1. Effects of hypoglycaemia on working memory and regional cerebral blood flow in type 1 diabetes: a randomised, crossover trial.
- Author
-
Gejl M, Gjedde A, Brock B, Møller A, van Duinkerken E, Haahr HL, Hansen CT, Chu PL, Stender-Petersen KL, and Rungby J
- Subjects
- Adult, Cognition physiology, Cross-Over Studies, Female, Humans, Male, Middle Aged, Young Adult, Cerebrovascular Circulation physiology, Diabetes Mellitus, Type 1 physiopathology, Hypoglycemia physiopathology, Memory, Short-Term physiology
- Abstract
Aims/hypothesis: The aim of this randomised, crossover trial was to compare cognitive functioning and associated brain activation patterns during hypoglycaemia (plasma glucose [PG] just below 3.1 mmol/l) and euglycaemia in individuals with type 1 diabetes mellitus., Methods: In this patient-blinded, crossover study, 26 participants with type 1 diabetes mellitus attended two randomised experimental visits: one hypoglycaemic clamp (PG 2.8 ± 0.2 mmol/l, approximate duration 55 min) and one euglycaemic clamp (PG 5.5 mmol/l ± 10%). PG levels were maintained by hyperinsulinaemic glucose clamping. Cognitive functioning was assessed during hypoglycaemia and euglycaemia conditions using a modified version of the digit symbol substitution test (mDSST) and control DSST (cDSST). Simultaneously, regional cerebral blood flow (rCBF) was measured in pre-specified brain regions by six H
2 15 O-positron emission tomographies (PET) per session., Results: Working memory was impaired during hypoglycaemia as indicated by a statistically significantly lower mDSST score (estimated treatment difference [ETD] -0.63 [95% CI -1.13, -0.14], p = 0.014) and a statistically significantly longer response time (ETD 2.86 s [7%] [95% CI 0.67, 5.05], p = 0.013) compared with euglycaemia. During hypoglycaemia, mDSST task performance was associated with increased activity in the frontal lobe regions, superior parietal lobe and thalamus, and decreased activity in the temporal lobe regions (p < 0.05). Working memory activation (mDSST - cDSST) statistically significantly increased blood flow in the striatum during hypoglycaemia (ETD 0.0374% [95% CI 0.0157, 0.0590], p = 0.002)., Conclusions/interpretation: During hypoglycaemia (mean PG 2.9 mmol/l), working memory performance was impaired. Altered performance was associated with significantly increased blood flow in the striatum, a part of the basal ganglia implicated in regulating motor functions, memory, language and emotion., Trial Registration: NCT01789593, clinicaltrials.gov FUNDING: This study was funded by Novo Nordisk.- Published
- 2018
- Full Text
- View/download PDF