144 results on '"Stefanie Hahmann"'
Search Results
2. EUROGRAPHICS 2022: Tutorials Frontmatter.
- Author
-
Stefanie Hahmann and Gustavo A. Patow
- Published
- 2022
- Full Text
- View/download PDF
3. 3D Design Of Ancient Garments.
- Author
-
Mélanie Carrière 0002, Mélina Skouras, and Stefanie Hahmann
- Published
- 2019
- Full Text
- View/download PDF
4. Approximate Reconstruction of 3D Scenes From Bas-Reliefs.
- Author
-
Pierre Casati, Rémi Ronfard, and Stefanie Hahmann
- Published
- 2019
- Full Text
- View/download PDF
5. A 2D shape structure for decomposition and part similarity.
- Author
-
Kathryn Leonard, Géraldine Morin, Stefanie Hahmann, and Axel Carlier
- Published
- 2016
- Full Text
- View/download PDF
6. Smooth Interpolation of Curve Networks with Surface Normals.
- Author
-
Tibor Stanko, Stefanie Hahmann, Georges-Pierre Bonneau, and Nathalie Saguin-Sprynski
- Published
- 2016
- Full Text
- View/download PDF
7. Real-time sound synthesis for paper material based on geometric analysis.
- Author
-
Camille Schreck, Damien Rohmer, Doug L. James, Stefanie Hahmann, and Marie-Paule Cani
- Published
- 2016
8. Morphorider: Acquisition and reconstruction of 3D curves with mobile sensors.
- Author
-
Tibor Stanko, Nathalie Saguin-Sprynski, Laurent Jouanet, Stefanie Hahmann, and Georges-Pierre Bonneau
- Published
- 2017
- Full Text
- View/download PDF
9. First person sketch-based terrain editing.
- Author
-
Flora Ponjou Tasse, Arnaud Emilien, Marie-Paule Cani, Stefanie Hahmann, and Adrien Bernhardt
- Published
- 2014
10. Idealized Models for FEA Derived from Generative Modeling Processes Based on Extrusion Primitives.
- Author
-
Flavien Boussuge, Jean-Claude Léon, Stefanie Hahmann, and Lionel Fine
- Published
- 2013
- Full Text
- View/download PDF
11. Towards Developable Products from a Sketch.
- Author
-
Amélie Fondevilla, Adrien Bousseau, Damien Rohmer, Stefanie Hahmann, and Marie-Paule Cani
- Published
- 2017
- Full Text
- View/download PDF
12. Folded Paper Geometry from 2D Pattern and 3D Contour.
- Author
-
Damien Rohmer, Marie-Paule Cani, Stefanie Hahmann, and Boris Thibert
- Published
- 2011
- Full Text
- View/download PDF
13. Active Geometry for Game Characters.
- Author
-
Damien Rohmer, Stefanie Hahmann, and Marie-Paule Cani
- Published
- 2010
- Full Text
- View/download PDF
14. Methods for Feature Detection in Point Clouds.
- Author
-
Christopher Weber, Stefanie Hahmann, and Hans Hagen
- Published
- 2010
- Full Text
- View/download PDF
15. Sharp Feature Detection in Point Clouds.
- Author
-
Christopher Weber, Stefanie Hahmann, and Hans Hagen
- Published
- 2010
- Full Text
- View/download PDF
16. Exact volume preserving skinning with shape control.
- Author
-
Damien Rohmer, Stefanie Hahmann, and Marie-Paule Cani
- Published
- 2009
- Full Text
- View/download PDF
17. Bicubic G1 Interpolation of Irregular Quad Meshes Using a 4-Split.
- Author
-
Stefanie Hahmann, Georges-Pierre Bonneau, and Baptiste Caramiaux
- Published
- 2008
- Full Text
- View/download PDF
18. Deforming surface simplification based on dynamic geometry sampling.
- Author
-
Frédéric Payan, Stefanie Hahmann, and Georges-Pierre Bonneau
- Published
- 2007
- Full Text
- View/download PDF
19. Smooth Adaptive Fitting of 3D Models Using Hierarchical Triangular Splines.
- Author
-
Alex Yvart, Stefanie Hahmann, and Georges-Pierre Bonneau
- Published
- 2005
- Full Text
- View/download PDF
20. Geometric construction of auxetic metamaterials
- Author
-
Georges-Pierre Bonneau, Johana Marku, Stefanie Hahmann, Models and Algorithms for Visualization and Rendering (MAVERICK), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Authoring and directing story worlds (ANIMA), and European Project: 862025,ADAM^2
- Subjects
Auxetics ,Statistical validation ,Metamaterial ,020207 software engineering ,02 engineering and technology ,Poisson distribution ,Computer Graphics and Computer-Aided Design ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,symbols.namesake ,0202 electrical engineering, electronic engineering, information engineering ,symbols ,020201 artificial intelligence & image processing ,Development (differential geometry) ,Pruning (decision trees) ,Pruning algorithm ,Algorithm - Abstract
(Eurographics 2021); International audience; This paper is devoted to a category of metamaterials called auxetics, identified by their negative Poisson's ratio. Our work consists in exploring geometrical strategies to generate irregular auxetic structures. More precisely we seek to reduce the Poisson's ratio $\nu$, by pruning an irregular network based solely on geometric criteria. We introduce a strategy combining a pure geometric pruning algorithm followed by a physics-based testing phase to determine the resulting Poisson's ratio of our structures. We propose an algorithm that generates sets of irregular auxetic networks.Our contributions include geometrical characterization of auxetic networks, development of a pruning strategy, generation of auxetic networks with low Poisson's ratio, as well as validation of our approach. We provide statistical validation of our approach on large sets of irregular networks, and we additionally laser-cut auxetic networks in sheets of rubber. The findings reported here show that it is possible to reduce the Poisson's ratio by geometric pruning, and that we can generate irregular auxetic networks at lower processing times than a physics-based approach.
- Published
- 2021
21. Subdivision Invariant Polynomial Interpolation.
- Author
-
Stefanie Hahmann, Georges-Pierre Bonneau, and Alex Yvart
- Published
- 2002
- Full Text
- View/download PDF
22. Polyhedral modeling.
- Author
-
Georges-Pierre Bonneau and Stefanie Hahmann
- Published
- 2000
- Full Text
- View/download PDF
23. Localizing the 4-Split Method for G1 Free-Form Surface Fitting.
- Author
-
Stefanie Hahmann, Georges-Pierre Bonneau, and Riadk Taleb
- Published
- 1999
- Full Text
- View/download PDF
24. Computational Design of Laser-Cut Bending-Active Structures
- Author
-
Emmanuel Rodriguez, Georges-Pierre Bonneau, Stefanie Hahmann, Mélina Skouras, Authoring and directing story worlds (ANIMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Models and Algorithms for Visualization and Rendering (MAVERICK), and European Project: 862025,ADAM^2
- Subjects
active bending ,laser-cutting ,computational design ,inverse design ,computational fabrication ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,metamaterial ,Computer Graphics and Computer-Aided Design ,Industrial and Manufacturing Engineering ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Computer Science Applications - Abstract
Best Paper Award at Solid and Physical Modeling 2022; International audience; We propose a method to automatically design bending-active structures, made of wood, whose silhouettes at equilibrium match desired target curves. Our approach is based on the use of a parametric pattern that is regularly laser-cut on the structure and that allows us to locally modulate the bending stiffness of the material. To make the problem tractable, we rely on a two-scale approach where we first compute the mapping between the average mechanical properties of periodically laser-cut samples of mdf wood, treated here as metamaterials, and the stiffness parameters of a reduced 2D model; then, given an input target shape, we automatically select the parameters of this reduced model that give us the desired silhouette profile. We validate our method both numerically and experimentally by fabricating a number of full scale structures of varied target shapes.
- Published
- 2022
- Full Text
- View/download PDF
25. Stability Conditions for Free Form Surfaces.
- Author
-
Hans Hagen and Stefanie Hahmann
- Published
- 1998
- Full Text
- View/download PDF
26. Improvement of Surfaces.
- Author
-
Stefanie Hahmann
- Published
- 1996
- Full Text
- View/download PDF
27. BLaC-Wavelets: A Multiresolution Analysis With Non-Nested Spaces.
- Author
-
Georges-Pierre Bonneau, Stefanie Hahmann, and Gregory M. Nielson
- Published
- 1996
- Full Text
- View/download PDF
28. Stability Features for Free Form Surfaces.
- Author
-
Hans Hagen and Stefanie Hahmann
- Published
- 1995
29. Visualization of Deformation Tensor Fields.
- Author
-
Hans Hagen, Stefanie Hahmann, and Henrik Weimer
- Published
- 1994
30. Numerical Aspects of Stability Investigations on Surfaces.
- Author
-
Stefanie Hahmann and Hans Hagen
- Published
- 1994
31. Feature Lines Modification Based on As-Stiff-As-Needed Surface Deformation
- Author
-
Youna Le Vaou, Matthieu Mika, Jean-Claude Léon, Stéphane Masfrand, Stefanie Hahmann, Authoring and directing story worlds (ANIMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Calcul des Variations, Géométrie, Image (CVGI), Laboratoire Jean Kuntzmann (LJK), Université Grenoble Alpes (UGA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), and Groupe PSA - Centre Technique de Vélizy [Vélizy-Villacoublay]
- Subjects
Surface (mathematics) ,physicalbased deformation ,Computer science ,Traction (engineering) ,Boundary (topology) ,Mechanical engineering ,02 engineering and technology ,Deformation (meteorology) ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,01 natural sciences ,Industrial and Manufacturing Engineering ,Computer aided design CAD ,0202 electrical engineering, electronic engineering, information engineering ,Polygon mesh ,ComputingMethodologies_COMPUTERGRAPHICS ,020207 software engineering ,aesthetic design ,Compression (physics) ,Computer Graphics and Computer-Aided Design ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,0104 chemical sciences ,Computer Science Applications ,010404 medicinal & biomolecular chemistry ,Feature (computer vision) ,feature lines ,Line (geometry) ,mesh deformation - Abstract
International audience; Aesthetic surface mesh modification, guided by a deforming feature line, is still a challenging task. Whereas most existing surface deformation methods work well when the new surface is stretched or isometrically deformed, in case of areas subjected to compression, unwanted bulging may appear. This configuration typically appears when a designer slides a feature line along the input surface. In this paper, we present a new approach for feature line modification solving the surface bulging problem. We consider physically-based deformation methods applied to surface meshes and characterize configurations that produce compression loading from a mechanical standpoint. Then, the deformation area is decomposed into two sub-domains with a boundary modification of the one subjected to compression loading. Thus, during a subsequent deformation, this sub-domain no longer undergoes a compression loading but rather a traction loading, which ultimately prevents bulging. This transformation looks like a retraction of this surface area and a corresponding processing pipeline is set up. Our feature line modification method is intuitive to use and runs interactively, making it attractive to be used during design reviews in immersive environments. Industrial examples and comparisons with state-of-theart physically-based deformation methods validate the proposed approach.
- Published
- 2021
32. Stability Concept for Surfaces.
- Author
-
Hans Hagen and Stefanie Hahmann
- Published
- 1993
33. Generalized Focal Surfaces: A New Method for Surface Interrogation.
- Author
-
Hans Hagen and Stefanie Hahmann
- Published
- 1992
- Full Text
- View/download PDF
34. Curve and Surface Interrogation.
- Author
-
Hans Hagen, Stefanie Hahmann, Thomas Schreiber, Ernst Gschwind, Burkard Wördenweber, and Yasuo Nakajima
- Published
- 1991
35. 08221 Abstracts Collection - Geometric Modeling.
- Author
-
Gerald E. Farin, Stefanie Hahmann, Jörg Peters 0001, and Wenping Wang
- Published
- 2008
36. 08221 Summary - Geometric Modeling.
- Author
-
Gerald E. Farin, Stefanie Hahmann, Jörg Peters 0001, and Wenping Wang
- Published
- 2008
37. 05221 Report of the Dagstuhl seminar on - Geometric Modelling.
- Author
-
Stefanie Hahmann, Guido Brunnett, Gerald E. Farin, and Ron Goldman 0002
- Published
- 2005
38. Fashion Transfer: Dressing 3D Characters from Stylized Fashion Sketches
- Author
-
Marie-Paule Cani, Amélie Fondevilla, Stefanie Hahmann, Damien Rohmer, Adrien Bousseau, Structural Models and Tools in Computer Graphics (IRIT-STORM), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Authoring and directing story worlds (ANIMA), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), GRAPHics and DEsign with hEterogeneous COntent (GRAPHDECO), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), ANR-19-CE38-0009,Structures,Structures: hierarchical motion representation for stylized rendering(2019), European Project: 714221,H2020 Pilier ERC,ERC-2016-STG-714221,D3(2017), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, and Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
0209 industrial biotechnology ,Fashion design ,business.industry ,Computer science ,Character (computing) ,One-to-many ,020207 software engineering ,02 engineering and technology ,Clothing ,Computer Graphics and Computer-Aided Design ,Sketch ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Style (sociolinguistics) ,Key (music) ,Silhouette ,020901 industrial engineering & automation ,Human–computer interaction ,0202 electrical engineering, electronic engineering, information engineering ,business ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
International audience; Fashion design often starts with hand-drawn, expressive sketches that communicate the essence of a garment over idealized human bodies. We propose an approach to automatically dress virtual characters from such input, previously complemented with user-annotations. In contrast to prior work requiring users to draw garments with accurate proportions over each virtual character to be dressed, our method follows a style transfer strategy : the information extracted from a single, annotated fashion sketch can be used to inform the synthesis of one to many new garment(s) with similar style, yet different proportions. In particular, we define the style of a loose garment from its silhouette and folds, which we extract from the drawing. Key to our method is our strategy to extract both shape and repetitive patterns of folds from the 2D input. As our results show, each input sketch can be used to dress a variety of characters of different morphologies, from virtual humans to cartoon-style characters.
- Published
- 2021
- Full Text
- View/download PDF
39. Geometric Modelling (Dagstuhl Seminar 02201)
- Author
-
Guido Brunnett and Gerald Farin and Ron Goldman and Stefanie Hahmann, Brunnett, Guido, Farin, Gerald, Goldman, Ron, Hahmann, Stefanie, Guido Brunnett and Gerald Farin and Ron Goldman and Stefanie Hahmann, Brunnett, Guido, Farin, Gerald, Goldman, Ron, and Hahmann, Stefanie
- Published
- 2021
- Full Text
- View/download PDF
40. First Person Sketch-based Terrain Editing
- Author
-
Arnaud Emilien, Marie-Paule Cani, Adrien Bernhardt, Stefanie Hahmann, Flora Ponjou Tasse, Computer Laboratory [Cambridge], University of Cambridge [UK] (CAM), Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Département d'Informatique et de Recherche Opérationnelle [Montreal] (DIRO), Université de Montréal (UdeM), European Project: 291184,EC:FP7:ERC,ERC-2011-ADG_20110209,EXPRESSIVE(2012), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), and Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Subjects
business.industry ,Computer science ,media_common.quotation_subject ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,020207 software engineering ,Terrain ,02 engineering and technology ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,GeneralLiterature_MISCELLANEOUS ,Sketch ,First person ,020204 information systems ,Computer graphics (images) ,Perception ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,Artificial intelligence ,business ,ComputingMethodologies_COMPUTERGRAPHICS ,media_common - Abstract
International audience; We present a new method for first person sketch-based editing of terrain models. As in usual artistic pictures, the input sketch depicts complex silhouettes with cusps and T-junctions, which typically correspond to non-planar curves in 3D. After analysing depth constraints in the sketch based on perceptual cues, our method best matches the sketched silhouettes with silhouettes or ridges of the input terrain. A specific deformation algorithm is then applied to the terrain, enabling it to exactly match the sketch from the given perspective view, while insuring that none of the user-defined silhouettes is hidden by another part of the terrain. As our results show, this method enables users to easily personalize an existing terrain, while preserving its plausibility and style.
- Published
- 2020
41. Shape from sensors: Curve networks on surfaces from 3D orientations
- Author
-
Nathalie Saguin-Sprynski, Tibor Stanko, Georges-Pierre Bonneau, Stefanie Hahmann, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Models and Algorithms for Visualization and Rendering (MAVERICK ), and European Project: 291184,EC:FP7:ERC,ERC-2011-ADG_20110209,EXPRESSIVE(2012)
- Subjects
Cell complex ,Topology (electrical circuits) ,010103 numerical & computational mathematics ,02 engineering and technology ,shape acquisition ,01 natural sciences ,curve networks ,Set (abstract data type) ,surface reconstruction ,Inertial measurement unit ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,0101 mathematics ,Mathematics ,Orientation (computer vision) ,business.industry ,General Engineering ,020207 software engineering ,inertial sensors ,Computer Graphics and Computer-Aided Design ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Human-Computer Interaction ,Artificial intelligence ,Noise (video) ,3D sketching ,business ,Shape reconstruction ,Surface reconstruction - Abstract
International audience; We present a novel framework for acquisition and reconstruction of 3D curves using orientations provided by inertial sensors. While the idea of sensor shape reconstruction is not new, we present the first method for creating well-connected networks with cell complex topology using only orientation and distance measurements and a set of user- defined constraints. By working directly with orientations, our method robustly resolves problems arising from data inconsistency and sensor noise. Although originally designed for reconstruction of physical shapes, the framework can be used for “sketching” new shapes directly in 3D space. We test the performance of the method using two types of acquisition devices: a standard smartphone, and a custom-made device.
- Published
- 2017
42. Length Constrained Multiresolution Deformation for Surface Wrinkling.
- Author
-
Basile Sauvage, Stefanie Hahmann, and Georges-Pierre Bonneau
- Published
- 2006
- Full Text
- View/download PDF
43. Foreword to the Special Section on Shape Modeling International 2018
- Author
-
Stefanie Hahmann, Evangelos Kalogerakis, and Abel J. P. Gomes
- Subjects
Human-Computer Interaction ,Engineering drawing ,Computer science ,0202 electrical engineering, electronic engineering, information engineering ,General Engineering ,Special section ,020207 software engineering ,020201 artificial intelligence & image processing ,02 engineering and technology ,Computer Graphics and Computer-Aided Design - Published
- 2018
44. As-Stiff-As-Needed Surface DeformationCombining ARAP Energy with an Anisotropic Material
- Author
-
Jean-Claude Léon, Stéphane Masfrand, Matthieu Mika, Youna Le Vaou, Stefanie Hahmann, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Groupe PSA - Centre Technique de Vélizy [Vélizy-Villacoublay], and Authoring and directing story worlds (ANIMA)
- Subjects
Surface (mathematics) ,0209 industrial biotechnology ,Computer science ,Mechanical engineering ,Rigidity (psychology) ,anisotropy ,02 engineering and technology ,Deformation (meteorology) ,Edge (geometry) ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Orthotropic material ,Industrial and Manufacturing Engineering ,stiffness ,020901 industrial engineering & automation ,0202 electrical engineering, electronic engineering, information engineering ,medicine ,Point (geometry) ,Structural mechanics ,Stiffness ,020207 software engineering ,[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering ,Computer Graphics and Computer-Aided Design ,design review ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Computer Science Applications ,shape design ,shape deformation ,medicine.symptom ,as-rigid-as-possible - Abstract
International audience; The creation of man-made shapes can be seen as the exploration of designers’ ‘Mental Shape Space’, often supported by design reviews. To improve communication among the designers during these reviews, we introduce a new physically-based method to intuitively deform man-made shapes. This method is based on as-rigid-as possible (ARAP) shape deformation methods, known to offer a direct surface manipulation and to generate visually pleasant shapes by minimizing local deviations from rigidity. However, the organic character of ARAP shape deformations leads to undesired effects, such as surface collapsing or bulging because of an inappropriate stiffness model over the object. In this paper, we first link the designers’ needs to ARAP handle-based variational mesh deformation processes. Then, we study and characterize the ARAP energy and its variants from a structural mechanics point of view. Our insight is that controlling the material stiffness could prevent the undesirable organic effects. Yet, we shed light on the fact that none of the ARAP-based methods offers an appropriate stiffness distribution over the object from a mechanical standpoint. We do so by introducing an appropriate anisotropic material, called orthotropic material, to improve the stiffness distribution over the surface and its deformation behavior for man-made shapes. This material is associated with a membrane-like structural behavior to further improve the stiffness distribution. Thanks to these settings, we derive a robust and intuitive deformation process that produces an anisotropic mesh deformation based on new edge weights in the ARAP formulation. The benefits of our new method are finally illustrated by typical design examples from the automotive industry and other man-made shapes.
- Published
- 2020
45. A Salience Measure for 3D Shape Decomposition and Sub-parts Classification
- Author
-
Axel Carlier, Géraldine Morin, Kathryn Leonard, Stefanie Hahmann, Thibault Blanc-Beyne, Real Expression Artificial Life (IRIT-REVA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Ecole Nationale Supérieure d'Electrotechnique, d'Electronique, d'Informatique, d'Hydraulique et de Télécommunications (ENSEEIHT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT), Occidental College, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut polytechnique de Grenoble (FRANCE), Institut National de la Recherche en Informatique et en Automatique - INRIA (FRANCE), Université Grenoble Alpes - UGA (FRANCE), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Occidental College - OXY (USA), Laboratoire Jean Kuntzmann - LJK (Grenoble, France), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Computer science ,Computation ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,shape analysis ,02 engineering and technology ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,medial axis ,Piecewise linear function ,Medial axis ,Salience (neuroscience) ,0202 electrical engineering, electronic engineering, information engineering ,Salience measure ,Synthèse d'image et réalité virtuelle ,ComputingMethodologies_COMPUTERGRAPHICS ,WEDF ,business.industry ,020207 software engineering ,Pattern recognition ,Perceptual salience ,part hierarchy ,Computer Graphics and Computer-Aided Design ,Hierarchical decomposition ,Shape analysis ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Part hierarchy ,Modeling and Simulation ,020201 artificial intelligence & image processing ,Geometry and Topology ,Artificial intelligence ,3D shape decomposition ,business ,Software ,salience measure ,Shape analysis (digital geometry) - Abstract
International audience; This paper introduces a measure of significance on a curve skeleton of a 3D piecewise linear shape mesh, allowing the computation of both the shape's parts and their saliency. We begin by reformulating three existing pruning measures into a non-linear PCA along the skeleton. From this PCA, we then derive a volume-based salience measure, the 3D WEDF, that determines the relative importance to the global shape of the shape part associated to a point of the skeleton. First, we provide robust algorithms for computing the 3D WEDF on a curve skeleton, independent on the number of skeleton branches. Then, we cluster the WEDF values to partition the curve skeleton, and coherently map the decomposition to the associated surface mesh. Thus, we develop an unsupervised hierarchical decomposition of the mesh faces into visually meaningful shape regions that are ordered according to their degree of perceptual salience. The shape analysis tools introduced in this paper are important for many applications including shape comparison, editing, and compression.
- Published
- 2018
46. Morphorider: a new way for Structural Monitoring via the shape acquisition with a mobile device equipped with an inertial node of sensors
- Author
-
Tibor Stanko, Nathalie Saguin-Sprynski, Laurent Jouanet, Stefanie Hahmann, Georges-Pierre Bonneau, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Models and Algorithms for Visualization and Rendering (MAVERICK ), and Hahmann, Stefanie
- Subjects
[INFO.INFO-CG] Computer Science [cs]/Computational Geometry [cs.CG] ,[INFO.INFO-GR] Computer Science [cs]/Graphics [cs.GR] ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] - Abstract
International audience; We introduce a new kind of monitoring device, allowing the shape acquisition of a structure via a single mobile node of inertial sensors and an odometer. Previous approaches used devices placed along a network with fixed connectivity between the sensor nodes (lines, grid). When placed onto a shape, this sensor network provides local surface orientations along a curve network on the shape, but its absolute position in the world space is unknown. The new mobile device provides a novel way of structures monitoring: the shape can be scanned regularly, and following the shape or some specific parameters along time may afford the detection of early signs of failure. Here, we present a complete framework for 3D shape reconstruction. To compute the shape, our main insight is to formulate the reconstruction as a set of optimization problems. Using discrete representations, these optimization problems are resolved efficiently and at interactive time rates. We present two main contributions. First, we introduce a novel method for creating well-connected networks with cell-complex topology using only orientation and distance measurements and a set of user-defined constraints. Second, we address the problem of surfacing a closed 3D curve network with given surface normals. The normal input increases shape fidelity and allows to achieve globally smooth and visually pleasing shapes. The proposed framework was tested on experimental data sets acquired using our device. A quantitative evaluation was performed by computing the error of reconstruction for our own designed surfaces, thus with known ground truth. Even for complex shapes, the mean error remains around 1%.
- Published
- 2018
47. Sketching Folds
- Author
-
Amaury Jung, Marie-Paule Cani, Antoine Begault, Laurence Boissieux, Damien Rohmer, Stefanie Hahmann, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École supérieure de Chimie Physique Electronique de Lyon (CPE), SED [Grenoble], Inria Grenoble - Rhône-Alpes, European Project: 291184,EC:FP7:ERC,ERC-2011-ADG_20110209,EXPRESSIVE(2012), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), École Supérieure de Chimie Physique Électronique de Lyon (CPE), and Service Expérimentation et Développement (SED [Grenoble])
- Subjects
Computer science ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,02 engineering and technology ,[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] ,Shape Modeling ,Silhouette ,Planar ,Sketch-based modeling ,Computer graphics (images) ,0202 electrical engineering, electronic engineering, information engineering ,developable surfaces ,Computer vision ,folds generation ,ComputingMethodologies_COMPUTERGRAPHICS ,Developable surface ,business.industry ,ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.5: Computational Geometry and Object Modeling ,020207 software engineering ,Computer Graphics and Computer-Aided Design ,Sketch ,non-planar silhouettes ,020201 artificial intelligence & image processing ,Artificial intelligence ,sketch-based modeling ,business ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] - Abstract
International audience; We present the first sketch-based modeling method for developable surfaces with pre-designed folds, such as garments or leather products. The main challenge we address for building folded surfaces from sketches is that silhouette strokes on the sketch correspond to discontinuous sets of non-planar curves on the 3D model. We introduce a new zippering algorithm for progressively identifying silhouette edges on the model and tying them to silhouette strokes. Our solution ensures that the strokes are fully covered and optimally sampled by the model. This new method, interleaved with developability optimization steps, is implemented in a multi-view sketching system where the user can sketch the contours of internal folds in addition to the usual silhouettes, borders and seam lines. All strokes are interpreted as hard constraints, while developability is only optimized. The developability error map we provide then enables users to add local seams or darts where needed and progressively improve their design. This makes our method robust even to coarse input, for which no fully developable solution exists.
- Published
- 2015
48. Patterns from Photograph: Reverse-Engineering Developable Products
- Author
-
Damien Rohmer, Stefanie Hahmann, Amélie Fondevilla, Adrien Bousseau, Marie-Paule Cani, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), GRAPHics and DEsign with hEterogeneous COntent (GRAPHDECO), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École supérieure de Chimie Physique Electronique de Lyon (CPE), European Project: 291184,EC:FP7:ERC,ERC-2011-ADG_20110209,EXPRESSIVE(2012), and École Supérieure de Chimie Physique Électronique de Lyon (CPE)
- Subjects
Reverse engineering ,Surface (mathematics) ,Property (philosophy) ,Computer science ,02 engineering and technology ,computer.software_genre ,01 natural sciences ,Projection (mathematics) ,Sketch-based modeling ,image-based modeling ,Computer graphics (images) ,0202 electrical engineering, electronic engineering, information engineering ,Computer vision ,developable surfaces ,Developable surface ,business.industry ,General Engineering ,020207 software engineering ,Object (computer science) ,Computer Graphics and Computer-Aided Design ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,0104 chemical sciences ,Human-Computer Interaction ,010404 medicinal & biomolecular chemistry ,Artificial intelligence ,sketch-based modeling ,business ,computer ,Normal ,single-view 3D reconstruction - Abstract
International audience; Developable materials are ubiquitous in design and manufacturing. Unfortunately, general-purpose modeling tools are not suited to modeling 3D objects composed of developable parts. We propose an interactive tool to model such objects from a photograph. Users of our system load a single picture of the object they wish to model, which they annotate to indicate silhouettes and part boundaries. Assuming that the object is symmetric, we also ask users to provide a few annotations of symmetric correspondences. The object is then automatically reconstructed in 3D. At the core of our method is an algorithm to infer the 2D projection of rulings of a developable surface from the traced silhouettes and boundaries. We impose that the surface normal is constant along each ruling, which is a necessary property for the surface to be developable. We complement these developability constraints with symmetry constraints to lift the curve network in 3D. In addition to a 3D model, we output 2D patterns enabling to fabricate real prototypes of the object on the photo. This makes our method well suited for reverse engineering products made of leather, bent cardboard or metal sheets.
- Published
- 2017
49. Interactive paper tearing
- Author
-
Camille Schreck, Damien Rohmer, Stefanie Hahmann, Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Department of Computer Science [Lyon] (CPE), École supérieure de Chimie Physique Electronique de Lyon (CPE)-Université de Lyon, European Project: 291184,EC:FP7:ERC,ERC-2011-ADG_20110209,EXPRESSIVE(2012), and École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Université de Lyon
- Subjects
Three-Dimensional Graphics and Realism ,Computer science ,Scientific visualization ,020207 software engineering ,Context (language use) ,ComputerApplications_COMPUTERSINOTHERSYSTEMS ,02 engineering and technology ,Animation ,01 natural sciences ,Computer Graphics and Computer-Aided Design ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Computer graphics ,Real-time computer graphics ,Physics::Plasma Physics ,Computer graphics (images) ,0103 physical sciences ,Path (graph theory) ,Tearing ,Physics::Space Physics ,0202 electrical engineering, electronic engineering, information engineering ,Tears ,010306 general physics ,Algorithm ,3D computer graphics - Abstract
International audience; We propose an efficient method to model paper tearing in the context of interactive modeling. The method uses geometrical information to automatically detect potential starting points of tears. We further introduce a new hybrid geometrical and physical-based method to compute the trajectory of tears while procedurally synthesizing high resolution details of the tearing path using a texture based approach. The results obtained are compared with real paper and with previous studies on the expected geometric paths of paper that tears.
- Published
- 2017
50. Computing Contour Trees for 2D Piecewise Polynomial Functions
- Author
-
Girijanandan Nucha, Georges-Pierre Bonneau, Vijay Natarajan, Stefanie Hahmann, Indian Institute of Science [Bangalore] (IISc Bangalore), Models and Algorithms for Visualization and Rendering (MAVERICK ), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Intuitive Modeling and Animation for Interactive Graphics & Narrative Environments (IMAGINE ), and IFCAM and INRIA
- Subjects
Parallelizable manifold ,higher-order ,Scalar (mathematics) ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,020207 software engineering ,0102 computer and information sciences ,02 engineering and technology ,01 natural sciences ,Computer Graphics and Computer-Aided Design ,contour-tree ,[INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR] ,Reeb graph ,Monotone polygon ,010201 computation theory & mathematics ,Isosurface ,Path tracing ,0202 electrical engineering, electronic engineering, information engineering ,Piecewise ,Scalar field ,Algorithm ,visualization ,Computer Science & Automation ,Mathematics ,ComputingMethodologies_COMPUTERGRAPHICS - Abstract
International audience; Contour trees are extensively used in scalar field analysis. The contour tree is a data structure that tracks the evolution of levelset topology in a scalar field. Scalar fields are typically available as samples at vertices of a mesh and are linearly interpolatedwithin each cell of the mesh. A more suitable way of representing scalar fields, especially when a smoother function needsto be modeled, is via higher order interpolants. We propose an algorithm to compute the contour tree for such functions. Thealgorithm computes a local structure by connecting critical points using a numerically stable monotone path tracing procedure.Such structures are computed for each cell and are stitched together to obtain the contour tree of the function. The algorithmis scalable to higher degree interpolants whereas previous methods were restricted to quadratic or linear interpolants. Thealgorithm is intrinsically parallelizable and has potential applications to isosurface extraction.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.