Matthew R. Becker, I. Ferrero, Matt J. Jarvis, Yanxi Zhang, B. Flaugher, Scott Dodelson, A. Choi, Enrique Gaztanaga, M. March, M. Carrasco Kind, K. Honscheid, Maria E. S. Pereira, S. Desai, Brian Yanny, David J. Brooks, V. Scarpine, Eli S. Rykoff, Erin Sheldon, Robert Morgan, Joe Zuntz, Antonella Palmese, Sebastian Grandis, M. A. G. Maia, J. Annis, Samuel Hinton, K. Herner, J. Carretero, Alexandra Amon, Sunayana Bhargava, G. Gutierrez, I. Harrison, I. Sevilla-Noarbe, S. Allam, Robert A. Gruendl, R. P. Rollins, E. Suchyta, A. A. Plazas, M. Soares-Santos, G. Tarle, Jochen Weller, J. Myles, N. Kuropatkin, Felipe Menanteau, Kyler Kuehn, K. D. Eckert, T. N. Varga, A. Carnero Rosell, L. N. da Costa, J. McCullough, J. De Vicente, Chun-Hao To, E. J. Sanchez, M. Costanzi, F. Paz-Chinchón, Peter Melchior, Daniel Thomas, S. Everett, M. E. C. Swanson, Stella Seitz, A. K. Romer, Tesla E. Jeltema, W. G. Hartley, S. Serrano, Ramon Miquel, J. P. Dietrich, Juan Garcia-Bellido, Michael Troxel, Michel Aguena, Eduardo Rozo, M. Smith, Daniel Gruen, H. T. Diehl, Niall MacCrann, E. Bertin, J. Gschwend, Gary Bernstein, Michael Schubnell, D. W. Gerdes, Varga, T N, Gruen, D, Seitz, S, Maccrann, N, Sheldon, E, Hartley, W G, Amon, A, Choi, A, Palmese, A, Zhang, Y, Becker, M R, Mccullough, J, Rozo, E, Rykoff, E S, To, C, Grandis, S, Bernstein, G M, Dodelson, S, Eckert, K, Everett, S, Gruendl, R A, Harrison, I, Herner, K, Rollins, R P, Sevilla-Noarbe, I, Troxel, M A, Yanny, B, Zuntz, J, Diehl, H T, Jarvis, M, Aguena, M, Allam, S, Annis, J, Bertin, E, Bhargava, S, Brooks, D, Carnero , Rosell, A, Carrasco , Kind, M, Carretero, J, Costanzi, M, da , Costa, L N, Pereira, M E S, De , Vicente, J, Desai, S, Dietrich, J P, Ferrero, I, Flaugher, B, García-Bellido, J, Gaztanaga, E, Gerdes, D W, Gschwend, J, Gutierrez, G, Hinton, S R, Honscheid, K, Jeltema, T, Kuehn, K, Kuropatkin, N, Maia, M A G, March, M, Melchior, P, Menanteau, F, Miquel, R, Morgan, R, Myles, J, Paz-Chinchón, F, Plazas, A A, Romer, A K, Sanchez, E, Scarpine, V, Schubnell, M, Serrano, S, Smith, M, Soares-Santos, M, Suchyta, E, Swanson, M E C, Tarle, G, Thomas, D, Weller, J, UAM. Departamento de Física Teórica, Science and Technology Facilities Council (UK), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), European Commission, Generalitat de Catalunya, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
T. N. Varga et al., We develop a novel data-driven method for generating synthetic optical observations of galaxy clusters. In cluster weak lensing, the interplay between analysis choices and systematic effects related to source galaxy selection, shape measurement, and photometric redshift estimation can be best characterized in end-to-end tests going from mock observations to recovered cluster masses. To create such test scenarios, we measure and model the photometric properties of galaxy clusters and their sky environments from the Dark Energy Survey Year 3 (DES Y3) data in two bins of cluster richness λ∈[30;45) , λ∈[45;60) and three bins in cluster redshift (z∈[0.3;0.35) , z∈[0.45;0.5) and z∈[0.6;0.65) . Using deep-field imaging data, we extrapolate galaxy populations beyond the limiting magnitude of DES Y3 and calculate the properties of cluster member galaxies via statistical background subtraction. We construct mock galaxy clusters as random draws from a distribution function, and render mock clusters and line-of-sight catalogues into synthetic images in the same format as actual survey observations. Synthetic galaxy clusters are generated from real observational data, and thus are independent from the assumptions inherent to cosmological simulations. The recipe can be straightforwardly modified to incorporate extra information, and correct for survey incompleteness. New realizations of synthetic clusters can be created at minimal cost, which will allow future analyses to generate the large number of images needed to characterize systematic uncertainties in cluster mass measurements., This research was supported by the Excellence Cluster ORIGINS which is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strat- egy –EXC-2094-390783311. The calculations have been in part carried out on the computing facilities of the Computational Center for Particle and Astrophysics (C2PAP). This w ork w as supported by the Department of Energy, Laboratory Directed Research and Development program at SLAC National Accelerator Laboratory, under contract DE-AC02-76SF00515 and as part of the P anofsk y Fellowship awarded to DG. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomput- ing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Te xas A&M Univ ersity, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana- Champaign, the Institut de Ciencies de l’Espai (IEEC/CSIC), the Institut de Fisica d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universit ¨at M ¨unchen and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory , Stanford University , the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. The DES data management system is supported by the Na- tional Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV -2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA programme of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.