targeted delivery of IL-21 can minimize any potential detrimental effect on local antigen-presenting cells. A highly attenuated IL-21 mutein variant (R9E:R76A) fused to a PD-1 antibody provides protection in a humanized mouse model of cancer that is refractory to anti-PD-1 monotherapy. Collectively, our preclinical data demonstrate that this approach may improve upon and extend the utility of anti-PD-1 therapeutics currently in the clinic.
- Published
- 2020
- Full Text
- View/download PDF
5. Translational mouse models for immuno-oncology: from syngeneic to humanized models
- Author
-
Stephanie C Casey
- Subjects
Geology ,Ocean Engineering ,Water Science and Technology - Published
- 2022
- Full Text
- View/download PDF
6. Supplementary Methods from Therapeutic Targeting of BRCA1-Mutated Breast Cancers with Agents That Activate DNA Repair
- Author
-
James M. Ford, Stephanie C. Casey, David Solow-Cordero, and Elizabeth Alli
- Abstract
Supplementary Methods. Description of additional methods and procedures used in the study.
- Published
- 2023
- Full Text
- View/download PDF
7. Supplementary Figures S1-S5 from Therapeutic Targeting of BRCA1-Mutated Breast Cancers with Agents That Activate DNA Repair
- Author
-
James M. Ford, Stephanie C. Casey, David Solow-Cordero, and Elizabeth Alli
- Abstract
Supplementary Figures S1-S5. SUM149PT cell line meets the screening criteria (S1); A preliminary screen identified BrdU as a small-molecule positive control (S2); Optimization of conditions for HT-screening (S3); Validation of the HT screening protocol (S4); DNA repair-activating agents exhibit minimal cytotoxicity at concentrations that enhance BER of ODD (S5).
- Published
- 2023
- Full Text
- View/download PDF
8. Supplementary Table and Figure Legends from Therapeutic Targeting of BRCA1-Mutated Breast Cancers with Agents That Activate DNA Repair
- Author
-
James M. Ford, Stephanie C. Casey, David Solow-Cordero, and Elizabeth Alli
- Abstract
Supplementary Table and Figure Legends. Legend for Supplementary Table S1 and Supplementary Figures S1-S5.
- Published
- 2023
- Full Text
- View/download PDF
9. Abstract 6251: Evaluation of a dual-targeting BCMA-CS1 HLE BiTE® molecule for multiple myeloma
- Author
-
Elizabeth T. Andrews, Stephanie C. Casey, Mohammad Farhad Amani, Grit Lorenczewski, Mozhgan Farshbaf, Lisa Winkel, Matthias Klinger, John M. Harrold, Famke Aeffner, Ana Goyos, Matthias Friedrich, Tara Arvedson, and Matthew G. Chun
- Subjects
Cancer Research ,Oncology - Abstract
Multiple myeloma (MM) is a cancer of the antibody-producing plasma cells (PC). MM is invariably fatal due to frequent disease relapse and/or treatment refractoriness, and therapies that provide deeper and more durable responses are needed. BiTE® (Bispecific T Cell Engager) molecules are immunotherapy agents that redirect a patient’s T cells to lyse tumor cells by simultaneously engaging a tumor associated antigen (TAA) on cancer cells and CD3ε on T cells. Clinical activity has been observed in MM using BiTE® molecules and other T cell engagers that target B-cell maturation antigen (BCMA). BCMA is an attractive MM TAA due to its broad prevalence and restricted normal tissue profile, mainly PCs and plasmablasts. However, heterogenous expression in MM cancer cells, potential antigen loss, and the presence of high levels of soluble BCMA in MM patient sera present challenges that may prevent BCMA-only-targeted therapies from achieving their full potential. To address these issues, we generated a BiTE® molecule capable of engaging BCMA and a second MM TAA, CS1 (also known as SLAMF7). This BiTE® molecule also contains an Fc-based domain to provide half-life extension (HLE). Here, we evaluated the in vitro and in vivo properties of this BCMA-CS1 HLE BiTE® molecule. The BCMA-CS1 HLE BiTE® molecule had nanomolar binding affinity for human BCMA, CS1, and CD3ε and the non-human primate (NHP) orthologues. In vitro, we observed picomolar activity against human MM cell lines with a range of BCMA and CS1 expression in a T cell dependent cellular cytotoxicity (TDCC) assay using human T cells or NHP peripheral blood mononuclear cells. The BCMA-CS1 HLE BiTE® molecule retained TDCC activity in the presence of soluble BCMA up to 2500 ng/mL as well as against human MM cells engineered to express only BCMA or CS1. In vivo, this BiTE® molecule inhibited tumor growth in a MM xenograft model. We also evaluated the BCMA-CS1 HLE BiTE® molecule in NHP over 15 days (IV dosing; intra-animal dose escalation from 60→240 μg/kg or 180→540 μg/kg on days 1 and 8). We observed hallmarks of BiTE® molecule activity in all groups, including transient decreases in circulating lymphocytes and moderate increases in cytokines like MCP-1. We measured the PC-specific transcripts BCMA and J-chain in NHP bone marrow and blood as surrogates for PC levels using ddPCR. These transcripts were reduced in both treatment groups (≥90%) with the strongest effects occurring in the 180→540 μg/kg group. Lastly, we showed that CS1 is highly and broadly expressed in MM patient samples and is restricted to a few normal hematopoietic cell types including PCs, NK cells, T cells, and some monocytes. These data suggest that the BCMA-CS1 HLE BiTE® molecule has potent in vitro and in vivo activity and may provide therapeutic benefit for MM patients by expanding the population of MM cancer cells that can be eliminated by a BiTE® molecule while overcoming common mechanisms that can impair BCMA-only-targeted MM therapies. Citation Format: Elizabeth T. Andrews, Stephanie C. Casey, Mohammad Farhad Amani, Grit Lorenczewski, Mozhgan Farshbaf, Lisa Winkel, Matthias Klinger, John M. Harrold, Famke Aeffner, Ana Goyos, Matthias Friedrich, Tara Arvedson, Matthew G. Chun. Evaluation of a dual-targeting BCMA-CS1 HLE BiTE® molecule for multiple myeloma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 6251.
- Published
- 2022
- Full Text
- View/download PDF
10. Metabolic convergence on lipogenesis in RAS, BCR-ABL, and MYC-driven lymphoid malignancies
- Author
-
Patrick Pirrotte, Gabrielle S. Dewson, Ian Lai, Khyatiben V. Pathak, Seema Plaisier, Rosalie C. Sears, Daniel F. Liefwalker, Stephanie C. Casey, Adriane Mosley, Meital Ryan, Srividya Swaminathan, Patrick T. Fueger, Zhichao Wang, Bobby Babra, Vidhi Shah, and Lei Jiang
- Subjects
Genetically modified mouse ,Programmed cell death ,Lymphoma ,Transgene ,Biology ,medicine ,BCR-ABL ,RC254-282 ,De novo lipogenesis ,Regulation of gene expression ,Research ,Lipogenesis ,Oncogene addiction ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,medicine.disease ,Cancer metabolism ,FASN ,Psychiatry and Mental health ,Leukemia ,c-MYC ,Cell culture ,Fatty acid synthesis ,ACACA ,Cancer research ,T-ALL ,RAS - Abstract
BackgroundMetabolic reprogramming is a central feature in many cancer subtypes and a hallmark of cancer. Many therapeutic strategies attempt to exploit this feature, often having unintended side effects on normal metabolic programs and limited efficacy due to integrative nature of metabolic substrate sourcing. Although the initiating oncogenic lesion may vary, tumor cells in lymphoid malignancies often share similar environments and potentially similar metabolic profiles. We examined cells from mouse models of MYC-, RAS-, and BCR-ABL-driven lymphoid malignancies and find a convergence onde novolipogenesis. We explore the potential role of MYC in mediating lipogenesis by13C glucose tracing and untargeted metabolic profiling. Inhibition of lipogenesis leads to cell death bothin vitroandin vivoand does not induce cell death of normal splenocytes.MethodsWe analyzed RNA-seq data sets for common metabolic convergence in lymphoma and leukemia. Usingin vitrocell lines derived in from conditional MYC, RAS, and BCR-ABL transgenic murine models and oncogene-driven human cell lines, we determined gene regulation, metabolic profiles, and sensitivity to inhibition of lipogenesis in lymphoid malignancies. We utilize preclinical murine models and transgenic primary model of T-ALL to determine the effect of lipogenesis blockade across BCR-ABL-, RAS-, and c-MYC-driven lymphoid malignancies. Statistical significance was calculated using unpairedt-tests and one-way ANOVA.ResultsThis study illustrates thatde novolipid biogenesis is a shared feature of several lymphoma subtypes. Using cell lines derived from conditional MYC, RAS, and BCR-ABL transgenic murine models, we demonstrate shared responses to inhibition of lipogenesis by the acetyl-coA carboxylase inhibitor 5-(tetradecloxy)-2-furic acid (TOFA), and other lipogenesis inhibitors. We performed metabolic tracing studies to confirm the influence of c-MYC and TOFA on lipogenesis. We identify specific cell death responses to TOFAin vitroandin vivoand demonstrate delayed engraftment and progressionin vivoin transplanted lymphoma cell lines. We also observe delayed progression of T-ALL in a primary transgenic mouse model upon TOFA administration. In a panel of human cell lines, we demonstrate sensitivity to TOFA treatment as a metabolic liability due to the general convergence onde novolipogenesis in lymphoid malignancies driven by MYC, RAS, or BCR-ABL. Importantly, cell death was not significantly observed in non-malignant cellsin vivo.ConclusionsThese studies suggest thatde novolipogenesis may be a common survival strategy for many lymphoid malignancies and may be a clinically exploitable metabolic liability.Trial registrationThis study does not include any clinical interventions on human subjects.
- Published
- 2020
11. Engineered IL-21 Cytokine Muteins Fused to Anti-PD-1 Antibodies Can Improve CD8+ T Cell Function and Anti-tumor Immunity
- Author
-
Jay Cheng, Josh T. Pearson, Bin Fan, Ali Khaled M K Z, Melissa Yang, Shanling Shen, Jason DeVoss, Anupama Sahoo, Almin Lalani, Ray Lieh Yoon Low, Neeraj Jagdish Agrawal, Mark Daris, Ryan Case, Stephanie C. Casey, Doug Den Otter, and Gail Sckisel
- Subjects
bifunctional fusion ,lcsh:Immunologic diseases. Allergy ,Recombinant Fusion Proteins ,medicine.medical_treatment ,T cell ,Immunology ,engineered cytokine ,Mice, SCID ,CD8-Positive T-Lymphocytes ,Protein Engineering ,B7-H1 Antigen ,Mice ,Immune system ,Neoplasms ,IL-21 ,PD-1 ,medicine ,Animals ,Humans ,cancer ,Immunology and Allergy ,Cytotoxic T cell ,Original Research ,Mice, Inbred BALB C ,biology ,business.industry ,Interleukins ,Antibodies, Monoclonal ,Immunotherapy ,Fusion protein ,Disease Models, Animal ,Cytokine ,medicine.anatomical_structure ,Humanized mouse ,Cancer research ,biology.protein ,Female ,immunotherapy ,Antibody ,lcsh:RC581-607 ,business - Abstract
Inhibitors that block the programmed cell death-1 (PD-1) pathway can potentiate endogenous antitumor immunity and have markedly improved cancer survival rates across a broad range of indications. However, these treatments work for only a minority of patients. The efficacy of anti-PD-1 inhibitors may be extended by cytokines, however, the incorporation of cytokines into therapeutic regimens has significant challenges. In their natural form when administered as recombinant proteins, cytokine treatments are often associated with low response rates. Most cytokines have a short half-life which limits their exposure and efficacy. In addition, cytokines can activate counterregulatory pathways, in the case of immune-potentiating cytokines this can lead to immune suppression and thereby diminish their potential efficacy. Improving the drug-like properties of natural cytokines using protein engineering can yield synthetic cytokines with improved bioavailability and tissue targeting, allowing for enhanced efficacy and reduced off-target effects. Using structure guided engineering we have designed a novel class of antibody-cytokine fusion proteins consisting of a PD-1 targeting antibody fused together with an interleukin-21 (IL-21) cytokine mutein. Our bifunctional fusion proteins can block PD-1/programmed death-ligand 1 (PD-L1) interaction whilst simultaneously delivering IL-21 cytokine to PD-1 expressing T cells. Targeted delivery of IL-21 can improve T cell function in a manner that is superior to anti-PD-1 monotherapy. Fusion of engineered IL-21 variants to anti-PD1 antibodies can improve the drug-like properties of IL-21 cytokine leading to improved cytokine serum half-life allowing for less frequent dosing. In addition, we show that targeted delivery of IL-21 can minimize any potential detrimental effect on local antigen-presenting cells. A highly attenuated IL-21 mutein variant (R9E:R76A) fused to a PD-1 antibody provides protection in a humanized mouse model of cancer that is refractory to anti-PD-1 monotherapy. Collectively, our preclinical data demonstrate that this approach may improve upon and extend the utility of anti-PD-1 therapeutics currently in the clinic.
- Published
- 2020
- Full Text
- View/download PDF
12. MYC: Master Regulator of Immune Privilege
- Author
-
Dean W. Felsher, Stephanie C. Casey, and Virginie Baylot
- Subjects
0301 basic medicine ,Carcinogenesis ,medicine.medical_treatment ,Immunology ,chemical and pharmacologic phenomena ,Biology ,Article ,B7-H1 Antigen ,law.invention ,Immune tolerance ,Immunomodulation ,Proto-Oncogene Proteins c-myc ,03 medical and health sciences ,0302 clinical medicine ,Immune system ,Immune privilege ,law ,Neoplasms ,Immune Tolerance ,medicine ,Animals ,Humans ,Immunology and Allergy ,Molecular Targeted Therapy ,Immunologic Surveillance ,Cell Proliferation ,Regulation of gene expression ,Tumor Suppressor Proteins ,Immunosuppression ,biochemical phenomena, metabolism, and nutrition ,Oncogene Addiction ,Gene Expression Regulation, Neoplastic ,030104 developmental biology ,Tumor Escape ,030220 oncology & carcinogenesis ,bacteria ,Suppressor - Abstract
Cancers are often initiated by genetic events that activate proto-oncogenes or inactivate tumor suppressor genes. These events are also critical for sustained tumor cell proliferation and survival, a phenomenon described as oncogene addiction. In addition to this cell intrinsic role, recent evidence indicates that oncogenes also directly regulate immune responses, leading to immunosuppression. Expression of many oncogenes, or loss of tumor suppressors, indeed induces the expression of immune checkpoints including PD-L1, which regulate the immune response. Here, we discuss how oncogenes, and in particular MYC, suppress immune surveillance and how oncogene-targeted therapies may restore the immune response against tumors.
- Published
- 2017
- Full Text
- View/download PDF
13. The MYC oncogene is a global regulator of the immune response
- Author
-
Dean W. Felsher, Virginie Baylot, and Stephanie C. Casey
- Subjects
0301 basic medicine ,Immunology ,Review Article ,Biology ,medicine.disease_cause ,Biochemistry ,Proto-Oncogene Mas ,B7-H1 Antigen ,Immunomodulation ,Proto-Oncogene Proteins c-myc ,03 medical and health sciences ,Immune system ,Neoplasms ,medicine ,Transcriptional regulation ,Biomarkers, Tumor ,Animals ,Humans ,Regulation of gene expression ,Tumor microenvironment ,Oncogene ,Immunity ,Cell Biology ,Hematology ,Oncogenes ,Cell cycle ,Immune checkpoint ,Cell biology ,Gene Expression Regulation, Neoplastic ,030104 developmental biology ,Gene Expression Regulation ,Carcinogenesis - Abstract
The MYC proto-oncogene is a gene product that coordinates the transcriptional regulation of a multitude of genes that are essential to cellular programs required for normal as well as neoplastic cellular growth and proliferation, including cell cycle, self-renewal, survival, cell growth, metabolism, protein and ribosomal biogenesis, and differentiation. Here, we propose that MYC regulates these programs in a manner that is coordinated with a global influence on the host immune response. MYC had been presumed to contribute to tumorigenesis through tumor cell–intrinsic influences. More recently, MYC expression in tumor cells has been shown to regulate the tumor microenvironment through effects on both innate and adaptive immune effector cells and immune regulatory cytokines. Then, MYC was shown to regulate the expression of the immune checkpoint gene products CD47 and programmed death-ligand 1. Similarly, other oncogenes, which are known to modulate MYC, have been shown to regulate immune checkpoints. Hence, MYC may generally prevent highly proliferative cells from eliciting an immune response. MYC-driven neoplastic cells have coopted this mechanism to bypass immune detection. Thus, MYC inactivation can restore the immune response against a tumor. MYC-induced tumors may be particularly sensitive to immuno-oncology therapeutic interventions.
- Published
- 2018
14. Assessing the carcinogenic potential of low-dose exposures to chemical mixtures in the environment: the challenge ahead
- Author
-
Dustin G. Brown, Tove Hultman, Judith Weisz, H. Kim Lyerly, Paola A. Marignani, Ann-Karin Olsen, Rabindra Roy, Kim Moorwood, Masoud H. Manjili, Monica Vaccari, Jesse Roman, Hasiah Ab Hamid, Kalan R. Prudhomme, Periyadan K. Krishnakumar, Chenfang Dong, Tiziana Guarnieri, Leandro S. D'Abronzo, Gloria M. Calaf, Amelia K Charles, Emanuela Corsini, Yunus A. Luqmani, Graeme Williams, Louis Vermeulen, Pankaj Vadgama, Sarah N Bay, Véronique Maguer-Satta, Sabine A. S. Langie, Christian C. Naus, Le Jian, Gladys N. Nangami, Lorenzo Memeo, Stephanie C. Casey, Thomas Sanderson, Takemi Otsuki, Nichola Cruickshanks, William H. Bisson, Sudjit Luanpitpong, Jonathan Whitfield, Ahmed Lasfar, Yon Rojanasakul, A. Ivana Scovassi, Shelley A. Harris, Ferdinando Chiaradonna, Richard Ponce-Cusi, Gregory T. Wolf, Valérian Dormoy, Roslida Abd Hamid, Hyun Ho Park, Matilde E. Lleonart, William K. Decker, Maria Romano, Leroy Lowe, Fabio Marongiu, Jan Vondráček, Chiara Mondello, Luc Leyns, Josiah Ochieng, Pratima Nangia-Makker, Edward A. Ratovitski, Zhiwei Hu, Jayadev Raju, Hemad Yasaei, Rafaela Andrade-Vieira, Jordan Woodrick, Hideko Sone, Harini Krishnan, W. Kimryn Rathmell, Andrew Collins, Luoping Zhang, Barry J. Barclay, Amaya Azqueta, Laura Soucek, Marc A. Williams, David O. Carpenter, Roberta Palorini, Rita Nahta, Juan Fernando Martinez-Leal, Firouz Darroudi, Rita Dornetshuber-Fleiss, James E. Klaunig, Elizabeth P. Ryan, Qiang Shawn Cheng, Arthur Berg, Andrew Ward, Gudrun Koppen, Tao Chen, Petr Heneberg, Michael Gilbertson, Amedeo Amedei, Sakina E. Eltom, Ezio Laconi, Joseph Christopher, Hiroshi Kondoh, Neetu Singh, Danielle J Carlin, Marion Chapellier, Michalis V. Karamouzis, Rekha Mehta, Tae-Jin Lee, Annamaria Colacci, Venkata S. Sabbisetti, Mark Wade, Micheline Kirsch-Volders, Patricia Ostrosky-Wegman, Isabelle R. Miousse, Patricia A. Thompson, Philippa D. Darbre, Frederik J. van Schooten, Sofia Pavanello, Igor Koturbash, Binhua P. Zhou, Ranjeet Kumar Sinha, Anna C. Salzberg, Mahara Valverde, Fahd Al-Mulla, Julia Kravchenko, Nicole Kleinstreuer, Carolyn J. Baglole, Menghang Xia, Samira A. Brooks, Amancio Carnero, Gunnar Brunborg, Sandra S. Wise, Daniel C. Koch, John Pierce Wise, Rabeah Al-Temaimi, Laetitia Gonzalez, Lisa J. McCawley, R. Brooks Robey, Gary S. Goldberg, Thierry Massfelder, Linda S M Gulliver, Olugbemiga Ogunkua, Emilio Rojas, Eun-Yi Moon, Lin Li, Silvana Papagerakis, Nik van Larebeke, Adela Lopez de Cerain Salsamendi, Staffan Eriksson, Simona Romano, Dean W. Felsher, Paramita M. Ghosh, Karine A. Cohen-Solal, Paul Dent, Jun Sun, Carmen Blanco-Aparicio, Riccardo Di Fiore, Chia-Wen Hsu, Mahin Khatami, Kannan Badri Narayanan, Francis Martin, Colleen S. Curran, Dale W. Laird, William H. Goodson, Abdul Manaf Ali, Valerie Odero-Marah, Michael J. Gonzalez, Renza Vento, Liang Tzung Lin, Clement G. Yedjou, Hosni Salem, Hsue-Yin Hsu, Zhenbang Chen, Nuzhat Ahmed, Gerard Wagemaker, Sandra Ryeom, Stefano Forte, Debasish Roy, Nancy B. Kuemmerle, Robert C. Castellino, Po Sing Leung, Wilhelm Engström, National Institute of Environmental Health Sciences (US), Research Council of Norway, Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Red Temática de Investigación Cooperativa en Cáncer (España), European Commission, Junta de Andalucía, Ministerio de Educación y Ciencia (España), Ministero dell'Istruzione, dell'Università e della Ricerca, University of Oslo, Regione Emilia Romagna, National Institutes of Health (US), Consejo Nacional de Ciencia y Tecnología (México), Associazione Italiana per la Ricerca sul Cancro, National Research Foundation of Korea, Ministry of Education, Science and Technology (South Korea), Fondo Nacional de Desarrollo Científico y Tecnológico (Chile), Ministry of Education, Culture, Sports, Science and Technology (Japan), Japan Science and Technology Agency, Ministry of Science and Technology (Taiwan), Arkansas Biosciences Institute, Czech Science Foundation, Fundación Fero, Swim Across America, American Cancer Society, Research Foundation - Flanders, Austrian Science Fund, Institut National de la Santé et de la Recherche Médicale (France), Natural Sciences and Engineering Research Council of Canada, Farmacologie en Toxicologie, RS: NUTRIM - R4 - Gene-environment interaction, Goodson, William H, Lowe, Leroy, Carpenter, David O, Gilbertson, Michael, Manaf Ali, Abdul, Lopez de Cerain Salsamendi, Adela, Lasfar, Ahmed, Carnero, Amancio, Azqueta, Amaya, Amedei, Amedeo, Charles, Amelia K, Collins, Andrew R, Ward, Andrew, Salzberg, Anna C, Colacci, Annamaria, Olsen, Ann Karin, Berg, Arthur, Barclay, Barry J, Zhou, Binhua P, Blanco Aparicio, Carmen, Baglole, Carolyn J, Dong, Chenfang, Mondello, Chiara, Hsu, Chia Wen, Naus, Christian C, Yedjou, Clement, Curran, Colleen S, Laird, Dale W, Koch, Daniel C, Carlin, Danielle J, Felsher, Dean W, Roy, Debasish, Brown, Dustin G, Ratovitski, Edward, Ryan, Elizabeth P, Corsini, Emanuela, Rojas, Emilio, Moon, Eun Yi, Laconi, Ezio, Marongiu, Fabio, Al Mulla, Fahd, Chiaradonna, Ferdinando, Darroudi, Firouz, Martin, Francis L, Van Schooten, Frederik J, Goldberg, Gary S, Wagemaker, Gerard, Nangami, Gladys N, Calaf, Gloria M, Williams, Graeme, Wolf, Gregory T, Koppen, Gudrun, Brunborg, Gunnar, Lyerly, H. Kim, Krishnan, Harini, Ab Hamid, Hasiah, Yasaei, Hemad, Sone, Hideko, Kondoh, Hiroshi, Salem, Hosni K, Hsu, Hsue Yin, Park, Hyun Ho, Koturbash, Igor, Miousse, Isabelle R, Scovassi, A. Ivana, Klaunig, James E, Vondráček, Jan, Raju, Jayadev, Roman, Jesse, Wise, John Pierce, Whitfield, Jonathan R, Woodrick, Jordan, Christopher, Joseph A, Ochieng, Josiah, Martinez Leal, Juan Fernando, Weisz, Judith, Kravchenko, Julia, Sun, Jun, Prudhomme, Kalan R, Narayanan, Kannan Badri, Cohen Solal, Karine A, Moorwood, Kim, Gonzalez, Laetitia, Soucek, Laura, Jian, Le, D'Abronzo, Leandro S, Lin, Liang Tzung, Li, Lin, Gulliver, Linda, Mccawley, Lisa J, Memeo, Lorenzo, Vermeulen, Loui, Leyns, Luc, Zhang, Luoping, Valverde, Mahara, Khatami, Mahin, Romano, MARIA FIAMMETTA, Chapellier, Marion, Williams, Marc A, Wade, Mark, Manjili, Masoud H, Lleonart, Matilde E, Xia, Menghang, Gonzalez, Michael J, Karamouzis, Michalis V, Kirsch Volders, Micheline, Vaccari, Monica, Kuemmerle, Nancy B, Singh, Neetu, Cruickshanks, Nichola, Kleinstreuer, Nicole, van Larebeke, Nik, Ahmed, Nuzhat, Ogunkua, Olugbemiga, Krishnakumar, P. K, Vadgama, Pankaj, Marignani, Paola A, Ghosh, Paramita M, Ostrosky Wegman, Patricia, Thompson, Patricia A, Dent, Paul, Heneberg, Petr, Darbre, Philippa, Sing Leung, Po, Nangia Makker, Pratima, Cheng, Qiang Shawn, Robey, R. Brook, Al Temaimi, Rabeah, Roy, Rabindra, Andrade Vieira, Rafaela, Sinha, Ranjeet K, Mehta, Rekha, Vento, Renza, Di Fiore, Riccardo, Ponce Cusi, Richard, Dornetshuber Fleiss, Rita, Nahta, Rita, Castellino, Robert C, Palorini, Roberta, Abd Hamid, Roslida, Langie, Sabine A. S, Eltom, Sakina E, Brooks, Samira A, Ryeom, Sandra, Wise, Sandra S, Bay, Sarah N, Harris, Shelley A, Papagerakis, Silvana, Romano, Simona, Pavanello, Sofia, Eriksson, Staffan, Forte, Stefano, Casey, Stephanie C, Luanpitpong, Sudjit, Lee, Tae Jin, Otsuki, Takemi, Chen, Tao, Massfelder, Thierry, Sanderson, Thoma, Guarnieri, Tiziana, Hultman, Tove, Dormoy, Valérian, Odero Marah, Valerie, Sabbisetti, Venkata, Maguer Satta, Veronique, Rathmell, W. Kimryn, Engström, Wilhelm, Decker, William K, Bisson, William H, Rojanasakul, Yon, Luqmani, Yunu, Chen, Zhenbang, Hu, Zhiwei, Goodson, W., Lowe, L., Carpenter, D., Gilbertson, M., Ali, A., de Cerain Salsamendi, A., Lasfar, A., Carnero, A., Azqueta, A., Amedei, A., Charles, A., Collins, A., Ward, A., Salzberg, A., Colacci, A., Olsen, A., Berg, A., Barclay, B., Zhou, B., Blanco-Aparicio, C., Baglole, C., Dong, C., Mondello, C., Hsu, C., Naus, C., Yedjou, C., Curran, C., Laird, D., Koch, D., Carlin, D., Felsher, D., Roy, D., Brown, D., Ratovitski, E., Ryan, E., Corsini, E., Rojas, E., Moon, E., Laconi, E., Marongiu, F., Al-Mulla, F., Chiaradonna, F., Darroudi, F., Martin, F., Van Schooten, F., Goldberg, G., Wagemaker, G., Nangami, G., Calaf, G., Williams, G., Wolf, G., Koppen, G., Brunborg, G., Kim Lyerly, H., Krishnan, H., Hamid, H., Yasaei, H., Sone, H., Kondoh, H., Salem, H., Hsu, H., Park, H., Koturbash, I., Miousse, I., Ivana Scovassi, A., Klaunig, J., Vondráček, J., Raju, J., Roman, J., Wise, J., Whitfield, J., Woodrick, J., Christopher, J., Ochieng, J., Martinez-Leal, J., Weisz, J., Kravchenko, J., Sun, J., Prudhomme, K., Narayanan, K., Cohen-Solal, K., Moorwood, K., Gonzalez, L., Soucek, L., Jian, L., D'Abronzo, L., Lin, L., Li, L., Gulliver, L., Mccawley, L., Memeo, L., Vermeulen, L., Leyns, L., Zhang, L., Valverde, M., Khatami, M., Romano, M., Chapellier, M., Williams, M., Wade, M., Manjili, M., Lleonart, M., Xia, M., Gonzalez, M., Karamouzis, M., Kirsch-Volders, M., Vaccari, M., Kuemmerle, N., Singh, N., Cruickshanks, N., Kleinstreuer, N., Van Larebeke, N., Ahmed, N., Ogunkua, O., Krishnakumar, P., Vadgama, P., Marignani, P., Ghosh, P., Ostrosky-Wegman, P., Thompson, P., Dent, P., Heneberg, P., Darbre, P., Leung, P., Nangia-Makker, P., Cheng, Q., Brooks Robey, R., Al-Temaimi, R., Roy, R., Andrade-Vieira, R., Sinha, R., Mehta, R., Vento, R., Di Fiore, R., Ponce-Cusi, R., Dornetshuber-Fleiss, R., Nahta, R., Castellino, R., Palorini, R., Hamid, R., Langie, S., Eltom, S., Brooks, S., Ryeom, S., Wise, S., Bay, S., Harris, S., Papagerakis, S., Romano, S., Pavanello, S., Eriksson, S., Forte, S., Casey, S., Luanpitpong, S., Lee, T., Otsuki, T., Chen, T., Massfelder, T., Sanderson, T., Guarnieri, T., Hultman, T., Dormoy, V., Odero-Marah, V., Sabbisetti, V., Maguer-Satta, V., Kimryn Rathmell, W., Engström, W., Decker, W., Bisson, W., Rojanasakul, Y., Luqmani, Y., Chen, Z., Hu, Z., Goodson, W.H., Carpenter, D.O., Ali, A.M., de Cerain Salsamendi, A.L., Charles, A.K., Collins, A.R., Salzberg, A.C., Olsen, A.-K., Barclay, B.J., Zhou, B.P., Baglole, C.J., Hsu, C.-W., Naus, C.C., Curran, C.S., Laird, D.W., Koch, D.C., Carlin, D.J., Felsher, D.W., Brown, D.G., Ryan, E.P., Moon, E.-Y., Martin, F.L., Van Schooten, F.J., Goldberg, G.S., Calaf, G.M., Wolf, G.T., Hamid, H.A., Salem, H.K., Hsu, H.-Y., Park, H.H., Miousse, I.R., Klaunig, J.E., Vondracek, J., Wise, J.P., Whitfield, J.R., Christopher, J.A., Martinez-Leal, J.F., Prudhomme, K.R., Narayanan, K.B., Cohen-Solal, K.A., D'Abronzo, L.S., Lin, L.-T., Mccawley, L.J., Romano, M.F., Williams, M.A., Manjili, M.H., Gonzalez, M.J., Karamouzis, M.V., Kuemmerle, N.B., Krishnakumar, P.K., Marignani, P.A., Ghosh, P.M., Leung, P.S., Cheng, Q.S., Sinha, R.K., Castellino, R.C., Hamid, R.A., Langie, S.A.S., Brooks, S.A., Wise, S.S., Bay, S.N., Harris, S.A., Casey, S.C., Lee, T.-J., Engstrom, W., Decker, W.K., Bisson, W.H., sans affiliation, Centre de Recherche en Cancérologie de Lyon (UNICANCER/CRCL), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA), Institut Armand Frappier (INRS-IAF), Institut National de la Recherche Scientifique [Québec] (INRS)-Réseau International des Instituts Pasteur (RIIP), We gratefully acknowledge the support of the National Institute of Health-National Institute of Environmental Health Sciences (NIEHS) conference grant travel support (R13ES023276), Glenn Rice, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA also deserves thanks for his thoughtful feedback and inputs on the manuscript, William H.Goodson III was supported by the California Breast Cancer Research Program, Clarence Heller Foundation and California Pacific Medical Center Foundation, Abdul M.Ali would like to acknowledge the financial support of the University of Sultan Zainal Abidin, Malaysia, Ahmed Lasfar was supported by an award from the Rutgers Cancer Institute of New Jersey, Ann-Karin Olsen and Gunnar Brunborg were supported by the Research Council of Norway (RCN) through its Centres of Excellence funding scheme (223268/F50), Amancio Carnero’s lab was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0306-2012), Matilde E. Lleonart was supported by a trienal project grant PI12/01104 and by project CP03/00101 for personal support. Amaya Azqueta would like to thank the Ministerio de Educacion y Ciencia (‘Juande la Cierva’ programme, 2009) of the Spanish Government for personal support, Amedeo Amedei was supported by the Italian Ministry of University and Research (2009FZZ4XM_002), and the University of Florence (ex60%2012), Andrew R.Collins was supported by the University of Oslo, Annamaria Colacci was supported by the Emilia-Romagna Region - Project ‘Supersite’ in Italy, Carolyn Baglole was supported by a salary award from the Fonds de recherche du Quebec-Sante (FRQ-S), Chiara Mondello’s laboratory is supported by Fondazione Cariplo in Milan, Italy (grant n. 2011-0370), Christian C.Naus holds a Canada Research Chair, Clement Yedjou was supported by a grant from the National Institutes of Health (NIH-NIMHD grant no. G12MD007581), Daniel C.Koch is supported by the Burroughs Wellcome Fund Postdoctoral Enrichment Award and the Tumor Biology Training grant: NIH T32CA09151, Dean W. Felsher would like to acknowledge the support of United States Department of Health and Human Services, NIH grants (R01 CA170378 PQ22, R01 CA184384, U54 CA149145, U54 CA151459, P50 CA114747 and R21 CA169964), Emilio Rojas would like to thank CONACyT support 152473, Ezio Laconi was supported by AIRC (Italian Association for Cancer Research, grant no. IG 14640) and by the Sardinian Regional Government (RAS), Eun-Yi Moon was supported by grants from the Public Problem-Solving Program (NRF-015M3C8A6A06014500) and Nuclear R&D Program (#2013M2B2A9A03051296 and 2010-0018545) through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology (MEST) in Korea, Fahd Al-Mulla was supported by the Kuwait Foundation for the Advancement of Sciences (2011-1302-06), Ferdinando Chiaradonna is supported by SysBioNet, a grant for the Italian Roadmap of European Strategy Forum on Research Infrastructures (ESFRI) and by AIRC (Associazione Italiana Ricerca sul Cancro, IG 15364), Francis L.Martin acknowledges funding from Rosemere Cancer Foundation, he also thanks Lancashire Teaching Hospitals NHS trust and the patients who have facilitated the studies he has undertaken over the course of the last 10 years, Gary S.Goldberg would like to acknowledge the support of the New Jersey Health Foundation, Gloria M.Calaf was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT), Ministerio de Educación de Chile (MINEDUC), Universidad de Tarapacá (UTA), Gudrun Koppen was supported by the Flemish Institute for Technological Research (VITO), Belgium, Hemad Yasaei was supported from a triennial project grant (Strategic Award) from the National Centre for the Replacement, Refinement and Reduction (NC3Rs) of animals in research (NC.K500045.1 and G0800697), Hiroshi Kondoh was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Science and Technology Agency and by JST, CREST, Hsue-Yin Hsu was supported by the Ministry of Science and Technology of Taiwan (NSC93-2314-B-320-006 and NSC94-2314-B-320-002), Hyun Ho Park was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2012R1A2A2A01010870) and a grant from the Korea Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (HI13C1449), Igor Koturbash is supported by the UAMS/NIH Clinical and Translational Science Award (UL1TR000039 and KL2TR000063) and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000, Jan Vondráček acknowledges funding from the Czech Science Foundation (13-07711S), Jesse Roman thanks the NIH for their support (CA116812), John Pierce Wise Sr. and Sandra S.Wise were supported by National Institute of Environmental Health Sciences (ES016893 to J.P.W.) and the Maine Center for Toxicology and Environmental Health, Jonathan Whitfield acknowledges support from the FERO Foundation in Barcelona, Spain, Joseph Christopher is funded by Cancer Research UK and the International Journal of Experimental Pathology, Julia Kravchenko is supported by a philanthropic donation by Fred and Alice Stanback, Jun Sun is supported by a Swim Across America Cancer Research Award, Karine A.Cohen-Solal is supported by a research scholar grant from the American Cancer Society (116683-RSG-09-087-01-TBE), Laetitia Gonzalez received a postdoctoral fellowship from the Fund for Scientific Research–Flanders (FWO-Vlaanderen) and support by an InterUniversity Attraction Pole grant (IAP-P7-07), Laura Soucek is supported by grant #CP10/00656 from the Miguel Servet Research Contract Program and acknowledges support from the FERO Foundation in Barcelona, Spain, Liang-Tzung Lin was supported by funding from the Taipei Medical University (TMU101-AE3-Y19), Linda Gulliver is supported by a Genesis Oncology Trust (NZ) Professional Development Grant, and the Faculty of Medicine, University of Otago, Dunedin, New Zealand, Louis Vermeulen is supported by a Fellowship of the Dutch Cancer Society (KWF, UVA2011-4969) and a grant from the AICR (14–1164), Mahara Valverde would like to thank CONACyT support 153781, Masoud H. Manjili was supported by the office of the Assistant Secretary of Defense for Health Affairs (USA) through the Breast Cancer Research Program under Award No. W81XWH-14-1-0087 Neetu Singh was supported by grant #SR/FT/LS-063/2008 from the Department of Science and Technology, Government of India, Nicole Kleinstreuer is supported by NIEHS contracts (N01-ES 35504 and HHSN27320140003C), P.K. Krishnakumar is supported by the Funding (No. T.K. 11-0629) of King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, Paola A.Marignani is supported by the Dalhousie Medical Research Foundation, The Beatrice Hunter Cancer Institute and CIHR and the Nova Scotia Lung Association, Paul Dent is the holder of the Universal Inc.Chair in Signal Transduction Research and is supported with funds from PHS grants from the NIH (R01-CA141704, R01-CA150214, R01-DK52825 and R01-CA61774), Petr Heneberg was supported by the Charles University in Prague projects UNCE 204015 and PRVOUK P31/2012, and by the Czech Science Foundation projects P301/12/1686 and 15-03834Y, Po Sing Leung was supported by the Health and Medical Research Fund of Food and Health Bureau, Hong Kong Special Administrative Region, Ref. No: 10110021, Qiang Cheng was supported in part by grant NSF IIS-1218712, R. Brooks Robey is supported by the United States Department of Veterans Affairs, Rabindra Roy was supported by United States Public Health Service Grants (RO1 CA92306, RO1 CA92306-S1 and RO1 CA113447), Rafaela Andrade-Vieira is supported by the Beatrice Hunter Cancer Research Institute and the Nova Scotia Health Research Foundation, Renza Vento was partially funded by European Regional Development Fund, European Territorial Cooperation 2007–13 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–13) and grants from the Italian Ministry of Education, University and Research (MIUR) ex-60%, 2007, Riccardo Di Fiore was a recipient of fellowship granted by European Regional Development Fund, European Territorial Cooperation 2007–2013 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–2013), Rita Dornetshuber-Fleiss was supported by the Austrian Science Fund (FWF, project number T 451-B18) and the Johanna Mahlke, geb.-Obermann-Stiftung, Roberta Palorini is supported by a SysBioNet fellowship, Roslida Abd Hamid is supported by the Ministry of Education, Malaysia-Exploratory Research Grant Scheme-Project no: ERGS/1-2013/5527165, Sabine A.S.Langie is the beneficiary of a postdoctoral grant from the AXA Research Fund and the Cefic-LRI Innovative Science Award 2013, Sakina Eltom is supported by NIH grant SC1CA153326, Samira A.Brooks was supported by National Research Service Award (T32 ES007126) from the National Institute of Environmental Health Sciences and the HHMI Translational Medicine Fellowship, Sandra Ryeom was supported by The Garrett B. Smith Foundation and the TedDriven Foundation, Thierry Massfelder was supported by the Institut National de la Santé et de la Recherche Médicale INSERM and Université de Strasbourg, Thomas Sanderson is supported by the Canadian Institutes of Health Research (CIHR, MOP-115019), the Natural Sciences and Engineering Council of Canada (NSERC, 313313) and the California Breast Cancer Research Program (CBCRP, 17UB-8703), Tiziana Guarnieri is supported by a grant from Fundamental Oriented Research (RFO) to the Alma Mater Studiorum University of Bologna, Bologna, Italy and thanks the Fondazione Cassa di Risparmio di Bologna and the Fondazione Banca del Monte di Bologna e Ravenna for supporting the Center for Applied Biomedical Research, S.Orsola-Malpighi University Hospital, Bologna, Italy, W.Kimryn Rathmell is supported by the V Foundation for Cancer Research and the American Cancer Society, William K.Decker was supported in part by grant RP110545 from the Cancer Prevention Research Institute of Texas, William H.Bisson was supported with funding from the NIH P30 ES000210, Yon Rojanasakul was supported with NIH grant R01-ES022968, Zhenbang Chen is supported by NIH grants (MD004038, CA163069 and MD007593), Zhiwei Hu is grateful for the grant support from an institutional start-up fund from The Ohio State University College of Medicine and The OSU James Comprehensive Cancer Center (OSUCCC) and a Seed Award from the OSUCCC Translational Therapeutics Program., Sans affiliation, Courcelles, Michel, Goodson, W, Lowe, L, Carpenter, D, Gilbertson, M, Ali, A, de Cerain Salsamendi, A, Lasfar, A, Carnero, A, Azqueta, A, Amedei, A, Charles, A, Collins, A, Ward, A, Salzberg, A, Colacci, A, Olsen, A, Berg, A, Barclay, B, Zhou, B, Blanco Aparicio, C, Baglole, C, Dong, C, Mondello, C, Hsu, C, Naus, C, Yedjou, C, Curran, C, Laird, D, Koch, D, Carlin, D, Felsher, D, Roy, D, Brown, D, Ratovitski, E, Ryan, E, Corsini, E, Rojas, E, Moon, E, Laconi, E, Marongiu, F, Al Mulla, F, Chiaradonna, F, Darroudi, F, Martin, F, Van Schooten, F, Goldberg, G, Wagemaker, G, Nangami, G, Calaf, G, Williams, G, Wolf, G, Koppen, G, Brunborg, G, Kim Lyerly, H, Krishnan, H, Hamid, H, Yasaei, H, Sone, H, Kondoh, H, Salem, H, Hsu, H, Park, H, Koturbash, I, Miousse, I, Ivana Scovassi, A, Klaunig, J, Vondráček, J, Raju, J, Roman, J, Wise, J, Whitfield, J, Woodrick, J, Christopher, J, Ochieng, J, Martinez Leal, J, Weisz, J, Kravchenko, J, Sun, J, Prudhomme, K, Narayanan, K, Cohen Solal, K, Moorwood, K, Gonzalez, L, Soucek, L, Jian, L, D'Abronzo, L, Lin, L, Li, L, Gulliver, L, Mccawley, L, Memeo, L, Vermeulen, L, Leyns, L, Zhang, L, Valverde, M, Khatami, M, Romano, M, Chapellier, M, Williams, M, Wade, M, Manjili, M, Lleonart, M, Xia, M, Gonzalez, M, Karamouzis, M, Kirsch Volders, M, Vaccari, M, Kuemmerle, N, Singh, N, Cruickshanks, N, Kleinstreuer, N, Van Larebeke, N, Ahmed, N, Ogunkua, O, Krishnakumar, P, Vadgama, P, Marignani, P, Ghosh, P, Ostrosky Wegman, P, Thompson, P, Dent, P, Heneberg, P, Darbre, P, Leung, P, Nangia Makker, P, Cheng, Q, Brooks Robey, R, Al Temaimi, R, Roy, R, Andrade Vieira, R, Sinha, R, Mehta, R, Vento, R, Di Fiore, R, Ponce Cusi, R, Dornetshuber Fleiss, R, Nahta, R, Castellino, R, Palorini, R, Hamid, R, Langie, S, Eltom, S, Brooks, S, Ryeom, S, Wise, S, Bay, S, Harris, S, Papagerakis, S, Romano, S, Pavanello, S, Eriksson, S, Forte, S, Casey, S, Luanpitpong, S, Lee, T, Otsuki, T, Chen, T, Massfelder, T, Sanderson, T, Guarnieri, T, Hultman, T, Dormoy, V, Odero Marah, V, Sabbisetti, V, Maguer Satta, V, Kimryn Rathmell, W, Engström, W, Decker, W, Bisson, W, Rojanasakul, Y, Luqmani, Y, Chen, Z, and Hu, Z
- Subjects
Cancer Research ,Carcinogenesis ,[SDV]Life Sciences [q-bio] ,METHOXYCHLOR-INDUCED ALTERATIONS ,Review ,Pharmacology ,MESH: Carcinogens, Environmental ,Carcinogenic synergies ,Chemical mixtures ,Neoplasms ,MESH: Animals ,MESH: Neoplasms ,Carcinogenesi ,Risk assessment ,Cancer ,ACTIVATED PROTEIN-KINASES ,Medicine (all) ,Low dose ,1. No poverty ,Cumulative effects ,BREAST-CANCER CELLS ,General Medicine ,Environmental exposure ,MESH: Carcinogenesis ,BIO/10 - BIOCHIMICA ,EPITHELIAL-MESENCHYMAL TRANSITION ,3. Good health ,[SDV] Life Sciences [q-bio] ,Environmental Carcinogenesis ,ESTROGEN-RECEPTOR-ALPHA ,Human ,MESH: Environmental Exposure ,ENDOCRINE-DISRUPTING CHEMICALS ,TARGETING TISSUE FACTOR ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,Prototypical chemical disruptors ,Exposure ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,Environmental health ,medicine ,[SDV.EE.SANT] Life Sciences [q-bio]/Ecology, environment/Health ,Carcinogen ,Environmental carcinogenesis ,[SDV.EE.SANT]Life Sciences [q-bio]/Ecology, environment/Health ,MESH: Humans ,Animal ,POLYBROMINATED DIPHENYL ETHERS ,Environmental Exposure ,medicine.disease ,MESH: Hazardous Substances ,Carcinogens, Environmental ,MIGRATION INHIBITORY FACTOR ,VASCULAR ENDOTHELIAL-CELLS ,Hazardous Substance ,Neoplasm - Abstract
Goodson, William H. et al., © The Author 2015. Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/ mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology., We gratefully acknowledge the support of the National Institute of Health-National Institute of Environmental Health Sciences (NIEHS) conference grant travel support (R13ES023276); Glenn Rice, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH, USA also deserves thanks for his thoughtful feedback and inputs on the manuscript; William H.Goodson III was supported by the California Breast Cancer Research Program, Clarence Heller Foundation and California Pacific Medical Center Foundation; Abdul M.Ali would like to acknowledge the financial support of the University of Sultan Zainal Abidin, Malaysia; Ahmed Lasfar was supported by an award from the Rutgers Cancer Institute of New Jersey; Ann-Karin Olsen and Gunnar Brunborg were supported by the Research Council of Norway (RCN) through its Centres of Excellence funding scheme (223268/F50), Amancio Carnero’s lab was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0306-2012); Matilde E. Lleonart was supported by a trienal project grant PI12/01104 and by project CP03/00101 for personal support. Amaya Azqueta would like to thank the Ministerio de Educacion y Ciencia (‘Juande la Cierva’ programme, 2009) of the Spanish Government for personal support; Amedeo Amedei was supported by the Italian Ministry of University and Research (2009FZZ4XM_002), and the University of Florence (ex60%2012); Andrew R.Collins was supported by the University of Oslo; Annamaria Colacci was supported by the Emilia-Romagna Region - Project ‘Supersite’ in Italy; Carolyn Baglole was supported by a salary award from the Fonds de recherche du Quebec-Sante (FRQ-S); Chiara Mondello’s laboratory is supported by Fondazione Cariplo in Milan, Italy (grant n. 2011-0370); Christian C.Naus holds a Canada Research Chair; Clement Yedjou was supported by a grant from the National Institutes of Health (NIH-NIMHD grant no. G12MD007581); Daniel C.Koch is supported by the Burroughs Wellcome Fund Postdoctoral Enrichment Award and the Tumor Biology Training grant: NIH T32CA09151; Dean W. Felsher would like to acknowledge the support of United States Department of Health and Human Services, NIH grants (R01 CA170378 PQ22, R01 CA184384, U54 CA149145, U54 CA151459, P50 CA114747 and R21 CA169964); Emilio Rojas would like to thank CONACyT support 152473, Ezio Laconi was supported by AIRC (Italian Association for Cancer Research, grant no. IG 14640) and by the Sardinian Regional Government (RAS); Eun-Yi Moon was supported by grants from the Public Problem-Solving Program (NRF-015M3C8A6A06014500) and Nuclear R&D Program (#2013M2B2A9A03051296 and 2010-0018545) through the National Research Foundation of Korea (NRF) and funded by the Ministry of Education, Science and Technology (MEST) in Korea; Fahd Al-Mulla was supported by the Kuwait Foundation for the Advancement of Sciences (2011-1302-06); Ferdinando Chiaradonna is supported by SysBioNet, a grant for the Italian Roadmap of European Strategy Forum on Research Infrastructures (ESFRI) and by AIRC (Associazione Italiana Ricerca sul Cancro; IG 15364); Francis L.Martin acknowledges funding from Rosemere Cancer Foundation; he also thanks Lancashire Teaching Hospitals NHS trust and the patients who have facilitated the studies he has undertaken over the course of the last 10 years; Gary S.Goldberg would like to acknowledge the support of the New Jersey Health Foundation; Gloria M.Calaf was supported by Fondo Nacional de Ciencia y Tecnología (FONDECYT), Ministerio de Educación de Chile (MINEDUC), Universidad de Tarapacá (UTA); Gudrun Koppen was supported by the Flemish Institute for Technological Research (VITO), Belgium; Hemad Yasaei was supported from a triennial project grant (Strategic Award) from the National Centre for the Replacement, Refinement and Reduction (NC3Rs) of animals in research (NC.K500045.1 and G0800697); Hiroshi Kondoh was supported in part by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Japan Science and Technology Agency and by JST, CREST; Hsue-Yin Hsu was supported by the Ministry of Science and Technology of Taiwan (NSC93-2314-B-320-006 and NSC94-2314-B-320-002); Hyun Ho Park was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2012R1A2A2A01010870) and a grant from the Korea Healthcare Technology R&D project, Ministry of Health and Welfare, Republic of Korea (HI13C1449); Igor Koturbash is supported by the UAMS/NIH Clinical and Translational Science Award (UL1TR000039 and KL2TR000063) and the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000; Jan Vondráček acknowledges funding from the Czech Science Foundation (13-07711S); Jesse Roman thanks the NIH for their support (CA116812), John Pierce Wise Sr. and Sandra S.Wise were supported by National Institute of Environmental Health Sciences (ES016893 to J.P.W.) and the Maine Center for Toxicology and Environmental Health; Jonathan Whitfield acknowledges support from the FERO Foundation in Barcelona, Spain; Joseph Christopher is funded by Cancer Research UK and the International Journal of Experimental Pathology; Julia Kravchenko is supported by a philanthropic donation by Fred and Alice Stanback; Jun Sun is supported by a Swim Across America Cancer Research Award; Karine A.Cohen-Solal is supported by a research scholar grant from the American Cancer Society (116683-RSG-09-087-01-TBE); Laetitia Gonzalez received a postdoctoral fellowship from the Fund for Scientific Research–Flanders (FWO-Vlaanderen) and support by an InterUniversity Attraction Pole grant (IAP-P7-07); Laura Soucek is supported by grant #CP10/00656 from the Miguel Servet Research Contract Program and acknowledges support from the FERO Foundation in Barcelona, Spain; Liang-Tzung Lin was supported by funding from the Taipei Medical University (TMU101-AE3-Y19); Linda Gulliver is supported by a Genesis Oncology Trust (NZ) Professional Development Grant, and the Faculty of Medicine, University of Otago, Dunedin, New Zealand; Louis Vermeulen is supported by a Fellowship of the Dutch Cancer Society (KWF, UVA2011-4969) and a grant from the AICR (14–1164); Mahara Valverde would like to thank CONACyT support 153781; Masoud H. Manjili was supported by the office of the Assistant Secretary of Defense for Health Affairs (USA) through the Breast Cancer Research Program under Award No. W81XWH-14-1-0087 Neetu Singh was supported by grant #SR/FT/LS-063/2008 from the Department of Science and Technology, Government of India; Nicole Kleinstreuer is supported by NIEHS contracts (N01-ES 35504 and HHSN27320140003C); P.K. Krishnakumar is supported by the Funding (No. T.K. 11-0629) of King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia; Paola A.Marignani is supported by the Dalhousie Medical Research Foundation, The Beatrice Hunter Cancer Institute and CIHR and the Nova Scotia Lung Association; Paul Dent is the holder of the Universal Inc.Chair in Signal Transduction Research and is supported with funds from PHS grants from the NIH (R01-CA141704, R01-CA150214, R01-DK52825 and R01-CA61774); Petr Heneberg was supported by the Charles University in Prague projects UNCE 204015 and PRVOUK P31/2012, and by the Czech Science Foundation projects P301/12/1686 and 15-03834Y; Po Sing Leung was supported by the Health and Medical Research Fund of Food and Health Bureau, Hong Kong Special Administrative Region, Ref. No: 10110021; Qiang Cheng was supported in part by grant NSF IIS-1218712; R. Brooks Robey is supported by the United States Department of Veterans Affairs; Rabindra Roy was supported by United States Public Health Service Grants (RO1 CA92306, RO1 CA92306-S1 and RO1 CA113447); Rafaela Andrade-Vieira is supported by the Beatrice Hunter Cancer Research Institute and the Nova Scotia Health Research Foundation, Renza Vento was partially funded by European Regional Development Fund, European Territorial Cooperation 2007–13 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–13) and grants from the Italian Ministry of Education, University and Research (MIUR) ex-60%, 2007; Riccardo Di Fiore was a recipient of fellowship granted by European Regional Development Fund, European Territorial Cooperation 2007–2013 (CCI 2007 CB 163 PO 037, OP Italia-Malta 2007–2013); Rita Dornetshuber-Fleiss was supported by the Austrian Science Fund (FWF, project number T 451-B18) and the Johanna Mahlke, geb.-Obermann-Stiftung; Roberta Palorini is supported by a SysBioNet fellowship; Roslida Abd Hamid is supported by the Ministry of Education, Malaysia-Exploratory Research Grant Scheme-Project no: ERGS/1-2013/5527165; Sabine A.S.Langie is the beneficiary of a postdoctoral grant from the AXA Research Fund and the Cefic-LRI Innovative Science Award 2013; Sakina Eltom is supported by NIH grant SC1CA153326; Samira A.Brooks was supported by National Research Service Award (T32 ES007126) from the National Institute of Environmental Health Sciences and the HHMI Translational Medicine Fellowship; Sandra Ryeom was supported by The Garrett B. Smith Foundation and the TedDriven Foundation; Thierry Massfelder was supported by the Institut National de la Santé et de la Recherche Médicale INSERM and Université de Strasbourg; Thomas Sanderson is supported by the Canadian Institutes of Health Research (CIHR; MOP-115019), the Natural Sciences and Engineering Council of Canada (NSERC; 313313) and the California Breast Cancer Research Program (CBCRP; 17UB-8703); Tiziana Guarnieri is supported by a grant from Fundamental Oriented Research (RFO) to the Alma Mater Studiorum University of Bologna, Bologna, Italy and thanks the Fondazione Cassa di Risparmio di Bologna and the Fondazione Banca del Monte di Bologna e Ravenna for supporting the Center for Applied Biomedical Research, S.Orsola-Malpighi University Hospital, Bologna, Italy; W.Kimryn Rathmell is supported by the V Foundation for Cancer Research and the American Cancer Society; William K.Decker was supported in part by grant RP110545 from the Cancer Prevention Research Institute of Texas; William H.Bisson was supported with funding from the NIH P30 ES000210; Yon Rojanasakul was supported with NIH grant R01-ES022968; Zhenbang Chen is supported by NIH grants (MD004038, CA163069 and MD007593); Zhiwei Hu is grateful for the grant support from an institutional start-up fund from The Ohio State University College of Medicine and The OSU James Comprehensive Cancer Center (OSUCCC) and a Seed Award from the OSUCCC Translational Therapeutics Program.
- Published
- 2015
- Full Text
- View/download PDF
15. MYC oncogene overexpression drives renal cell carcinoma in a mouse model through glutamine metabolism
- Author
-
Vanessa M. Dang, David I. Bellovin, Stephanie C. Casey, Yulin Li, Emelyn H. Shroff, Meital Gabay, Phuoc T. Tran, Arvin M. Gouw, Adolfo Garcia-Ocaña, Dean W. Felsher, Stacey J. Adam, Richard N. Zare, William M. Philbrick, Chi V. Dang, and Livia S. Eberlin
- Subjects
Genetically modified mouse ,Spectrometry, Mass, Electrospray Ionization ,renal cell carcinoma ,Glutamine ,Genes, myc ,Mice, Transgenic ,Mice, SCID ,MYC ,Sulfides ,Biology ,urologic and male genital diseases ,medicine.disease_cause ,Mice ,Glutaminase ,Cell Line, Tumor ,Thiadiazoles ,medicine ,Animals ,Humans ,RNA, Messenger ,RNA, Neoplasm ,Enzyme Inhibitors ,Carcinoma, Renal Cell ,Kidney ,Multidisciplinary ,Oncogene ,hypoxia ,Lipid metabolism ,Lipid Metabolism ,RCC ,Molecular biology ,Kidney Neoplasms ,female genital diseases and pregnancy complications ,Up-Regulation ,Disease Models, Animal ,Genes, ras ,Editorial ,medicine.anatomical_structure ,Tumor progression ,Disease Progression ,Cancer research ,Carcinogenesis - Abstract
The MYC oncogene is frequently mutated and overexpressed in human renal cell carcinoma (RCC). However, there have been no studies on the causative role of MYC or any other oncogene in the initiation or maintenance of kidney tumorigenesis. Here, we show through a conditional transgenic mouse model that the MYC oncogene, but not the RAS oncogene, initiates and maintains RCC. Desorption electrospray ionization-mass-spectrometric imaging was used to obtain chemical maps of metabolites and lipids in the mouse RCC samples. Gene expression analysis revealed that the mouse tumors mimicked human RCC. The data suggested that MYC-induced RCC up-regulated the glutaminolytic pathway instead of the glycolytic pathway. The pharmacologic inhibition of glutamine metabolism with bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide impeded MYC-mediated RCC tumor progression. Our studies demonstrate that MYC overexpression causes RCC and points to the inhibition of glutamine metabolism as a potential therapeutic approach for the treatment of this disease.
- Published
- 2015
- Full Text
- View/download PDF
16. Manufacturing doubt about endocrine disrupter science - A rebuttal of industry-sponsored critical comments on the UNEP/WHO report 'State of the Science of Endocrine Disrupting Chemicals 2012'
- Author
-
Susan Jobling, Poul Bjerregaard, Niels E. Skakkebæk, Karen A. Kidd, Taisen Iguchi, Erik Ropstad, R. Thomas Zoeller, Jorma Toppari, Georg Becher, Riana Bornman, Stephanie C. Casey, Ingvar Brandt, Linda C. Giudice, Andreas Kortenkamp, Jerrold J. Heindel, Åke Bergman, Bruce Blumberg, Laura N. Vandenberg, Roseline Ochieng, Tracey J. Woodruff, P. Monica Lind, Heloise Frouin, Peter S. Ross, and Derek C. G. Muir
- Subjects
Operations research ,Endocrine disruption ,Rebuttal ,Public Health, Global Health, Social Medicine and Epidemiology ,Environmental ethics ,Pharmacology and Toxicology ,General Medicine ,EDCs ,Pharmacology and Pharmaceutical Sciences ,ta3142 ,Endocrinology and Diabetes ,Endocrine Disruptors ,Farmakologi och toxikologi ,Toxicology ,Causality ,Folkhälsovetenskap, global hälsa, socialmedicin och epidemiologi ,Conceptual framework ,Political science ,Endokrinologi och diabetes ,Animals ,Humans ,State of the science ,Empirical evidence - Abstract
© 2015 The Authors. We present a detailed response to the critique of "State of the Science of Endocrine Disrupting Chemicals 2012" (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.'s claim that UNEP/WHO (2013) does not provide a balanced perspective on endocrine disruption is based on incomplete and misleading quoting of the report through omission of qualifying statements and inaccurate description of study objectives, results and conclusions. Lamb et al. define extremely narrow standards for synthesizing evidence which are then used to dismiss the UNEP/WHO 2013 report as flawed. We show that Lamb et al. misuse conceptual frameworks for assessing causality, especially the Bradford-Hill criteria, by ignoring the fundamental problems that exist with inferring causality from empirical observations. We conclude that Lamb et al.'s attempt of deconstructing the UNEP/WHO (2013) report is not particularly erudite and that their critique is not intended to be convincing to the scientific community, but to confuse the scientific data. Consequently, it promotes misinterpretation of the UNEP/WHO (2013) report by non-specialists, bureaucrats, politicians and other decision makers not intimately familiar with the topic of endocrine disruption and therefore susceptible to false generalizations of bias and subjectivity.
- Published
- 2015
- Full Text
- View/download PDF
17. An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation
- Author
-
Yulin Li, Dean W. Felsher, and Stephanie C. Casey
- Subjects
Oncogene Proteins ,Tumor microenvironment ,Innate immune system ,Oncogene ,Immunology ,Tumor initiation ,Biology ,Oncogene Addiction ,Article ,Immunosurveillance ,Cell Transformation, Neoplastic ,Tumor progression ,Immune System ,Neoplasms ,Tumor Microenvironment ,Cancer research ,Animals ,Humans ,Molecular Targeted Therapy ,Immunologic Surveillance - Abstract
Tumors are genetically complex and can have a multitude of mutations. Consequently, it is surprising that the suppression of a single oncogene can result in rapid and sustained tumor regression, illustrating the concept that cancers are often “oncogene addicted.” The mechanism of oncogene addiction has been presumed to be largely cell autonomous as a consequence of the restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and/or cellular senescence. Interestingly, it has recently become apparent that upon oncogene inactivation, the immune response is critical in mediating the phenotypic consequences of oncogene addiction. In particular, CD4+ T cells have been suggested to be essential to the remodeling of the tumor microenvironment, including the shut down of host angiogenesis and the induction of cellular senescence in the tumor. However, adaptive and innate immune cells are likely involved. Thus, the effectors of the immune system are not only involved in tumor initiation, tumor progression, and immunosurveillance, but are also involved in the mechanism of tumor regression upon targeted oncogene inactivation. Hence, oncogene inactivation may be an effective therapeutic approach because it both reverses the neoplastic state within a cancer cell and reactivates the host immune response that remodels the tumor microenvironment.
- Published
- 2014
- Full Text
- View/download PDF
18. The Steroid and Xenobiotic Receptor Negatively Regulates B-1 Cell Development in the Fetal Liver
- Author
-
Stephanie C. Casey and Bruce Blumberg
- Subjects
Male ,Pregnenolone Carbonitrile ,Receptors, Steroid ,medicine.medical_specialty ,Transcription, Genetic ,Cell ,B-Lymphocyte Subsets ,Cell Count ,Biology ,Mice ,chemistry.chemical_compound ,Endocrinology ,Fetal Organ Maturity ,Pregnancy ,Internal medicine ,medicine ,Animals ,Progenitor cell ,Maternal-Fetal Exchange ,Peritoneal Cavity ,Molecular Biology ,Cell Proliferation ,Original Research ,Mice, Knockout ,Pregnane X receptor ,Cell growth ,Gene Expression Profiling ,Precursor Cells, B-Lymphoid ,NF-kappa B ,Pregnane X Receptor ,Gene Expression Regulation, Developmental ,General Medicine ,Cell biology ,B-1 cell ,Haematopoiesis ,medicine.anatomical_structure ,Liver ,Nuclear receptor ,chemistry ,Female ,Xenobiotic - Abstract
The steroid and xenobiotic receptor (SXR) (also known as pregnane X receptor or PXR) is a broad-specificity nuclear hormone receptor that is well known for its role in drug and xenobiotic metabolism. SXR is activated by a wide variety of endobiotics, dietary compounds, pharmaceuticals, and xenobiotic chemicals. SXR is expressed at its highest levels in the liver and intestine yet is found in lower levels in other tissues, where its roles are less understood. We previously demonstrated that SXR(-/-) mice demonstrate elevated nuclear factor (NF)-κB activity and overexpression of NF-κB target genes and that SXR(-/-) mice develop lymphoma derived from B-1 lymphocytes in an age-dependent manner. In this work, we show that fetal livers in SXR(-/-) mice display elevated expression of NF-κB target genes and possess a significantly larger percentage of B-1 progenitor cells in the fetal liver. Furthermore, in utero activation of SXR in wild-type mice reduces the B-1 progenitor populations in the embryonic liver and reduces the size of the B-1 cell compartment in adult animals that were treated in utero. This suggests that activation of SXR during development may permanently alter the immune system of animals exposed in utero, demonstrating a novel role for SXR in the generation of B-1 cell precursors in the fetal liver. These data support our previous findings that SXR functions as a tumor suppressor in B-1 lymphocytes and establish a unique role for SXR as a modulator of developmental hematopoiesis in the liver.
- Published
- 2012
- Full Text
- View/download PDF
19. Cancer prevention and therapy through the modulation of the tumor microenvironment
- Author
-
Alan Bilsland, Amedeo Amedei, Hiromasa Fujii, Sophie Chen, Gunjan Guha, Katia Aquilano, Neetu Singh, Kanya Honoki, Sid P. Kerkar, Xujuan Yang, William G. Helferich, Petr Heneberg, Dorota Halicka, H.P. Vasantha Rupasinghe, Wamidh H. Talib, Vasundara Venkateswaran, Stephanie C. Casey, Elena Niccolai, Maria Rosa Ciriolo, Somaira Nowsheen, Richard L. Whelan, W. Nicol Keith, Sarah Crawford, Dipita Bhakta, Fabian Benencia, Asfar S. Azmi, Sulma I. Mohammed, Alexandros G. Georgakilas, Abbas Samadi, Chandra S. Boosani, and Dean W. Felsher
- Subjects
Cancer Research ,Cancer biology ,Cancer prevention ,Cancer therapy ,Tumor microenvironment ,Carcinogenesis ,Angiogenesis ,Antineoplastic Agents ,Biology ,medicine.disease_cause ,Article ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,Neoplasms ,Tumor Microenvironment ,medicine ,Humans ,Molecular Targeted Therapy ,Settore BIO/10 ,Cell Proliferation ,030304 developmental biology ,0303 health sciences ,Neovascularization, Pathologic ,Endoglin ,Acquired immune system ,3. Good health ,Vascular endothelial growth factor ,HIF1A ,chemistry ,030220 oncology & carcinogenesis ,Immunology ,Cancer research ,Janus kinase ,Signal Transduction - Abstract
Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.
- Published
- 2015
20. Designing a broad-spectrum integrative approach for cancer prevention and treatment
- Author
-
Chandra S. Boosani, William K. Decker, Punita Dhawan, Georgia Zhuo Chen, Mark E. Prince, Balakrishna L. Lokeshwar, Nagi B. Kumar, Michelle F. Green, Alan Bilsland, Michael P. Murphy, Dong M. Shin, H.P. Vasantha Rupasinghe, Paul Yaswen, Anupam Bishayee, Christian Frezza, John Stagg, Mahin Khatami, Lynnette R. Ferguson, R. Brooks Robeydf, Kanya Honoki, Alan K. Meeker, A.R.M. Ruhul Amin, Huanjie Yang, Eoin McDonnell, Virginia R. Parslow, Phuoc T. Tran, Patricia Hentosh, Frank Gieseler, Gloria S. Huang, Sulma I. Mohammed, Ho Young Lee, Giovanna Damia, Alexandra Arreola, Wamidh H. Talib, Mark A. Feitelson, Luigi Ricciardiello, Massimo Zollo, Sarallah Rezazadeh, Diana M. Stafforini, Katia Aquilano, Phillip Karpowicz, Markus D. Siegelin, Neetu Singh, Alexandros G. Georgakilas, Domenico Ribatti, Neeraj K. Saxena, Carl Smythe, Beom K. Choi, Mark M. Fuster, Gian Luigi Russo, Amedeo Amedei, Anna Mae Diehl, Terry Lichtor, D. James Morré, Charlotte Gyllenhaal, Vasundara Venkateswaran, Colleen S. Curran, Ramzi M. Mohammad, Jiyue Zhu, Anne Leb, Lizzia Raffaghello, Fabian Benencia, Sid P. Kerkar, Eddy S. Yang, Wen Guo Jiang, Jason W. Locasale, Alla Arzumanyan, W. Nicol Keith, Dorota Halicka, Gunjan Guhal, Xin Yin, Helen Chen, Irfana Muqbil, Gary L. Firestone, Panagiotis J. Vlachostergios, Maria Marino, Meenakshi Malhotra, Stacy W. Blain, Amancio Carnero, Liang Tzung Lin, Dass S. Vinay, Satya Prakash, Hsue-Yin Hsu, María L. Martínez-Chantar, Daniele Generali, Jeffrey C. Rathmell, Karen L. MacKenzie, Valter D. Longo, Dipita Bhakta, Ralph J. DeBerardinis, S. Salman Ashraf, Elena Niccolai, Hendrik Ungefroren, Carmela Fimognari, Mahya Mehrmohamadi, Zongwei Wang, Clement G. Yedjou, Costas A. Lyssiotis, Lasse Jensen, Jörg Reichrath, Sarah K. Thompson, Rita Nahta, David Sidransky, Q. Ping Dou, Brendan Grue, Isidro Sánchez-García, Brad Poore, Helen M. Coley, Bassel F. El-Rayes, Sophie Chen, Randall F. Holcombe, Dipali Sharma, Mrinmay Chakrabarti, Asfar S. Azmi, William G. Helferich, Gregory A. Michelotti, H. M. C. Shantha Kumara, Petr Heneberg, Rodney E. Shackelford, Andrew James Sanders, Daniel Sliva, Swapan K. Ray, Omer Kucuk, Christopher Maxwellx, Abbas Samadi, Leroy Lowe, Sarah Crawford, Daniele Santini, Andrew Collins, Yi Charlie Chen, Santanu Dasgupta, Kathryn E. Wellen, Richard L. Whelan, Janice E. Drewa, Ander Matheu, Sharanya Sivanand, Tetsuro Sasada, Xujuan Yang, Lee W. Jones, Byoung S. Kwon, Amr Amin, Francis Rodierdh, Ganji Purnachandra Nagaraju, Charlotta Dabrosin, Graham Pawelec, Rob J. Kulathinal, Elizabeth P. Ryan, Hiromasa Fujii, Thomas E. Carey, Somaira Nowsheen, Young Hee Ko, Deepak Poudyal, Eyad Elkord, Emanuela Signori, Rupesh Chaturvedi, Peter L. Pedersen, Carmela Spagnuolo, Keith I. Block, Marianeve Carotenuto, Vinayak Muralidharcq, Stephanie C. Casey, Kapil Mehta, Tabetha Sundin, Dean W. Felsheru, Matthew D. Hirschey, Matthew G. Vander Heiden, Lorne J. Hofseth, Francesco Pantano, Maria Rosa Ciriolo, Michael A. Leab, Carolina Panis, Marisa Connell, Gazala Khan, W. Kimryn Rathmell, Malancha Sarkar, Michael Gilbertson, Jack L. Arbiser, Penny B. Block, Pochi R. Subbarayan, Jin-Tang Dong, Frezza, Christian [0000-0002-3293-7397], Murphy, Mike [0000-0003-1115-9618], Apollo - University of Cambridge Repository, National Institutes of Health (US), Ministerio de Economía y Competitividad (España), Instituto de Salud Carlos III, Junta de Andalucía, Associazione Italiana per la Ricerca sul Cancro, Avon Foundation for Women, Junta de Castilla y León, Ministerio de Ciencia e Innovación (España), Federal Ministry of Education and Research (Germany), Canadian Institutes of Health Research, Ikerbasque Basque Foundation for Science, American Cancer Society, European Commission, Swedish Research Council, University of Glasgow, Block, Keith I, Gyllenhaal, Charlotte, Lowe, Leroy, Amedei, Amedeo, Amin, A. R. M. Ruhul, Amin, Amr, Aquilano, Katia, Arbiser, Jack, Arreola, Alexandra, Arzumanyan, Alla, Ashraf, S. Salman, Azmi, Asfar S, Benencia, Fabian, Bhakta, Dipita, Bilsland, Alan, Bishayee, Anupam, Blain, Stacy W, Block, Penny B, Boosani, Chandra S, Carey, Thomas E, Carnero, Amancio, Carotenuto, Marianeve, Casey, Stephanie C, Chakrabarti, Mrinmay, Chaturvedi, Rupesh, Chen, Georgia Zhuo, Chen, Helen, Chen, Sophie, Chen, Yi Charlie, Choi, Beom K, Ciriolo, Maria Rosa, Coley, Helen M, Collins, Andrew R, Connell, Marisa, Crawford, Sarah, Curran, Colleen S, Dabrosin, Charlotta, Damia, Giovanna, Dasgupta, Santanu, Deberardinis, Ralph J, Decker, William K, Dhawan, Punita, Diehl, Anna Mae E, Dong, Jin Tang, Dou, Q. Ping, Drew, Janice E, Elkord, Eyad, El Rayes, Bassel, Feitelson, Mark A, Felsher, Dean W, Ferguson, Lynnette R, Fimognari, Carmela, Firestone, Gary L, Frezza, Christian, Fujii, Hiromasa, Fuster, Mark M, Generali, Daniele, Georgakilas, Alexandros G, Gieseler, Frank, Gilbertson, Michael, Green, Michelle F, Grue, Brendan, Guha, Gunjan, Halicka, Dorota, Helferich, William G, Heneberg, Petr, Hentosh, Patricia, Hirschey, Matthew D, Hofseth, Lorne J, Holcombe, Randall F, Honoki, Kanya, Hsu, Hsue Yin, Huang, Gloria S, Jensen, Lasse D, Jiang, Wen G, Jones, Lee W, Karpowicz, Phillip A, Keith, W. Nicol, Kerkar, Sid P, Khan, Gazala N, Khatami, Mahin, Ko, Young H, Kucuk, Omer, Kulathinal, Rob J, Kumar, Nagi B, Kwon, Byoung S, Le, Anne, Lea, Michael A, Lee, Ho Young, Lichtor, Terry, Lin, Liang Tzung, Locasale, Jason W, Lokeshwar, Bal L, Longo, Valter D, Lyssiotis, Costas A, Mackenzie, Karen L, Malhotra, Meenakshi, Marino, Maria, Martinez Chantar, Maria L, Matheu, Ander, Maxwell, Christopher, Mcdonnell, Eoin, Meeker, Alan K, Mehrmohamadi, Mahya, Mehta, Kapil, Michelotti, Gregory A, Mohammad, Ramzi M, Mohammed, Sulma I, Morre, D. Jame, Muralidhar, Vinayak, Muqbil, Irfana, Murphy, Michael P, Nagaraju, Ganji Purnachandra, Nahta, Rita, Niccolai, Elena, Nowsheen, Somaira, Panis, Carolina, Pantano, Francesco, Parslow, Virginia R, Pawelec, Graham, Pedersen, Peter L, Poore, Brad, Poudyal, Deepak, Prakash, Satya, Prince, Mark, Raffaghello, Lizzia, Rathmell, Jeffrey C, Rathmell, W. Kimryn, Ray, Swapan K, Reichrath, Jörg, Rezazadeh, Sarallah, Ribatti, Domenico, Ricciardiello, Luigi, Robey, R. Brook, Rodier, Franci, Rupasinghe, H. P. Vasantha, Russo, Gian Luigi, Ryan, Elizabeth P, Samadi, Abbas K, Sanchez Garcia, Isidro, Sanders, Andrew J, Santini, Daniele, Sarkar, Malancha, Sasada, Tetsuro, Saxena, Neeraj K, Shackelford, Rodney E, Shantha Kumara, H. M. C, Sharma, Dipali, Shin, Dong M, Sidransky, David, Siegelin, Markus David, Signori, Emanuela, Singh, Neetu, Sivanand, Sharanya, Sliva, Daniel, Smythe, Carl, Spagnuolo, Carmela, Stafforini, Diana M, Stagg, John, Subbarayan, Pochi R, Sundin, Tabetha, Talib, Wamidh H, Thompson, Sarah K, Tran, Phuoc T, Ungefroren, Hendrik, Vander Heiden, Matthew G, Venkateswaran, Vasundara, Vinay, Dass S, Vlachostergios, Panagiotis J, Wang, Zongwei, Wellen, Kathryn E, Whelan, Richard L, Yang, Eddy S, Yang, Huanjie, Yang, Xujuan, Yaswen, Paul, Yedjou, Clement, Yin, Xin, Zhu, Jiyue, Zollo, Massimo, Amin, A R M Ruhul, Ashraf, S Salman, Dong, Jin-Tang, Dou, Q Ping, El-Rayes, Bassel, Hsu, Hsue-Yin, Keith, W Nicol, Lee, Ho-Young, Lin, Liang-Tzung, Martinez-Chantar, Maria L, Morre, D Jame, Rathmell, W Kimryn, Robey, R Brook, Rupasinghe, H P Vasantha, Sanchez-Garcia, Isidro, Shantha Kumara, H M C, Block, Ki, Gyllenhaal, C, Lowe, L, Amedei, A, Amin, Ar, Amin, A, Aquilano, K, Arbiser, J, Arreola, A, Arzumanyan, A, Ashraf, S, Azmi, A, Benencia, F, Bhakta, D, Bilsland, A, Bishayee, A, Blain, Sw, Block, Pb, Boosani, C, Carey, Te, Carnero, A, Casey, Sc, Chakrabarti, M, Chaturvedi, R, Chen, Gz, Chen, H, Chen, S, Chen, Yc, Choi, Bk, Ciriolo, Mr, Coley, Hm, Collins, Ar, Connell, M, Crawford, S, Curran, C, Dabrosin, C, Damia, G, Dasgupta, S, Deberardinis, Rj, Decker, Wk, Dhawan, P, Diehl, Am, Dong, Jt, Dou, Qp, Drew, Je, Elkord, E, El Rayes, B, Feitelson, Ma, Felsher, Dw, Ferguson, Lr, Fimognari, C, Firestone, Gl, Frezza, C, Fujii, H, Fuster, Mm, Generali, D, Georgakilas, Ag, Gieseler, F, Gilbertson, M, Green, Mf, Grue, B, Guha, G, Halicka, D, Helferich, Wg, Heneberg, P, Hentosh, P, Hirschey, Md, Hofseth, Lj, Holcombe, Rf, Honoki, K, Hsu, Hy, Huang, G, Jensen, Ld, Jiang, Wg, Jones, Lw, Karpowicz, Pa, Keith, Wn, Kerkar, Sp, Khan, Gn, Khatami, M, Ko, Yh, Kucuk, O, Kulathinal, Rj, Kumar, Nb, Kwon, B, Le, A, Lea, Ma, Lee, Hy, Lichtor, T, Lin, Lt, Locasale, Jw, Lokeshwar, Bl, Longo, Vd, Lyssiotis, Ca, Mackenzie, Kl, Malhotra, M, Marino, M, Martinez Chantar, Ml, Matheu, A, Maxwell, C, Mcdonnell, E, Meeker, Ak, Mehrmohamadi, M, Mehta, K, Michelotti, Ga, Mohammad, Rm, Mohammed, Si, Morre, Dj, Muralidhar, V, Muqbil, I, Murphy, Mp, Nagaraju, Gp, Nahta, R, Niccolai, E, Nowsheen, S, Panis, C, Pantano, F, Parslow, Vr, Pawelec, G, Pedersen, Pl, Poore, B, Poudyal, D, Prakash, S, Prince, M, Raffaghello, L, Rathmell, Jc, Rathmell, Wk, Ray, Sk, Reichrath, J, Rezazadeh, S, Ribatti, D, Ricciardiello, L, Robey, Rb, Rodier, F, Rupasinghe, Hp, Russo, Gl, Ryan, Ep, Samadi, Ak, Sanchez Garcia, I, Sanders, Aj, Santini, D, Sarkar, M, Sasada, T, Saxena, Nk, Shackelford, Re, Shantha Kumara, Hm, Sharma, D, Shin, Dm, Sidransky, D, Siegelin, Md, Signori, E, Singh, N, Sivanand, S, Sliva, D, Smythe, C, Spagnuolo, C, Stafforini, Dm, Stagg, J, Subbarayan, Pr, Sundin, T, Talib, Wh, Thompson, Sk, Tran, Pt, Ungefroren, H, Vander Heiden, Mg, Venkateswaran, V, Vinay, D, Vlachostergios, Pj, Wang, Z, Wellen, Ke, Whelan, Rl, Yang, E, Yang, H, Yang, X, Yaswen, P, Yedjou, C, Yin, X, Zhu, J, Massachusetts Institute of Technology. Department of Biology, Koch Institute for Integrative Cancer Research at MIT, Vander Heiden, Matthew G., Ruhul Amin, A. R. M., Salman Ashraf, S., Azmi, Asfar S., Blain, Stacy W., Block, Penny B., Boosani, Chandra S., Carey, Thomas E., Casey, Stephanie C., Choi, Beom K., Coley, Helen M., Collins, Andrew R., Curran, Colleen S., Deberardinis, Ralph J., Decker, William K., Diehl, Anna Mae E., Drewa, Janice E., Feitelson, Mark A., Felsheru, Dean W., Ferguson, Lynnette R., Firestone, Gary L., Fuster, Mark M., Georgakilas, Alexandros G., Green, Michelle F., Guhal, Gunjan, Helferich, William G., Hirschey, Matthew D., Hofseth, Lorne J., Holcombe, Randall F., Huang, Gloria S., Jensen, Lasse D., Jiang, Wen G., Jones, Lee W., Karpowicz, Phillip A., Kerkar, Sid P., Khan, Gazala N., Ko, Young H., Kulathinal, Rob J., Kumar, Nagi B., Kwon, Byoung S., Leb, Anne, Leab, Michael A., Locasale, Jason W., Lokeshwar, Bal L., Longo, Valter D., Lyssiotis, Costas A., Maxwellx, Christopher, Meeker, Alan K., Michelotti, Gregory A., Mohammad, Ramzi M., Mohammed, Sulma I., Muralidharcq, Vinayak, Murphy, Michael P., Parslow, Virginia R., Pedersen, Peter L., Rathmell, Jeffrey C., Ray, Swapan K., Robeydf, R. Brook, Rodierdh, Franci, Ryan, Elizabeth P., Samadi, Abbas K., Sanders, Andrew J., Saxena, Neeraj K., Shackelford, Rodney E., Shantha Kumara, H. M. C., Shin, Dong M., Stafforini, Diana M., Subbarayan, Pochi R., Talib, Wamidh H., Thompson, Sarah K., Tran, Phuoc T., Vinay, Dass S., Vlachostergios, Panagiotis J., Wellen, Kathryn E., Whelan, Richard L., and Yang, Eddy S.
- Subjects
Cancer Research ,medicine.medical_treatment ,Phytochemicals ,ComputingMilieux_LEGALASPECTSOFCOMPUTING ,Pharmacology ,Bioinformatics ,Targeted therapy ,Broad spectrum ,0302 clinical medicine ,Cancer hallmark ,Neoplasms ,Tumor Microenvironment ,Molecular Targeted Therapy ,Precision Medicine ,ComputingMilieux_MISCELLANEOUS ,0303 health sciences ,Cancer hallmarks ,Integrative medicine ,Multi-targeted ,1. No poverty ,Life Sciences ,3. Good health ,030220 oncology & carcinogenesis ,Signal Transduction ,Phytochemical ,Article ,RC0254 ,03 medical and health sciences ,Therapeutic approach ,Genetic Heterogeneity ,medicine ,Humans ,Settore BIO/10 ,Biology ,030304 developmental biology ,Tumor microenvironment ,Cancer och onkologi ,Cancer prevention ,business.industry ,Cancer ,Precision medicine ,medicine.disease ,Antineoplastic Agents, Phytogenic ,Drug Resistance, Neoplasm ,Data_GENERAL ,Cancer and Oncology ,business - Abstract
Under a Creative Commons license.-- Review.-- et al., Targeted therapies and the consequent adoption of >personalized> oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity >broad-spectrum> therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered., Amr Amin was funded by Terry Fox Foundation Grant # TF-13-20 and UAEU Program for Advanced Research (UPAR) #31S118; Jack Arbiser was funded by NIHAR47901; Alexandra Arreola was funded by NIH NRSA Grant F31CA154080; Alla Arzumanyan was funded by NIH (NIAID) R01: Combination therapies for chronic HBV, liver disease, and cancer (AI076535); Work in the lab of Asfar S. Azmi is supported by NIH R21CA188818 as well as from Sky Foundation Inc. Michigan; Fabian Benencia was supported by NIH Grant R15 CA137499-01; Alan Bilsland was supported by the University of Glasgow, Beatson Oncology Centre Fund, CRUK (www.cancerresearchuk.org) Grant C301/A14762; Amancio Carnero was supported by grants from the Spanish Ministry of Economy and Competitivity, ISCIII (Fis: PI12/00137, RTICC: RD12/0036/0028) co-funded by FEDER from Regional Development European Funds (European Union), Consejeria de Ciencia e Innovacion (CTS-6844 and CTS-1848) and Consejeria de Salud of the Junta de Andalucia (PI-0135-2010 and PI-0306-2012). His work on this project has also been made possible thanks to the Grant PIE13/0004 co-funded by the ISCIII and FEDER funds; Stephanie C. Casey was supported by NIH Grant F32CA177139; Mrinmay Chakrabarti was supported by the United Soybean Board; Rupesh Chaturvedi was supported by an NIH NCCAM Grant (K01AT007324); Georgia Zhuo Chen was supported by an NIH NCI Grant (R33 CA161873-02); Helen Chen acknowledges financial support from the Michael Cuccione Childhood Cancer Foundation Graduate Studentship; Sophie Chen acknowledges financial support from the Ovarian and Prostate Cancer Research Trust, UK; Yi Charlie Chen acknowledges financial support from the West Virginia Higher Education Policy Commission/Division of Science Research, his research was also supported by NIH grants (P20RR016477 and P20GM103434) from the National Institutes of Health awarded to the West Virginia IDeA Network of Biomedical Research Excellence; Maria Rosa Ciriolo was partially supported by the Italian Association for Cancer Research (AIRC) Grants #IG10636 and #15403; Helen M. Coley acknowledges financial support from the GRACE Charity, UK and the Breast Cancer Campaign, UK; Marisa Connell was supported by a Michael Cuccione Childhood Cancer Foundation Postdoctoral Fellowship; Sarah Crawford was supported by a research grant from Connecticut State University; Charlotta Dabrosin acknowledges financial support from the Swedish Research Council and the Swedish Research Society; Giovanna Damia gratefully acknowledges the generous contributions of The Italian Association for Cancer Research (IG14536 to G.D.), Santanu Dasgupta gratefully acknowledges the support of the University of Texas Health Science Centre at Tyler, Elsa U. Pardee Foundation; William K. Decker was supported in part by CPRIT, the Cancer Prevention and Research Institute of Texas; Anna Mae E. Diehl was supported by NIH National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the NIH National Institute on Alcohol Abuse and Alcoholism (NIAAA), Gilead and Shire Pharmaceuticals; Q. Ping Dou was partially supported by NIH/NCI (1R01CA20009, 5R01CA127258-05 and R21CA184788), and NIH P30 CA22453 (to Karmanos Cancer Institute); Janice E. Drew was supported by the Scottish Government's Rural and Environment Science and Analytical Services Division; Eyad Elkord thanks the National Research Foundation, United Arab Emirates University and the Terry Fox Foundation for supporting research projects in his lab; Bassel El-Rayes was supported by Novartis Pharmaceutical, Aveo Pharmaceutical, Roche, Bristol Myers Squibb, Bayer Pharmaceutical, Pfizer, and Kyowa Kirin; Mark A. Feitelson was supported by NIH/NIAID Grant AI076535, Dean W. Felsher was supported by NIH grants (R01CA170378, U54CA149145, and U54CA143907); Lynnette R Ferguson was financially supported by the Auckland Cancer Society and the Cancer Society of New Zealand; Gary L. Firestone was supported by NIH Public Service Grant CA164095 awarded from the National Cancer Institute; Christian Frezza “would like to acknowledge funding from a Medical Research Council CCU-Program Grant on cancer metabolism, and a unique applicant AICR project grant”; Mark M. Fuster was supported by NIH Grant R01-HL107652; Alexandros G. Georgakilas was supported by an EU Marie Curie Reintegration Grant MC-CIG-303514, Greek National funds through the Operational Program ‘Educational and Lifelong Learning of the National Strategic Reference Framework (NSRF)-Research Funding Program THALES (Grant number MIS 379346) and COST Action CM1201 ‘Biomimetic Radical Chemistry’; Michelle F. Green was supported by a Duke University Molecular Cancer Biology T32 Training Grant; Brendan Grue was supported by a National Sciences Engineering and Research Council Undergraduate Student Research Award in Canada; Dorota Halicka was supported by by NIH NCI grant NCI RO1 28704; Petr Heneberg was supported by the Charles University in Prague projects UNCE 204015 and PRVOUK P31/2012, by the Czech Science Foundation projects 15-03834Y and P301/12/1686, by the Czech Health Research Council AZV project 15-32432A, and by the Internal Grant Agency of the Ministry of Health of the Czech Republic project NT13663-3/2012; Matthew D. Hirschey wishes to acknowledge Duke University Institutional Support, the Duke Pepper Older Americans Independence Center (OAIC) Program in Aging Research supported by the National Institute of Aging (P30AG028716-01) and NIH/NCI training grants to Duke University (T32-CA059365-19 and 5T32-CA059365), Lorne J. Hofseth was supported by NIH grants (1R01CA151304, 1R03CA1711326, and 1P01AT003961); Kanya Honoki was supported in part by the grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan (No. 24590493); Hsue-Yin Hsu was supported in part by grants from the Ministry of Health and Welfare (CCMP101-RD-031 and CCMP102-RD-112) and Tzu-Chi University (61040055-10) of Taiwan; Lasse D. Jensen was supported by Svenska Sallskapet for Medicinsk Forskning, Gosta Fraenkels Stiftelse, Ak.e Wibergs Stiftelse, Ollie och Elof Ericssons Stiftelse, Linkopings Universitet and the Karolinska Institute, Sweden; Wen G. Jiang wishes to acknowledge the support by Cancer Research Wales, the Albert Hung Foundation, the Fong Family Foundation, and Welsh Government A4B scheme; Lee W. Jones was supported in part by grants from the NIH NCI; W Nicol Keith was supported by the University of Glasgow, Beatson Oncology Centre Fund, CRUK (www.cancerresearchuk.org) Grant C301/A14762; Sid P. Kerkar was supported by the NIH Intramural Research Program; Rob J. Kulathinal was supported by the National Science Foundation, and the American Cancer Society; Byoung S. Kwon was supported in part by National Cancer Center (NCC-1310430-2) and National Research Foundation (NRF-2005-0093837); Anne Le was supported by Sol Goldman Pancreatic Cancer Research Fund Grant 80028595, a Lustgarten Fund Grant 90049125 and Grant NIHR21CA169757 (to Anne Le); Michael A. Lea was funded by the The Alma Toorock Memorial for Cancer Research; Ho-Young Lee., This work was supported by grants from the National Research Foundation of Korea (NRF), the Ministry of Science, ICT & Future Planning (MSIP), Republic of Korea (Nos. 2011-0017639 and 2011-0030001) and by a NIH Grant R01 CA100816; Liang-Tzung Lin was supported in part by a grant from the Ministry of Education of Taiwan (TMUTOP103005-4); Jason W. Locasale acknowledges support from NIH awards (CA168997 and AI110613) and the International Life Sciences Institute; Bal L. Lokeshwar was supported in part by United States’ Public Health Services Grants: NIH R01CA156776 and VA-BLR&D Merit Review Grant No. 5I01-BX001517-02; Valter D. Longo acknowledges support from NIH awards (P01AG034906 and R01AG020642) and from the V Foundation; Costas A. Lyssiotis was funded in part by the Pancreatic Cancer Action Network as a Pathway to Leadership Fellow and through a Dale F. Frey Breakthrough award from the Damon Runyon Cancer Research Foundation; Karen L. MacKenzie wishes to acknowledge the support from the Children's Cancer Institute Australia (affiliated with the University of New South Wales, Australia and the Sydney Children's Hospital Network); Maria Marino was supported by grant from University Roma Tre to M.M. (CLA 2013) and by the Italian Association for Cancer Research (AIRC-Grant #IG15221), Ander Matheu is funded by Carlos III Health Institute (AM: CP10/00539), Basque Foundation for Science (IKERBASQUE) and Marie Curie CIG Grant (AM: 2012/712404); Christopher Maxwell was supported by funding from the Canadian Institutes of Health Research, in partnership with the Avon Foundation for Women (OBC-134038) and the Canadian Institutes of Health Research New Investigator Salary Award (MSH-136647); Eoin McDonnell received Duke University Institutional Support; Kapil Mehta was supported by Bayer Healthcare System G4T (Grants4Targets); Gregory A. Michelotti received support from NIH NIDDK, NIH NIAAA, and Shire Pharmaceuticals; Vinayak Muralidhar was supported by the Harvard-MIT Health Sciences and Technology Research Assistantship Award; Elena Niccolai was supported by the Italian Ministry of University and the University of Italy; Virginia R. Parslow gratefully acknowledges the financial support of the Auckland Cancer Society Research Centre (ACSRC); Graham Pawelec was supported by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF) Grant number 16SV5536K, and by the European Commission (FP7 259679 “IDEAL”); Peter L. Pedersen was supported by NIH Grant CA-10951; Brad Poore was supported by Sol Goldman Pancreatic Cancer Research Fund Grant 80028595, the Lustgarten Fund Grant 90049125, and Grant NIHR21CA169757 (to Anne Le); Satya Prakash was supported by a Canadian Institutes of Health Research Grant (MOP 64308); Lizzia Raffaghello was supported by an NIH Grant (P01AG034906-01A1) and Cinque per Mille dell’IRPEF–Finanziamento della Ricerca Sanitaria; Jeffrey C. Rathmell was supported by an NIH Grant (R01HL108006); Swapan K. Ray was supported by the United Soybean Board; Domenico Ribatti received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant agreement n°278570; Luigi Ricciardiello was supported by the AIRC Investigator Grants 10216 and 13837, and the European Community's Seventh Framework Program FP7/2007–2013 under Grant agreement 311876; Francis Rodier acknowledges the support of the Canadian Institute for Health Research (FR: MOP114962, MOP125857), Fonds de Recherche Québec Santé (FR: 22624), and the Terry Fox Research Institute (FR: 1030), Gian Luigi Russo contributed to this effort while participating in the Fulbright Research Scholar Program 2013–14; Isidro Sanchez-Garcia is partially supported by FEDER and by MICINN (SAF2012-32810), by NIH Grant (R01 CA109335-04A1), by Junta de Castilla y León (BIO/SA06/13) and by the ARIMMORA project (FP7-ENV-2011, European Union Seventh Framework Program). Isidro Sanchez-Garcia's lab is also a member of the EuroSyStem and the DECIDE Network funded by the European Union under the FP7 program; Andrew J. Sanders wishes to acknowledge the support by Cancer Research Wales, the Albert Hung Foundation, the Fong Family Foundation, and Welsh Government A4B scheme; Neeraj K. Saxena was supported by grant funding from NIH NIDDK (K01DK077137, R03DK089130); Dipali Sharma was partially funded by NIH NCI grants (R01CA131294, R21 CA155686), the Avon Foundation and a Breast Cancer Research Foundation Grant (90047965); Markus David Siegelin received funding from National Institute of Health, NINDS Grant K08NS083732, and the 2013 AACR-National Brain Tumor Society Career Development Award for Translational Brain Tumor Research, Grant Number 13-20-23-SIEG; Neetu Singh was supported by funds from the Department of Science and Technology (SR/FT/LS-063/2008), New Delhi, India; Carl Smythe was supported by Yorkshire Cancer Research and The Wellcome Trust, UK; Carmela Spagnuolo was supported by funding from Project C.I.S.I.A., act n. 191/2009 from the Italian Ministry of Economy and Finance Project CAMPUS-QUARC, within program FESR Campania Region 2007/2013, objectives 2.1, 2.2; Diana M. Stafforini was supported by grants from the National Cancer Institute (5P01CA073992), IDEA Award W81XWH-12-1-0515 from the Department of Defense, and by the Huntsman Cancer Foundation; John Stagg was supported by the Canadian Institutes of Health Research; Pochi R. Subbarayan was supported by the University of Miami Clinical and Translational Science Institute (CTSI) Pilot Research Grant (CTSI-2013-P03) and SEEDS You Choose Awards; Phuoc T. Tran was funded by the DoD (W81XWH-11-1-0272 and W81XWH-13-1-0182), a Kimmel Translational Science Award (SKF-13-021), an ACS Scholar award (122688-RSG-12-196-01-TBG) and the NIH (R01CA166348); Kathryn E. Wellen receives funding from the National Cancer Institute, Pancreatic Cancer Action Network, Pew Charitable Trusts, American Diabetes Association, and Elsa U. Pardee Foundation; Huanjie Yang was partially supported by the Scientific Research Foundation for the Returned Oversea Scholars, State Education Ministry and Scientific and Technological Innovation Project, Harbin (2012RFLXS011), Paul Yaswen was supported by funding from the United States National Institutes of Health (ES019458) and the California Breast Cancer Research Program (17UB-8708); Clement Yedjou was supported by a grant from the National Institutes of Health (Grant # G1200MD007581), through the RCMI-Center for Environmental Health; Xin Yin was supported by NIH/National Heart, Lung, and Blood Institute Training Grant T32HL098062.; Jiyue Zhu was supported by NIH Grant R01GM071725; Massimo Zollo was supported by the European FP7-TuMIC HEALTH-F2-2008-201662, the Italian Association for Cancer research (AIRC) Grant IG # 11963 and the Regione Campania L.R:N.5, the European National Funds PON01-02388/1 2007-2013.
- Published
- 2015
- Full Text
- View/download PDF
21. MYC regulates the antitumor immune response through CD47 and PD-L1
- Author
-
Kelly N. Fitzgerald, Rachel K. Do, Martin Eilers, Stephanie C. Casey, Ines Gütgemann, Ling Tong, Dean W. Felsher, Susanne Walz, Virginie Baylot, Yulin Li, and Arvin M. Gouw
- Subjects
0301 basic medicine ,Lymphoma ,Down-Regulation ,CD47 Antigen ,Biology ,medicine.disease_cause ,Precursor T-Cell Lymphoblastic Leukemia-Lymphoma ,Article ,B7-H1 Antigen ,Immune tolerance ,Proto-Oncogene Proteins c-myc ,03 medical and health sciences ,Jurkat Cells ,Mice ,Immune system ,Neoplasms ,Cell Line, Tumor ,medicine ,Immune Tolerance ,Animals ,Humans ,RNA, Small Interfering ,Promoter Regions, Genetic ,Transcription factor ,Cell Proliferation ,Multidisciplinary ,Innate immune system ,Oncogene ,Immunity ,Immune checkpoint ,Gene Expression Regulation, Neoplastic ,030104 developmental biology ,Cell Transformation, Neoplastic ,Gene Knockdown Techniques ,Cancer research ,Carcinogenesis - Abstract
Oncogene control of antitumor immunity Recent clinical success of cancer immunotherapy has intensified interest in how tumors normally evade the immune response. Whether and how oncogenes contribute to this process are not well understood. In a study of mice, Casey et al. found that the MYC oncogene, which is aberrantly activated in many human cancers, up-regulates the expression of genes encoding proteins that dampen the antitumor response. These include two proteins that are often overexpressed on tumor cells and that serve as immune checkpoints. One of them (PDL1) sends to the immune system a “don't find me” signal, and the other (CD47) sends a “don't eat me” signal. Thus, therapies aimed at suppressing MYC may help promote an immune response against tumors. Science , this issue p. 227
- Published
- 2015
22. The effect of environmental chemicals on the tumor microenvironment
- Author
-
Fahd Al-Mulla, Laura Soucek, Dustin G. Brown, Lorenzo Memeo, A. Ivana Scovassi, Louis Vermeulen, Stefano Forte, Periyadan K. Krishnakumar, William H. Bisson, Jayadev Raju, Jordan Woodrick, Dean W. Felsher, Fabio Marongiu, Rabeah Al-Temaimi, Monica Vaccari, Sandra Ryeom, Jesse Roman, Jonathan Whitfield, Roslida Abd Hamid, Annamaria Colacci, Amedeo Amedei, Petr Heneberg, Hosni Salem, Colleen S. Curran, Daniel C. Koch, Rabindra Roy, Véronique Maguer-Satta, Stephanie C. Casey, Neetu Singh, Chiara Mondello, Mary Helen Barcellos-Hoff, Elizabeth P. Ryan, Joseph Christopher, Marion Chapellier, and Ezio Laconi
- Subjects
Cancer Research ,Cell signaling ,Stromal cell ,Carcinogenesis ,medicine.medical_treatment ,Oncology and Carcinogenesis ,Review ,medicine.disease_cause ,Hazardous Substances ,Immune system ,Neoplasms ,medicine ,Tumor Microenvironment ,Animals ,Humans ,2.2 Factors relating to the physical environment ,2.1 Biological and endogenous factors ,Oncology & Carcinogenesis ,Aetiology ,Cancer ,Tumor microenvironment ,Innate immune system ,business.industry ,Prevention ,Mesenchymal stem cell ,General Medicine ,Environmental Exposure ,Stem Cell Research ,Cytokine ,Immunology ,Cancer research ,business - Abstract
Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.
- Published
- 2015
23. Therapeutic targeting of BRCA1-mutated breast cancers with agents that activate DNA repair
- Author
-
Elizabeth Alli, James M. Ford, Stephanie C. Casey, and David E. Solow-Cordero
- Subjects
Cancer Research ,DNA Repair ,DNA repair ,Mutant ,Breast Neoplasms ,Biology ,medicine.disease_cause ,Article ,Small Molecule Libraries ,chemistry.chemical_compound ,Germline mutation ,medicine ,Humans ,Molecular Targeted Therapy ,Cytotoxicity ,skin and connective tissue diseases ,Germ-Line Mutation ,BRCA1 Protein ,Cancer ,medicine.disease ,Molecular biology ,Oncology ,chemistry ,Tumor progression ,Cancer research ,MCF-7 Cells ,Female ,Carcinogenesis ,DNA - Abstract
Cancers due to germline mutations in the BRCA1 gene tend to lack targets for approved chemoprevention agents. This study aimed at a targeted chemoprevention strategy for BRCA1-associated malignancies. Mutant BRCA1 limits the base-excision DNA repair activity that addresses oxidative DNA damage, the accumulation of which heightens one's risk for cancer. Therefore, we conducted a high-throughput chemical screen to identify drug candidates that could attenuate the inhibitory effects of mutant BRCA1 on this repair activity, thereby describing a new class of DNA repair-activating chemopreventive agents. In the screen design, such drugs functioned by enhancing base-excision DNA repair of oxidative DNA damage in the presence of mutant BRCA1, with minimal cytotoxicity. We identified at least one new agent that decreased malignant properties associated with tumorigenesis, including anchorage-independent growth and tumor progression. This work offers a preclinical proof-of-concept for a wholly new approach to chemoprevention in carriers of BRCA1 mutations as a strategy to reduce the prevalence of BRCA1-associated malignancy. Cancer Res; 74(21); 6205–15. ©2014 AACR.
- Published
- 2014
24. Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage
- Author
-
Kuniko Horie-Inoue, Kotaro Azuma, Yasuyoshi Ouchi, Satoshi Inoue, Stephanie C. Casey, Tomohiko Urano, and Bruce Blumberg
- Subjects
Cartilage, Articular ,medicine.medical_specialty ,Aging ,Receptors, Steroid ,Knee Joint ,Science ,Osteoarthritis ,digestive system ,Bone remodeling ,Extracellular matrix ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Chondrocytes ,Dental Enamel Proteins ,Internal medicine ,Gene expression ,medicine ,Animals ,030304 developmental biology ,Mice, Knockout ,0303 health sciences ,Pregnane X receptor ,Multidisciplinary ,Chemistry ,Cartilage ,Pregnane X Receptor ,Proteins ,Osteoarthritis, Knee ,medicine.disease ,digestive system diseases ,3. Good health ,Endocrinology ,medicine.anatomical_structure ,Nuclear receptor ,Knockout mouse ,Medicine ,030217 neurology & neurosurgery ,Research Article - Abstract
© 2015 Azuma et al. Steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR), are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a) as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.
- Published
- 2014
- Full Text
- View/download PDF
25. Inactivation of MYC reverses tumorigenesis
- Author
-
Yulin Li, Dean W. Felsher, and Stephanie C. Casey
- Subjects
Senescence ,Transcriptional Activation ,Oncogene ,Angiogenesis ,Carcinogenesis ,Cell ,Genes, myc ,Mice, Transgenic ,Biology ,Oncogene Addiction ,medicine.disease_cause ,Proto-Oncogene Mas ,Article ,Disease Models, Animal ,Mice ,medicine.anatomical_structure ,Internal Medicine ,medicine ,Cancer research ,Gene silencing ,Animals ,Humans ,Epigenetics ,Gene Silencing - Abstract
The MYC proto-oncogene is an essential regulator of many normal biological programmes. MYC, when activated as an oncogene, has been implicated in the pathogenesis of most types of human cancers. MYC overexpression in normal cells is restrained from causing cancer through multiple genetically and epigenetically controlled checkpoint mechanisms, including proliferative arrest, apoptosis and cellular senescence. When pathologically activated in the correct epigenetic and genetic contexts, MYC bypasses these mechanisms and drives many of the ‘hallmark’ features of cancer, including uncontrolled tumour growth associated with DNA replication and transcription, cellular proliferation and growth, protein synthesis and altered cellular metabolism. MYC also dictates tumour cell fate by enforcing self-renewal and by abrogating cellular senescence and differentiation programmes. Moreover, MYC influences the tumour microenvironment, including activating angiogenesis and suppressing the host immune response. Provocatively, brief or even partial suppression of MYC back to its physiological levels of activation can lead to the restoration of intrinsic checkpoint mechanisms, resulting in acute and sustained tumour regression associated with tumour cells undergoing proliferative arrest, differentiation, senescence and apoptosis, as well as remodelling of the tumour microenvironment, recruitment of an immune response and shutdown of angiogenesis. Hence, tumours appear to be addicted to the MYC oncogene because of both tumour cell intrinsic and host-dependent mechanisms. MYC is important for the regulation of both the initiation and maintenance of tumorigenesis.
- Published
- 2014
26. Activation of Cre recombinase alone can induce complete tumor regression
- Author
-
Stephanie C. Casey, Yulin Li, Peter S. Choi, and Dean W. Felsher
- Subjects
Lymphoma ,Carcinogenesis ,lcsh:Medicine ,Apoptosis ,medicine.disease_cause ,Biochemistry ,Endonuclease ,Mice ,0302 clinical medicine ,Medicine ,lcsh:Science ,Promoter Regions, Genetic ,Genetics ,Mice, Knockout ,0303 health sciences ,Multidisciplinary ,biology ,Magnetic Resonance Imaging ,3. Good health ,Tumor Burden ,030220 oncology & carcinogenesis ,Research Article ,Antineoplastic Agents, Hormonal ,DNA recombination ,Cre recombinase ,03 medical and health sciences ,In vivo ,Tumor regression ,Cancer Genetics ,Animals ,Gene Disruption ,Mammalian Genetics ,Gene ,030304 developmental biology ,Integrases ,Biology and life sciences ,business.industry ,lcsh:R ,Genetic Therapy ,DNA ,medicine.disease ,Enzyme Activation ,Tamoxifen ,Mutation ,Cancer research ,biology.protein ,lcsh:Q ,Ubiquitin C ,Tumor Suppressor Protein p53 ,Gene Function ,business ,Animal Genetics ,Gene Deletion - Abstract
The Cre/loxP system is a powerful tool for generating conditional genomic recombination and is often used to examine the mechanistic role of specific genes in tumorigenesis. However, Cre toxicity due to its non-specific endonuclease activity has been a concern. Here, we report that tamoxifen-mediated Cre activation in vivo induced the regression of primary lymphomas in p53-/- mice. Our findings illustrate that Cre activation alone can induce the regression of established tumors.
- Published
- 2014
27. Oncogene withdrawal engages the immune system to induce sustained cancer regression
- Author
-
Yulin Li, Dean W. Felsher, Alice C. Fan, and Stephanie C. Casey
- Subjects
Pharmacology ,Cancer Research ,Tumor microenvironment ,Oncogene ,business.industry ,Oncogene addiction ,Immunology ,Cancer ,Tumor initiation ,Review ,MYC ,Oncogene Addiction ,medicine.disease ,Pathogenesis ,Immune system ,Oncology ,Apoptosis ,Cancer research ,Tumor immunology ,Molecular Medicine ,Immunology and Allergy ,Medicine ,business - Abstract
The targeted inactivation of a single oncogene can induce dramatic tumor regression, suggesting that cancers are "oncogene addicted." Tumor regression following oncogene inactivation has been thought to be a consequence of restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and cellular senescence. However, recent observations illustrate that oncogene addiction is highly dependent upon the host immune cells. In particular, CD4(+) helper T cells were shown to be essential to the mechanism by which MYC or BCR-ABL inactivation elicits "oncogene withdrawal." Hence, immune mediators contribute in multiple ways to the pathogenesis, prevention, and treatment of cancer, including mechanisms of tumor initiation, progression, and surveillance, but also oncogene inactivation-mediated tumor regression. Data from both the bench and the bedside illustrates that the inactivation of a driver oncogene can induce activation of the immune system that appears to be essential for sustained tumor regression.
- Published
- 2014
28. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state
- Author
-
Stephanie C. Casey, David L. Dill, Dean W. Felsher, Peter S. Choi, and Yulin Li
- Subjects
Cancer Research ,Lymphoma ,Cell Survival ,Apoptosis ,Biology ,medicine.disease_cause ,Article ,Proto-Oncogene Proteins c-myc ,Mice ,RNA interference ,microRNA ,medicine ,Tumor Cells, Cultured ,Animals ,Cell Proliferation ,Regulation of gene expression ,Gene knockdown ,Oncogene ,Apoptosis Regulator ,Cell Biology ,Tumor Burden ,Gene Expression Regulation, Neoplastic ,MicroRNAs ,Editorial ,Oncology ,Multigene Family ,Cancer research ,RNA Interference ,Carcinogenesis ,BTG1 ,Neoplasm Transplantation - Abstract
SummaryThe MYC oncogene regulates gene expression through multiple mechanisms, and its overexpression culminates in tumorigenesis. MYC inactivation reverses turmorigenesis through the loss of distinguishing features of cancer, including autonomous proliferation and survival. Here we report that MYC via miR-17-92 maintains a neoplastic state through the suppression of chromatin regulatory genes Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim. The enforced expression of miR-17-92 prevents MYC suppression from inducing proliferative arrest, senescence, and apoptosis and abrogates sustained tumor regression. Knockdown of the five miR-17-92 target genes blocks senescence and apoptosis while it modestly delays proliferative arrest, thus partially recapitulating miR-17-92 function. We conclude that MYC, via miR-17-92, maintains a neoplastic state by suppressing specific target genes.
- Published
- 2013
29. Angiocrine factors deployed by tumor vascular niche induce B cell lymphoma invasiveness and chemoresistance
- Author
-
Arash Rafii, Dean W. Felsher, Stephanie C. Casey, Michael Simons, Wayne Tam, Shahin Rafii, Zhongwei Cao, Jason M. Butler, Sharrell Lee, Koji Shido, Joseph M. Scandura, Peipei Guo, and Bi-Sen Ding
- Subjects
JAG1 ,Cancer Research ,Fibroblast Growth Factor 4 ,Genes, myc ,Cell Cycle Proteins ,Mice, Transgenic ,Receptor, Macrophage Colony-Stimulating Factor ,Biology ,Receptor, IGF Type 1 ,03 medical and health sciences ,Paracrine signalling ,Mice ,0302 clinical medicine ,Downregulation and upregulation ,medicine ,Tumor Cells, Cultured ,Animals ,Humans ,Neoplasm Invasiveness ,Serrate-Jagged Proteins ,Receptor, Fibroblast Growth Factor, Type 1 ,Receptor, Notch2 ,RNA, Small Interfering ,B-cell lymphoma ,030304 developmental biology ,Insulin-like growth factor 1 receptor ,Cell Proliferation ,0303 health sciences ,Cell growth ,CD44 ,Calcium-Binding Proteins ,Endothelial Cells ,Membrane Proteins ,Cell Biology ,medicine.disease ,Burkitt Lymphoma ,Up-Regulation ,Enzyme Activation ,Hyaluronan Receptors ,Oncology ,Drug Resistance, Neoplasm ,030220 oncology & carcinogenesis ,Cancer research ,biology.protein ,Intercellular Signaling Peptides and Proteins ,RNA Interference ,Signal transduction ,Jagged-1 Protein ,Signal Transduction - Abstract
Summary Tumor endothelial cells (ECs) promote cancer progression in ways beyond their role as conduits supporting metabolism. However, it is unknown how vascular niche-derived paracrine factors, defined as angiocrine factors, provoke tumor aggressiveness. Here, we show that FGF4 produced by B cell lymphoma cells (LCs) through activating FGFR1 upregulates the Notch ligand Jagged1 (Jag1) on neighboring ECs. In turn, upregulation of Jag1 on ECs reciprocally induces Notch2-Hey1 in LCs. This crosstalk enforces aggressive CD44 + IGF1R + CSF1R + LC phenotypes, including extranodal invasion and chemoresistance. Inducible EC-selective deletion of Fgfr1 or Jag1 in the Eμ-Myc lymphoma model or impairing Notch2 signaling in mouse and human LCs diminished lymphoma aggressiveness and prolonged mouse survival. Thus, targeting the angiocrine FGF4-FGFR1/Jag1-Notch2 loop inhibits LC aggressiveness and enhances chemosensitivity.
- Published
- 2013
30. Noncanonical Roles of the Immune System in Eliciting Oncogene Addiction
- Author
-
David I. Bellovin, Stephanie C. Casey, and Dean W. Felsher
- Subjects
Tumor microenvironment ,Oncogene ,Angiogenesis ,Effector ,Immunology ,Cancer ,Oncogenes ,Biology ,medicine.disease_cause ,Oncogene Addiction ,medicine.disease ,Models, Biological ,Article ,Immune system ,Neoplasms ,Cancer research ,medicine ,Immunology and Allergy ,Animals ,Humans ,Carcinogenesis - Abstract
Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression, illustrating that cancers can be ‘oncogene addicted’ [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases must be excessively activated to maintain a neoplastic state [ 11 ]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [ 12 , 13 ]. Oncogene addiction is the description of the dramatic and sustained regression of some cancers upon the specific inactivation of a single oncogene [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14•• , 15 , 16•• ], that can occur through tumor intrinsic [ 1 , 2 , 4 , 12 ], but also host immune mechanisms [ 17 , 18 , 19 , 20 , 21 , 22•• , 23•• ]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [ 16•• ]. Hence, immune effectors are not only critically involved in tumor prevention, initiation [ 17 , 18 , 19 ], and progression [ 20 ], but also appear to be essential to tumor regression upon oncogene inactivation [ 21 , 22•• , 23•• ]. Understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both robust tumor intrinsic and immunological responses, effectively leading to sustained tumor regression.
- Published
- 2013
31. Science and policy on endocrine disrupters must not be mixed: a reply to a 'common sense' intervention by toxicology journal editors
- Author
-
Jayne V. Brian, Georg Becher, Linda C. Giudice, Olle Söder, Poul Bjerregaard, Peter S. Ross, Susan Jobling, Martin van den Berg, Jorma Toppari, Andreas Kortenkamp, Monica Lind, Karen A. Kidd, Derek C. G. Muir, R. Thomas Zoeller, Carlos Sonnenschein, Martin Scheringer, Anders Juul, Taisen Iguchi, Heloise Frouin, Åke Bergman, Erik Ropstad, Anna-Maria Andersson, Ulla Hass, Charles R. Tyler, Carl-Gustav Bornehag, Riana Bornman, Stephanie C Casey, Ingvar Brandt, Olwenn V. Martin, N. Olea, Anne Marie Vinggaard, Shanna H. Swan, Paul Fowler, Ana M. Soto, Niels E. Skakkebæk, Laura N. Vandenberg, Roseline Ochieng, Christina Rudén, Bruce Blumberg, Karin Wiberg, and Leif Norrgren
- Subjects
medicine.medical_specialty ,Medicin och hälsovetenskap ,Health, Toxicology and Mutagenesis ,media_common.quotation_subject ,Decision Making ,Alternative medicine ,Endocrine Disruptors ,Environment ,Toxicology ,Endocrine Disruptors/toxicity ,Medical and Health Sciences ,Precautionary principle ,Scientific evidence ,Naturvetenskap ,Medicine ,media_common.cataloged_instance ,Humans ,European Union ,European union ,Endocrine disrupting chemicals ,Health ,Regulatory toxicology ,Health policy ,media_common ,business.industry ,Health Policy ,Public Health, Environmental and Occupational Health ,Common sense ,Environmental Health Science ,Environmental Pollutants/toxicity ,Environmental exposure ,Environmental Exposure ,Endocrine disrupting chemicals, Environment, Health ,Precautionary principle, Regulatory toxicology ,humanities ,Intervention (law) ,Chemistry ,Editorial ,Open Access Publishing ,Government Regulation ,Environmental Pollutants ,Toxicology/standards ,Periodicals as Topic ,business ,Natural Sciences - Abstract
The “common sense” intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about a recently published, and is in our considered opinion inaccurate and factually incorrect, editorial that has appeared in several journals in toxicology. Some of the shortcomings of the editorial are discussed in detail. We call for a better founded scientific debate which may help to overcome a polarisation of views detrimental to reaching a consensus about scientific foundations for endocrine disrupter regulation in the EU., Environmental Health, 12 (1), ISSN:1476-069X
- Published
- 2013
- Full Text
- View/download PDF
32. Bisphenol A diglycidyl ether induces adipogenic differentiation of multipotent stromal stem cells through a peroxisome proliferator-activated receptor gamma-independent mechanism
- Author
-
Amanda Janesick, Connie Chow, Xia Li, Stephanie C. Casey, Raquel Chamorro-Garcia, Bruce Blumberg, and Séverine Kirchner
- Subjects
obesity ,PPARγ ,Health, Toxicology and Mutagenesis ,Peroxisome proliferator-activated receptor ,Adipose tissue ,Estrogen receptor ,MSCs ,010501 environmental sciences ,Polymerase Chain Reaction ,01 natural sciences ,adipose-tissue ,Mice ,chemistry.chemical_compound ,Adipocyte ,Medicine and Health Sciences ,Bisphenol A diglycidyl ether ,ppar-gamma ,Cells, Cultured ,adipocyte differentiation ,chemistry.chemical_classification ,0303 health sciences ,Adipogenesis ,Life Sciences ,Cell Differentiation ,endocrine disruption ,Flow Cytometry ,BPA ,3. Good health ,Endocrine disruptor ,BADGE ,medicine.medical_specialty ,endocrine system ,Biology ,in-vitro ,perinatal exposure ,metabolic syndrome ,adipogenesis ,03 medical and health sciences ,obesogen ,3T3-L1 Cells ,Internal medicine ,medicine ,Animals ,Humans ,Benzhydryl Compounds ,030304 developmental biology ,0105 earth and related environmental sciences ,Research ,Multipotent Stem Cells ,Public Health, Environmental and Occupational Health ,PPAR gamma endocrine-disrupting chemicals ,environmental chemicals ,canned foods ,PPAR gamma ,Endocrinology ,chemistry ,13. Climate action ,Epoxy Compounds ,Obesogen - Abstract
Research Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism Raquel Chamorro-Garcia, 1, * Severine Kirchner, 1, * Xia Li, 1 Amanda Janesick, 1 Stephanie C. Casey, 1 Connie Chow, 1 and Bruce Blumberg 1,2 1 Department of Developmental and Cell Biology, and 2 Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA B ackground : Bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE), used in manufacturing coatings and resins, leach from packaging materials into food. Numerous studies suggested that BPA and BADGE may have adverse effects on human health, including the possibil- ity that exposure to such chemicals can be superimposed on traditional risk factors to initiate or exacerbate the development of obesity. BPA is a suspected obesogen, whereas BADGE, described as a peroxisome proliferator–activated receptor gamma (PPARγ) antagonist, could reduce weight gain. O bjectives : We sought to test the adipogenic effects of BADGE in a biologically relevant cell culture model. M ethods : We used multipotent mesenchymal stromal stem cells (MSCs) to study the adipogenic capacity of BADGE and BPA and evaluated their effects on adipogenesis, osteogenesis, gene expres- sion, and nuclear receptor activation. D iscussion : BADGE induced adipogenesis in human and mouse MSCs, as well as in mouse 3T3-L1 preadipocytes. In contrast, BPA failed to promote adipogenesis in MSCs, but induced adipogenesis in 3T3-L1 cells. BADGE exposure elicited an adipogenic gene expression profile, and its ability to induce adipogenesis and the expression of adipogenic genes was not blocked by known PPARγ antagonists. Neither BADGE nor BPA activated or antagonized retinoid “X” receptor (RXR) or PPARγ in transient transfection assays. C onclusions : BADGE can induce adipogenic differentiation in both MSCs and in preadipocytes at low nanomolar concentrations comparable to those that have been observed in limited human bio monitoring. BADGE probably acts through a mechanism that is downstream of, or parallel to, PPARγ. K ey words : adipogenesis, BADGE, BPA, endocrine disruption, MSCs, obesogen, PPARγ. Environ Health Perspect 120:984–989 (2012). http://dx.doi.org/10.1289/ehp.1205063 [Online 25 May Bisphenol A (BPA) is used in the synthesis of polycarbonate plastics, epoxy adhesives, and the lining of food containers. Bisphenol A diglycidyl ether (BADGE) is a synthesis prod- uct of BPA and epichlorhydrin used in the manufacture of epoxy resins, paints, and as a coating on food containers. BPA and BADGE are present in many commonly used prod- ucts including beverage containers, baby bottles, and dental composites. Both migrate from containers into foods, and are routinely ingested (Cabado et al. 2008; Cao et al. 2009). Studies of BADGE metabolism suggest that it is not a significant source of BPA (Climie et al. 1981) although BPA leaches from some BADGE-containing dental sealants (Joskow et al. 2006; Olea et al. 1996). BPA is an environmental endocrine- disrupting chemical (EDC) found in 95% of human urine samples (Calafat et al. 2008) as well as in serum, breast milk, and fat (reviewed by Rubin 2011; Taylor et al. 2011). Despite some controversy, the prevailing view in the scientific community is that BPA has impor- tant, deleterious effects in animals by acting on multiple target tissues (reviewed by Rubin 2011; Taylor et al. 2011), and BPA levels have been associated with adverse health outcomes in humans (Lang et al. 2008). Estrogenic and antiandrogenic effects of BADGE have been reported (Olea et al. 1996; Satoh et al. 2004); however, the manufacturers of BADGE have disputed any endocrine- disrupting, oncogenic, or mutagenic effects (Poole et al. 2004). BADGE and its chloro hydroxy derivatives induced proliferation of human breast cancer cells but did not bind to the estrogen receptor (Nakazawa et al. 2002). BADGE exposure caused developmental tox- icity during gestation and lactation in rats (Hyoung et al. 2007) and toxicity in cell cul- ture (Ramilo et al. 2006). Overall, the pres- ence of BADGE in food cannot be considered a health benefit and may be a health risk. Obesity is caused by complex interactions among genetic, behavioral, and environmental factors, and EDC exposure is now thought to be a risk factor for obesity (reviewed by Janesick and Blumberg 2011; La Merrill and Birnbaum 2011; Tang-Peronard et al. 2011). Our “obesogen hypothesis” proposes a link between developmental EDC exposure and obesity. Obesogens are functionally defined as chemicals that promote obesity by increas- ing the number of fat cells (and fat storage into existing fat cells) by changing the amount of calories burned at rest, by altering energy balance to favor storage of calories, and by volume altering the mechanisms through which the body regulates appetite and satiety (reviewed by Janesick and Blumberg 2011). Most evidence suggests that BPA acts as an obesogen, in vitro and in vivo. BPA induced adipocyte differentiation and adipo- genic marker genes in 3T3-L1 preadipocytes (Masuno et al. 2005). Perinatal treatment of rats (Rubin et al. 2001; Somm et al. 2009) and mice (Miyawaki et al. 2007) with low doses of BPA led to increased fat mass (reviewed by Rubin 2011). Some studies suggested that different BPA dosing regimens might not increase body weight in rats (Nunez et al. 2001; Seidlova-Wuttke et al. 2005) or mice (Ryan et al. 2010), and thus further studies are needed to clarify exactly how BPA pro- motes adipogenesis and obesity. The obesogenic properties of BADGE are yet to be thoroughly investigated. BADGE was identified as an antagonist of peroxi- some proliferator–activated receptor gamma (PPARγ) [its IC 50 (the concentration of BADGE at which 50% inhibition of the response is observed) is approximately 100 µM] that also inhibits differentiation of 3T3-L1 and 3T3‑F442A preadipocytes (Wright et al. 2000). BADGE administered orally at high doses to mice on a high-fat diet decreased tri glyceride content in white adipose tissue, skele- tal muscle, and the liver due to increased leptin (LEP) effects and increased fatty acid combus- tion and energy dissipation, thereby ameliorat- ing high-fat diet–induced obesity and insulin resistance (Yamauchi et al. 2001; Yun et al. Address correspondence to B. Blumberg, U.C. Irvine, 2011 BioSci 3, Irvine, CA 92697-2300, USA. Telephone: (949) 824-8573. Fax: (949) 824-4709. E-mail: blumberg@uci.edu *These authors contributed equally to this work. Supplemental Material is available online (http:// dx.doi.org/10.1289/ehp.1205063). This work was supported by a grant from the National Institutes of Health (ES-015849) to B.B. S.C.C. was supported by grant T32CA009054 from the National Cancer Institute. A.J. is a pre- doctoral trainee sponsored by the National Science Foundation’s Integrative Graduate Education and Research Traineeship program (NSF-IGERT) Life Chips Award, Division of Graduate Education (DGE) grant 0549479. B.B. is a named inventor on U.S. patents 5,861,274, 6,200,802, 6,815,168, and 7,250,273 related to PPARγ. The other authors declare they have no actual or potential competing financial interests. Received 5 February 2012; accepted 27 April 2012. 120 | number 7 | July 2012 • Environmental Health Perspectives
- Published
- 2012
- Full Text
- View/download PDF
33. B-1 Cell Lymphoma in Mice Lacking the Steroid and Xenobiotic Receptor, SXR
- Author
-
Gina Turco, Stephanie C. Casey, David A. Fruman, Edward L. Nelson, Matthew R. Janes, and Bruce Blumberg
- Subjects
Male ,Receptors, Steroid ,Transcription, Genetic ,medicine.medical_treatment ,Apoptosis ,Mice, SCID ,law.invention ,Xenobiotic receptor ,Mice ,Endocrinology ,law ,Lectins ,Lymphocytes ,Cells, Cultured ,Original Research ,Mice, Knockout ,ZAP-70 Protein-Tyrosine Kinase ,Protein Tyrosine Phosphatase, Non-Receptor Type 6 ,Age Factors ,NF-kappa B ,Pregnane X Receptor ,General Medicine ,Intestines ,medicine.anatomical_structure ,Female ,Signal transduction ,Lymphoma, B-Cell ,B-Lymphocyte Subsets ,Receptors, Antigen, B-Cell ,Spleen ,Biology ,CD5 Antigens ,Steroid ,medicine ,Animals ,Molecular Biology ,Cell Proliferation ,Sialic Acid Binding Immunoglobulin-like Lectins ,medicine.disease ,Lymphoma ,B-1 cell ,Immunoglobulin M ,Lymphocyte Specific Protein Tyrosine Kinase p56(lck) ,Immunology ,Cancer research ,Suppressor ,Leukocyte Common Antigens ,Lymph Nodes ,gamma-Globulins ,Neoplasm Transplantation - Abstract
The steroid and xenobiotic receptor (SXR) is a broad-specificity nuclear hormone receptor that is highly expressed in the liver and intestine, where its primary function is to regulate drug and xenobiotic metabolism. SXR is expressed at lower levels in other tissues, where little is known about its physiological functions. We previously linked SXR with immunity and inflammation by showing that SXR antagonizes the activity of nuclear factor (NF)-κB in vitro and in vivo. SXR(-/-) mice demonstrate aberrantly high NF-κB activity and overexpression of NF-κB target genes. Here we show that SXR(-/-) mice develop B cell lymphoma in an age-dependent manner. SXR(-/-) mice develop multiple hyperplastic lymphoid foci composed of B-1a cells in the intestine, spleen, lymph nodes, peritoneal cavity, and blood. In all circumstances, these lymphocytes possess cell surface and molecular characteristics of either chronic lymphocytic leukemia or non-Hodgkin's lymphoma originating from B-1 lymphocytes. These results demonstrate a novel and unsuspected role for SXR signaling in the B-1 cell compartment, establish SXR as a tumor suppressor in B-1 cells, and may provide a link between metabolism of xenobiotic compounds and lymphomagenesis.
- Published
- 2011
34. Pregnane X receptor knockout mice display osteopenia with reduced bone formation and enhanced bone resorption
- Author
-
Bruce Blumberg, Séverine Kirchner, Yasuyoshi Ouchi, Masako Ito, Stephanie C. Casey, Satoshi Inoue, Kotaro Azuma, Tomohiko Urano, and Kuniko Horie
- Subjects
medicine.medical_specialty ,Receptors, Steroid ,Mice, 129 Strain ,Bone density ,Endocrinology, Diabetes and Metabolism ,Biology ,Bone resorption ,Article ,Bone remodeling ,Phosphates ,Mice ,Endocrinology ,Bone Density ,Osteogenesis ,Internal medicine ,medicine ,Animals ,Homeostasis ,Femur ,Bone Resorption ,Bone mineral ,Mice, Knockout ,Pregnane X receptor ,Pregnane X Receptor ,medicine.disease ,Alkaline Phosphatase ,Resorption ,Osteopenia ,Radiography ,Bone Diseases, Metabolic ,Alkaline phosphatase ,Calcium ,Female - Abstract
The steroid and xenobiotic receptor (SXR) and its murine ortholog pregnane X receptor (PXR) are nuclear receptors that are expressed mainly in the liver and intestine where they function as xenobiotic sensors. In addition to its role as a xenobiotic sensor, previous studies in our laboratories and elsewhere have identified a role for SXR/PXR as a mediator of bone homeostasis. Here, we report that systemic deletion of PXR results in marked osteopenia with mechanical fragility in female mice as young as 4 months old. Bone mineral density (BMD) of PXR knockout (PXRKO) mice was significantly decreased compared with the BMD of wild-type (WT) mice. Micro-computed tomography analysis of femoral trabecular bones revealed that the three-dimensional bone volume fraction of PXRKO mice was markedly reduced compared with that of WT mice. Histomorphometrical analysis of the trabecular bones in the proximal tibia showed a remarkable reduction in bone mass in PXRKO mice. As for bone turnover of the trabecular bones, bone formation is reduced, whereas bone resorption is enhanced in PXRKO mice. Histomorphometrical analysis of femoral cortical bones revealed a larger cortical area in WT mice than that in PXRKO mice. WT mice had a thicker cortical width than PXRKO mice. Three-point bending test revealed that these morphological phenotypes actually caused mechanical fragility. Lastly, serum levels of phosphate, calcium, and alkaline phosphatase were unchanged in PXRKO mice compared with WT. Consistent with our previous results, we conclude that SXR/PXR promotes bone formation and suppresses bone resorption thus cementing a role for SXR/PXR as a key regulator of bone homeostasis.
- Published
- 2010
35. Abstract PR13: miR-17-92 mediates MYC oncogene addiction
- Author
-
David L. Dill, Stephanie C. Casey, Dean W. Felsher, Yulin Li, and Peter S. Choi
- Subjects
Cancer Research ,biology ,Oncogene ,Angiogenesis ,Apoptosis Regulator ,Oncogene Addiction ,Phenotype ,Histone ,Oncology ,microRNA ,biology.protein ,Cancer research ,Molecular Biology ,BTG1 - Abstract
The MYC oncogene is frequently overexpressed in human cancers. MYC can transcriptionally and translationally regulate the expression of thousands of genes. However, it was unclear which specific genes are responsible for MYC to maintain a neoplastic state. The microRNA cluster miR-17-92 is a major MYC target gene known to regulate proliferation, survival, and angiogenesis, which are several of the key phenotypes associated with MYC oncogene addiction. The resemblance of biological functions between MYC and miR-17-92 thus evoked the hypothesis that miR-17-92 is causally responsible for at least part of the mechanism by which MYC maintains a neoplastic state. We have found that miR-17-92 regulates multiple histone modifiers, such as Sin3b, Hbp1, Suv420h1, and Btg1, as well as the apoptosis regulator Bim, to maintain autonomous proliferation, survival, and self-renewal of MYC-driven tumors. Conversely, MYC inactivation downregulates the expression of miR-17-92 and results in the loss of neoplastic features as a consequence of restoration of senescence, apoptosis, and differentiation. Thus, the expression of miR-17-92 can dictate the cellular fates of MYC-driven tumors between survival versus apoptosis and proliferation versus senescence. Our findings provide a mechanistic insight into why tumors are dependent on or addicted to MYC. Citation Format: Yulin Li, Peter S. Choi, Stephanie C. Casey, David L. Dill, Dean W. Felsher. miR-17-92 mediates MYC oncogene addiction. [abstract]. In: Proceedings of the AACR Special Conference on Myc: From Biology to Therapy; Jan 7-10, 2015; La Jolla, CA. Philadelphia (PA): AACR; Mol Cancer Res 2015;13(10 Suppl):Abstract nr PR13.
- Published
- 2015
- Full Text
- View/download PDF
36. Abstract B02: The role of the immune system in sustained tumor regression following oncogene inactivation
- Author
-
Rachel K. Do, Dean W. Felsher, and Stephanie C. Casey
- Subjects
Antibody-dependent cell-mediated cytotoxicity ,Cancer Research ,Oncogene ,Cancer ,Biology ,medicine.disease ,medicine.disease_cause ,Molecular biology ,Lymphoma ,Pathogenesis ,Immune system ,Oncology ,Cancer cell ,medicine ,Cancer research ,Carcinogenesis ,Molecular Biology - Abstract
The MYC oncogene has been implicated in the pathogenesis of many types of human cancer. The Felsher laboratory uses a conditional Tet-off MYC mouse model to study the formation of tumors in multiple tissue types, such as lymphoma, and has demonstrated that MYC-induced tumorigenesis is reversible. We have found that many cancers are “oncogene addicted” to MYC. Our laboratory has shown that an adaptive T cell-mediated immune response is essential for sustained tumor regression upon MYC inactivation (Rakhra et al, Cancer Cell, 2010). Now, we have found evidence suggesting that upon MYC inactivation in tumors, B cells are activated and are critical to tumor regression. MYC inactivation in a tumor was associated with the induction of an antibody-mediated response against tumor cells. This humoral response could mediate the killing of tumor cells in an Antibody-Dependent Cellular Cytotoxicity (ADCC) assay. Our work suggests that MYC inactivation results in a B cell-mediated immune response and that ADCC may contribute to tumor regression. Citation Format: Stephanie C. Casey, Rachel K. Do, Dean W. Felsher. The role of the immune system in sustained tumor regression following oncogene inactivation. [abstract]. In: Proceedings of the AACR Special Conference on Myc: From Biology to Therapy; Jan 7-10, 2015; La Jolla, CA. Philadelphia (PA): AACR; Mol Cancer Res 2015;13(10 Suppl):Abstract nr B02.
- Published
- 2015
- Full Text
- View/download PDF
37. miR-17–92 explainsMYConcogene addiction
- Author
-
Peter S. Choi, Yulin Li, Stephanie C. Casey, and Dean W. Felsher
- Subjects
Senescence ,Cancer Research ,Oncogene ,Addiction ,media_common.quotation_subject ,Biology ,medicine.disease ,Oncogene Addiction ,medicine.disease_cause ,Lymphoma ,microRNA ,Cancer research ,medicine ,Molecular Medicine ,Carcinogenesis ,Author's View ,Gene ,media_common - Abstract
MYC regulates tumorigenesis by coordinating the expression of thousands of genes. We found that MYC appears to regulate the decisions between cell survival versus death and self-renewal versus senescence through the microRNA miR-17-92 cluster. Addiction to the MYC oncogene may therefore in fact be an addiction to miR-17-92.
- Published
- 2014
- Full Text
- View/download PDF
38. Abstract 2966: Targeting defective DNA repair as a novel chemoprevention strategy for BRCA1-mutated breast cancer
- Author
-
David E. Solow-Cordero, Elizabeth Alli, James M. Ford, and Stephanie C. Casey
- Subjects
Cancer Research ,DNA damage ,Mutant ,Cancer ,Biology ,medicine.disease_cause ,medicine.disease ,Molecular biology ,chemistry.chemical_compound ,Breast cancer ,Oncology ,chemistry ,Cell culture ,medicine ,Viability assay ,Carcinogenesis ,DNA - Abstract
Carriers of germline mutations in the Breast Cancer Susceptibility Gene 1 (BRCA1) have an increased risk for developing breast cancer. Unfortunately, BRCA1-mutated cancers are not amenable to current chemoprevention options, often associate with an aggressive clinical course, and thus, are in need of an effective prevention strategy. We previously found that BRCA1 plays a role in DNA base-excision repair (BER) of oxidative DNA damage, and that BRCA1-mutated breast cancers exhibit a compromised ability for BER of oxidative DNA damage. Given that excessive oxidative DNA damage leads to tumorigenesis, we hypothesized that small molecules may be used to enhance the repair of oxidative DNA damage, and in turn, prevent tumorigenesis of BRCA1-mutated breast cancer cells. First, a high-throughput chemical screen identified small molecules that enhance BER of oxidative DNA damage in the presence of mutant BRCA1. These molecules have been termed DNA repair-activating agents. At least two DNA repair-activating agents significantly enhanced BER in mutant BRCA1 but not wild-type BRCA1 cell lines. These molecules also decreased basal levels of oxidative DNA damage as determined by flow cytometry using a FITC-conjugated 8oxoG-binding protein and decreased H2O2-induced oxidative DNA damage as determined by the alkaline comet assay modified for detection of oxidized lesions. Both DNA repair-activating agents directly activated BER, rather than indirectly as a result of induction of DNA damage, as evidenced by the alkaline comet assay for DNA strand breaks. Both agents also showed no cytotoxicity at concentrations that enhanced BER of oxidative DNA damage, which is ideal for chemoprevention. Finally, at least one of the DNA repair-activating agents decreased BRCA1-associated tumorigenesis in vitro and in vivo. The DNA repair-activating agent decreased anchorage-independent growth of BRCA1-mutant/deficient cells without a significant effect on cell viability, as well as delayed tumor formation and decreased tumor burden in a dose-response manner in a xenograft mouse model. Taken together, these data suggest that enhancing DNA base-excision repair of oxidative DNA damage may be a novel strategy for the targeted chemoprevention of BRCA1-associated breast cancers. Citation Format: Elizabeth Alli, David Solow-Cordero, Stephanie C. Casey, James M. Ford. Targeting defective DNA repair as a novel chemoprevention strategy for BRCA1-mutated breast cancer. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr 2966. doi:10.1158/1538-7445.AM2014-2966
- Published
- 2014
- Full Text
- View/download PDF
39. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes
- Author
-
Séverine Kirchner, Bruce Blumberg, Tiffany Kieu, Connie Chow, and Stephanie C. Casey
- Subjects
Male ,medicine.medical_specialty ,Cellular differentiation ,Endocrinology, Diabetes and Metabolism ,Clinical Biochemistry ,Adipose tissue ,Peroxisome proliferator-activated receptor ,White adipose tissue ,Biology ,Retinoid X receptor ,Polymerase Chain Reaction ,Biochemistry ,Article ,Mice ,Endocrinology ,Pregnancy ,Internal medicine ,Adipocytes ,medicine ,Animals ,Humans ,Molecular Biology ,Cells, Cultured ,Cell Proliferation ,chemistry.chemical_classification ,Multipotent Stem Cells ,Biochemistry (medical) ,Cell Differentiation ,General Medicine ,Flow Cytometry ,Mice, Inbred C57BL ,chemistry ,Adipogenesis ,Multipotent Stem Cell ,Female ,Trialkyltin Compounds ,Stem cell ,Obesogen - Abstract
The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time.
- Published
- 2010
- Full Text
- View/download PDF
40. Pregnane X receptor knockout mice display aging-dependent wearing of articular cartilage.
- Author
-
Kotaro Azuma, Stephanie C Casey, Tomohiko Urano, Kuniko Horie-Inoue, Yasuyoshi Ouchi, Bruce Blumberg, and Satoshi Inoue
- Subjects
Medicine ,Science - Abstract
Steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR), are nuclear receptors that are expressed at high levels in the liver and the intestine where they function as xenobiotic sensors that induce expression of genes involved in detoxification and drug excretion. Recent evidence showed that SXR and PXR are also expressed in bone tissue where they mediate bone metabolism. Here we report that systemic deletion of PXR results in aging-dependent wearing of articular cartilage of knee joints. Histomorphometrical analysis showed remarkable reduction of width and an enlarged gap between femoral and tibial articular cartilage in PXR knockout mice. We hypothesized that genes induced by SXR in chondrocytes have a protective effect on articular cartilage and identified Fam20a (family with sequence similarity 20a) as an SXR-dependent gene induced by the known SXR ligands, rifampicin and vitamin K2. Lastly, we demonstrated the biological significance of Fam20a expression in chondrocytes by evaluating osteoarthritis-related gene expression of primary articular chondrocytes. Consistent with epidemiological findings, our results indicate that SXR/PXR protects against aging-dependent wearing of articular cartilage and that ligands for SXR/PXR have potential role in preventing osteoarthritis caused by aging.
- Published
- 2015
- Full Text
- View/download PDF
41. Activation of Cre recombinase alone can induce complete tumor regression.
- Author
-
Yulin Li, Peter S Choi, Stephanie C Casey, and Dean W Felsher
- Subjects
Medicine ,Science - Abstract
The Cre/loxP system is a powerful tool for generating conditional genomic recombination and is often used to examine the mechanistic role of specific genes in tumorigenesis. However, Cre toxicity due to its non-specific endonuclease activity has been a concern. Here, we report that tamoxifen-mediated Cre activation in vivo induced the regression of primary lymphomas in p53-/- mice. Our findings illustrate that Cre activation alone can induce the regression of established tumors.
- Published
- 2014
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.