67 results on '"Stanislas Rohart"'
Search Results
2. Evidence of Strong Dzyaloshinskii-Moriya Interaction at the Cobalt/Hexagonal Boron Nitride Interface
- Author
-
Banan El-Kerdi, André Thiaville, Stanislas Rohart, Sujit Panigrahy, Nuno Brás, João Sampaio, and Alexandra Mougin
- Subjects
Condensed Matter - Materials Science ,Mechanical Engineering ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Materials Science ,Bioengineering ,General Chemistry ,Condensed Matter Physics - Abstract
The Dzyaloshinskii-Moriya interaction (DMI) and perpendicular magnetic anisotropy (PMA) were measured on four series of Co films (1-2.2 nm thick) grown on Pt or Au and covered with h-BN or Cu. Clean h-BN/Co interfaces were obtained by exfoliating h-BN and transferring it onto the Co film in situ in the ultra-high-vacuum evaporation chamber. By comparing h-BN and Cu-covered samples, the DMI induced by the Co/h-BN interface was extracted and found to be comparable in strength to that of the Pt/Co interface, one of the largest known values. The strong observed DMI despite the weak spin-orbit interaction in h-BN supports a Rashba-like origin in agreement with recent theoretical results. Upon combination of it with Pt/Co in Pt/Co/h-BN heterostructures, even stronger PMA and DMI are found which stabilizes skyrmions at room temperature and a low magnetic field.
- Published
- 2022
3. Size-dependent mobility of skyrmions beyond pinning in ferrimagnetic GdCo thin films
- Author
-
Léo Berges, Eloi Haltz, Sujit Panigrahy, Sougata Mallick, Raphaël Weil, Stanislas Rohart, Alexandra Mougin, and João Sampaio
- Subjects
Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
Magnetic skyrmions are swirling magnetic textures that can be efficiently driven with spin-orbit torques with a deflected trajectory. However, pinning slows skyrmions down and alters their trajectory, which prevents a quantitative comparison to analytical models. Here, we study skyrmions driven by spin-orbit torques at room temperature in ferrimagnetic GdCo thin films, an amorphous material with low pinning. Above a sharp current depinning threshold, we observe a clearly linear velocity increase with current that extrapolates to zero and a constant deflection angle, reaching high velocities up to 200 m/s. The mobility increases and the depinning threshold current decreases with the skyrmion diameter, which we vary using an external magnetic field. An analytical model based on the Thiele equation quantitatively reproduces these findings with a single fitting parameter. This validates the linear flow regime description and shows, in particular, the important role of skyrmion size in its dynamics., Comment: Supplemental information available from the final journal
- Published
- 2022
4. Skyrmion inertia in synthetic antiferromagnets
- Author
-
Sougata Mallick, Sujit Panigrahy, João Sampaio, and Stanislas Rohart
- Subjects
Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
We describe the dynamics of magnetic skyrmions in synthetic antiferromagnets (SAF), with a finite interlayer coupling. Due to the opposite gyrovector of the skyrmions in the two SAF layers, the coupled skyrmions reach a stationary regime with a spatial separation, in a direction orthogonal to their velocity. As a consequence, and contrary to the ferromagnetic situation, a transient regime necessarily occurs, with a finite acceleration, related to an inertia, and that limits its time response. The formalism developed here, based on two coupled Thiele equations, allows a quantitative description of this phenomenon. The time constant associated to the transient regime scales inversely with the antiferromagnetic coupling constant. We also show that the coupling force reaches a maximal value at a finite skyrmion separation. This sets a maximum velocity limit, beyond which the the coupling force cannot stabilize the bound state., 19 pages, 5 figures
- Published
- 2022
5. Engineering of Intrinsic Chiral Torques in Magnetic Thin Films Based on the Dzyaloshinskii-Moriya Interaction
- Author
-
Laura J. Heyderman, Aleš Hrabec, Zhaochu Luo, Stanislas Rohart, Zhentao Liu, and Pietro Gambardella
- Subjects
Condensed Matter - Materials Science ,Materials science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Torque ,Thin film ,010306 general physics ,0210 nano-technology - Abstract
The establishment of chiral coupling in thin magnetic films with inhomogeneous anisotropy has led to the development of artificial systems of fundamental and technological interest. The chiral coupling itself is enabled by the Dzyaloshinskii-Moriya interaction (DMI) enforced by the patterned noncollinear magnetization. Here, we create a domain wall track with out-of-plane magnetization coupled on each side to a narrow parallel strip with in-plane magnetization. With this we show that the chiral torques emerging from the DMI at the boundary between the regions of noncollinear magnetization in a single magnetic layer can be used to bias the domain wall velocity. To tune the chiral torques, the design of the magnetic racetracks can be modified by varying the width of the tracks or the width of the transition region between noncollinear magnetizations, reaching effective chiral magnetic fields of up to 7.8 mT. Furthermore, we show how the magnitude of the chiral torques can be estimated by measuring asymmetric domain wall velocities, and demonstrate spontaneous domain wall motion propelled by intrinsic torques even in the absence of any external driving force. ISSN:2331-7019
- Published
- 2021
6. Driving skyrmions with low threshold current density in Pt/CoFeB thin film
- Author
-
Sougata Mallick, André Thiaville, Subhankar Bedanta, Minaxi Sharma, Sujit Panigrahy, Stanislas Rohart, and Brindaban Ojha
- Subjects
Condensed Matter::Materials Science ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Mathematical Physics ,Atomic and Molecular Physics, and Optics - Abstract
Magnetic skyrmions are topologically stable spin swirling particle like entities which are appealing for next generation spintronic devices. The expected low critical current density for the motion of skyrmions makes them potential candidates for future energy efficient electronic devices. Several heavy metal/ferromagnetic (HM/FM) systems have been explored in the past decade to achieve faster skyrmion velocity at low current densities. In this context, we have studied Pt/CoFeB/MgO heterostructures in which skyrmions have been stabilized at room temperature (RT). It has been observed that the shape of the skyrmions are perturbed even by the small stray field arising from low moment magnetic tips while performing the magnetic force microscopy (MFM), indicating presence of low pinning landscape in the samples. This hypothesis is indeed confirmed by the low threshold current density to drive the skyrmions in our sample, at velocities of few ∼10 m s−1.
- Published
- 2021
7. Magnetism and topology
- Author
-
André Thiaville, Jacques Miltat, Stanislas Rohart, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), and Thiaville, Andre
- Subjects
Physics ,Magnetism ,Skyrmion ,Structure (category theory) ,Observable ,02 engineering and technology ,Physicist ,021001 nanoscience & nanotechnology ,Space (mathematics) ,Topology ,01 natural sciences ,Topological defect ,[PHYS.COND.CM-GEN] Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Topology (chemistry) - Abstract
International audience; This chapter explains what topology brings to the physics of magnetic textures in real space, from a physicist's point of view. The statics of magnetic textures is first discussed, and the distinction is made between a topological defect and a topologically stable-or protected-structure, also called topological soliton. The attention is then turned towards the physically observable consequences of topology, mainly in the dynamics of magnetic textures. Connection with experimental observations and applications is made, from early works at the beginnings of magnetic data storage up to the recent work on magnetic skyrmions, which triggered a revival of interest in topology as applied to magnetism.
- Published
- 2021
8. Contributors
- Author
-
Gabriele Bonanno, Felix Büttner, Mario Carpentieri, Xing Chen, Oksana Chubykalo-Fesenko, Giuseppina D’Aguì, Konstantin Denisov, Motohiko Ezawa, Peter Fischer, Hans J. Hug, Wang Kang, Mathias Kläui, William Legrand, Na Lei, Andrey O. Leonov, Sai Li, Kai Litzius, Xiaoxi Liu, Jacques Miltat, Catherine Pappas, Stanislas Rohart, Sujoy Roy, Igor Rozhansky, Luis Sánchez-Tejerina, Laichuan Shen, André Thiaville, Riccardo Tomasello, Oleg A. Tretiakov, Seonghoon Woo, Jing Xia, Xichao Zhang, Xueying Zhang, Weisheng Zhao, Yan Zhou, Daoqian Zhu, and Roberto Zivieri
- Published
- 2021
9. Chiral magnetic domain walls under transverse fields: a semi-analytical model
- Author
-
Pierre Géhanne, Vincent Jeudy, Stanislas Rohart, André Thiaville, Laboratoire de Physique des Solides (LPS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
010302 applied physics ,Physics ,Magnetic domain ,Field (physics) ,Condensed Matter - Mesoscale and Nanoscale Physics ,FOS: Physical sciences ,02 engineering and technology ,Mechanics ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Domain (software engineering) ,Magnetic anisotropy ,Domain wall (magnetism) ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Moment (physics) ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0210 nano-technology ,Analytic function - Abstract
An analytical model for the domain wall structure in ultrathin films with perpendicular easy axis and interfacial Dzyaloshinskii-Moriya interaction, submitted to an arbitrary in-plane magnetic field, is presented. Its solution is simplified to the numerical minimization of an analytic function of just one variable. The model predictions are compared to numerical micromagnetic simulations, using parameters of existing samples, revealing a very good agreement. Remaining differences are analyzed, and partly corrected. Differences with the predictions of the simplest model, usually found in the literature, in which only the domain wall moment's in-plane orientation can vary, are exemplified. The model allows accurate computations, as a function of in-plane field module and orientation, of the domain wall tension and width, quantities controlling the creep motion of domain walls in such films., Comment: 13 pages, 15 figures
- Published
- 2021
- Full Text
- View/download PDF
10. Domain wall propagation by spin-orbit torques in in-plane magnetized systems
- Author
-
Joao Sampaio, Ryuhei Kohno, André Thiaville, Stanislas Rohart, Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
Physics ,Condensed Matter - Materials Science ,Field (physics) ,Condensed matter physics ,Magnetic domain ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Vortex ,Transverse plane ,Domain wall (magnetism) ,Distortion ,0103 physical sciences ,Orbit (dynamics) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Astrophysics::Solar and Stellar Astrophysics ,Torque ,010306 general physics ,0210 nano-technology ,Computer Science::Databases ,ComputingMilieux_MISCELLANEOUS - Abstract
The effect of damping-like spin-orbit torque (DL SOT) on magnetic domain walls (DWs) in in-plane magnetised soft tracks is studied analytically and with micromagnetic simulations. We find that DL SOT drives vortex DWs, whereas transverse DWs, the other typical DW structure in soft tracks, propagate only if the Dzyaloshinskii-Moriya interaction (DMI) is present. The SOT drive can add to, and be more efficient than, spin-transfer torque (STT), and so may greatly benefit applications that require in-plane DWs. Our analysis based on the Thiele equation shows that the driving force arises from a cycloidal distortion of the DW structure caused by geometrical confinement or DMI. This distortion is higher, and the SOT more efficient, in narrower, thinner tracks. These results show that the effects of SOT cannot be understood by simply considering the effective field at the center of the structure, an ill-founded but often-used estimation. We also show that the relative magnitude of STT and DL SOT can be determined by comparing the motion of different vortex DW structures in the same track., Accepted for publication in Physical Review B Rapid Communications
- Published
- 2020
11. Degenerate skyrmionic states in synthetic antiferromagnets
- Author
-
Mona Bhukta, Braj Bhusan Singh, Sougata Mallick, Stanislas Rohart, and Subhankar Bedanta
- Subjects
Condensed Matter - Materials Science ,Mechanics of Materials ,Mechanical Engineering ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Materials Science ,Bioengineering ,Condensed Matter::Strongly Correlated Electrons ,General Chemistry ,Electrical and Electronic Engineering - Abstract
Topological magnetic textures, characterized by integer topological charge $S$, are potential candidates in future magnetic logic and memory devices, due to their smaller size and expected low threshold current density for their motion. An essential requirement to stabilize them is the Dzyaloshinskii-Moriya interaction (DMI) which promotes a particular chirality, leading to a unique value of $S$ in a given material. However, recently coexistence of skyrmions and antiskyrmions, with opposite topological charge, in frustrated ferromagnets has been predicted using $J_1$--$J_2$--$J_3$ classical Heisenberg model, which opens new perspectives, to use the topological charge as an additional degree of freedom. In this work, we propose another approach of using a synthetic antiferromagnetic (SAF) system, where one of the ferromagnetic (FM) layer has isotropic and the other FM layer has anisotropic DMI to promote the existence of skyrmions and antiskyrmions, respectively. A frustrated interaction arises due to the coupling between the magnetic textures in the FM layers, which enables the stabilization and coexistence of 6 novel elliptical topological textures., Comment: 11 pages
- Published
- 2020
- Full Text
- View/download PDF
12. Optical Magnetometry of Single Biocompatible Micromagnets for Quantitative Magnetogenetic and Magnetomechanical Assays
- Author
-
Loïc Toraille, Elie Balloul, Emilie Secret, Jean-Michel Siaugue, Louise Bonnemay, N. Vernier, Cornelia Monzel, Koceila Aizel, Loïc Rondin, Jean-François Roch, T. Debuisschert, Stanislas Rohart, Mathieu Coppey, Chiara Vicario, Joao Sampaio, Maxime Dahan, Laboratoire Lumière, Matière et Interfaces (LuMIn), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Physico-Chimie Curie [Institut Curie] (PCC), Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), PHysicochimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Université Pierre et Marie Curie - Paris 6 (UPMC)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut d'électronique fondamentale (IEF), Physico-Chimie-Curie (PCC), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut Curie [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Thales Research and Technology [Palaiseau], THALES [France], Nano Optique et Spectroscopy (NOOS), CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), Laboratoire Kastler Brossel (LKB (Lhomond)), Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-Institut Curie [Paris]-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de Chimie du CNRS (INC), THALES, Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS), Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Kerr effect ,Materials science ,Nitrogen ,Magnetometer ,[PHYS.PHYS.PHYS-BIO-PH]Physics [physics]/Physics [physics]/Biological Physics [physics.bio-ph] ,Magnetometry ,Biocompatible Materials ,Bioengineering ,02 engineering and technology ,01 natural sciences ,law.invention ,symbols.namesake ,law ,Stokes' law ,0103 physical sciences ,Microscopy ,Humans ,General Materials Science ,Particle Size ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,business.industry ,Lasers ,Mechanical Engineering ,Optical Devices ,Equipment Design ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Magnetic susceptibility ,Biomechanical Phenomena ,Magnetic field ,Magnetic Fields ,Ferromagnetism ,Magnets ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,symbols ,Nanoparticles ,Optoelectronics ,Magnetic nanoparticles ,Diamond ,0210 nano-technology ,business ,HeLa Cells - Abstract
The mechanical manipulation of magnetic nanoparticles is a powerful approach to probing and actuating biological processes in living systems. Implementing this technique in high-throughput assays can be achieved using biocompatible micromagnet arrays. However, the magnetic properties of these arrays are usually indirectly inferred from simulations or Stokes drag measurements, leaving unresolved questions about the actual profile of the magnetic fields at the micrometer scale and the exact magnetic forces that are applied. Here, we exploit the magnetic field sensitivity of nitrogen-vacancy color centers in diamond to map the 3D stray magnetic field produced by a single soft ferromagnetic microstructure. By combining this wide-field optical magnetometry technique with magneto-optic Kerr effect microscopy, we fully analyze the properties of the micromagnets, including their magnetization saturation and their size-dependent magnetic susceptibility. We further show that the high magnetic field gradients produced by the micromagnets, greater than 10
- Published
- 2018
13. Majorana fermions based on synthetic spin-orbit interaction (Conference Presentation)
- Author
-
Matthieu C. Dartiailh, François Mallet, Takis Kontos, Matthieu R. Delbecq, Matthieu P. Desjardins, J. J. Viennot, Laure Bruhat, Audrey Cottet, Tino Cubaynes, L. C. Contamin, André Thiaville, and Stanislas Rohart
- Subjects
Physics ,Presentation ,Particle physics ,MAJORANA ,media_common.quotation_subject ,Fermion ,Spin–orbit interaction ,media_common - Published
- 2019
14. Giant rectified voltages from magnetization dynamics of an atomically sharp domain wall
- Author
-
David Beaujouan, O. Rousseau, Pascal Thibaudeau, Michel Viret, Stanislas Rohart, Sébastien Petit-Watelot, Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, CEDREM (CEDREM), Institut Jean Lamour (IJL), Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), CEA Le Ripault (CEA Le Ripault), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), IMPACT N4S, ANR-15-IDEX-0004,LUE,Isite LUE(2015), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Magnetization dynamics ,Materials science ,Condensed matter physics ,Mechanical Engineering ,Resonance ,Bioengineering ,General Chemistry ,Atomic units ,Magnetization ,Domain wall (magnetism) ,Atomic radius ,Rectification ,Orders of magnitude (time) ,Mechanics of Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Electrical and Electronic Engineering ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics - Abstract
International audience; Magnetization dynamics is of great interest in the aim of using spins in nanoscale information technology, which ultimately should reach the atomic size. In the present work, we explore magnetization and spin dynamics in atomic ferromagnetic contacts both experimentally and theoretically. We demonstrate that domain walls induce a giant rectification effect as the DC voltages measured across the contacts are greatly enhanced by the presence of a domain wall. This effect is understood using multiscale dynamic simulations showing that the atomic sized walls oscillate, both in position and size, when submitted to the radio-frequency excitation. This leads to an increase by three orders of magnitude due to the large atomic scale spin excursion at resonance in the presence of an atomic sized domain wall. Beside the interesting amplified rectification, this could also be used as a unique tool to measure dynamical properties at the atomic scale.
- Published
- 2019
15. Current-Induced Nucleation and Dynamics of Skyrmions in a Co-based Hensler Alloy
- Author
-
S. Chouaieb, Aleš Hrabec, Patrick Maletinsky, M. S. Gabor, W. Akhtar, Stanislas Rohart, Angela Haykal, Brendan Shields, André Thiaville, I. Gross, Mohamed Belmeguenai, Vincent Jacques, Laboratoire Charles Coulomb (L2C), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Magnetometer ,Alloy ,Nucleation ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,engineering.material ,01 natural sciences ,law.invention ,Condensed Matter::Materials Science ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,010306 general physics ,Condensed Matter - Materials Science ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Skyrmion ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Magnetic field ,Dipole ,Magnet ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,Magnetic damping ,engineering ,0210 nano-technology - Abstract
We demonstrate room-temperature stabilization of dipolar magnetic skyrmions with diameters in the range of $100$ nm in a single ultrathin layer of the Heusler alloy Co$_2$FeAl (CFA) under moderate magnetic fields. Current-induced skyrmion dynamics in microwires is studied with a scanning Nitrogen-Vacancy magnetometer operating in the photoluminescence quenching mode. We first demonstrate skyrmion nucleation by spin-orbit torque and show that its efficiency can be significantly improved using tilted magnetic fields, an effect which is not specific to Heusler alloys and could be advantageous for future skyrmion-based devices. We then show that current-induced skyrmion motion remains limited by strong pinning effects, even though CFA is a magnetic material with a low magnetic damping parameter., 5 pages, 4 figures
- Published
- 2019
16. Brownian motion of magnetic domain walls and skyrmions, and their diffusion constants
- Author
-
André Thiaville, Jacques Miltat, and Stanislas Rohart
- Subjects
Condensed Matter::Quantum Gases ,Physics ,Magnetic domain ,Condensed Matter - Mesoscale and Nanoscale Physics ,Skyrmion ,FOS: Physical sciences ,02 engineering and technology ,Function (mathematics) ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,01 natural sciences ,Classical mechanics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Diffusion (business) ,010306 general physics ,0210 nano-technology ,Topology (chemistry) ,Brownian motion - Abstract
Extended numerical simulations enable to ascertain the diffusive behavior at finite temperatures of chiral walls and skyrmions in ultra-thin model Co layers exhibiting symmetric - Heisenberg - as well as antisymmetric - Dzyaloshinskii-Moriya - exchange interactions. The Brownian motion of walls and skyrmions is shown to obey markedly different diffusion laws as a function of the damping parameter. Topology related skyrmion diffusion suppression with vanishing damping parameter, albeit already documented, is shown to be restricted to ultra-small skyrmion sizes or, equivalently, to ultra-low damping coefficients, possibly hampering observation.
- Published
- 2018
17. Velocity Enhancement by Synchronization of Magnetic Domain Walls
- Author
-
Aleš Hrabec, Stefania Pizzini, Viola Křižáková, André Thiaville, Jan Vogel, Joao Sampaio, Stanislas Rohart, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Micro et NanoMagnétisme (MNM ), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Magnetic domain ,Dynamics (mechanics) ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Domain (software engineering) ,Magnetic field ,Synchronization (alternating current) ,Coupling (physics) ,Domain wall (string theory) ,Classical mechanics ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Single domain ,010306 general physics ,0210 nano-technology - Abstract
International audience; Magnetic domain walls are objects whose dynamics is inseparably connected to their structure. In this work we investigate magnetic bilayers, which are engineered such that a coupled pair of domain walls, one in each layer, is stabilized by a cooperation of Dzyaloshinskii-Moriya interaction and flux-closing mechanism. The dipolar field mediating the interaction between the two domain walls, links not only their position but also their structure. We show that this link has a direct impact on their magnetic field induced dynamics. We demonstrate that in such a system the coupling leads to an increased domain wall velocity with respect to single domain walls. Since the domain wall dynamics is observed in a precessional regime, the dynamics involves the synchronization between the two walls, to preserve the flux closure during motion. Properties of these coupled oscillating walls can be tuned by an additional in-plane magnetic field enabling a rich variety of states, from perfect synchronization to complete detuning.
- Published
- 2018
18. Micromagnetics of anti-skyrmions in ultrathin films
- Author
-
Olivier Fruchart, Jan Vogel, Nicolas Rougemaille, Stanislas Rohart, Lorenzo Camosi, Micro et NanoMagnétisme (NEEL - MNM), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), ANR-14-CE26-0012,ULTRASKY,Skyrmions dans les couches magnétiques ultraminces en vue d'une spintronique basse consommation(2014), ANR-10-LABX-0051,LANEF,Laboratory of Alliances on Nanosciences - Energy for the Future(2010), Micro et NanoMagnétisme (MNM ), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
skyrmions ,micromagnetics ,FOS: Physical sciences ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,Magnetization ,DMI ,0103 physical sciences ,010306 general physics ,Anisotropy ,Micromagnetics ,Physics ,Condensed Matter::Quantum Gases ,Condensed Matter - Materials Science ,anti-skyrmions ,Condensed matter physics ,Skyrmion ,Isotropy ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,3. Good health ,Condensed Matter - Other Condensed Matter ,Dipole ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Circular symmetry ,0210 nano-technology ,Energy (signal processing) ,Other Condensed Matter (cond-mat.other) - Abstract
We present a combined analytical and numerical micromagnetic study of the equilibrium energy, size and shape of anti-skyrmionic magnetic configurations. Anti-skyrmions can be stabilized when the Dzyaloshinskii-Moriya interaction has opposite signs along two orthogonal in-plane directions, breaking the magnetic circular symmetry. We compare the equilibrium energy, size and shape of anti-skyrmions and skyrmions that are stabilized respectively in environments with anisotropic and isotropic Dzyaloshinskii-Moriya interaction, but with the same strength of the magnetic interactions.When the dipolar interactions are neglected the skyrmion and the anti-skyrmion have the same energy, shape and size in their respective environment. However, when dipolar interactions are considered, the energy of the anti-skyrmion is strongly reduced and its equilibrium size increased with respect to the skyrmion. While the skyrmion configuration shows homochiral N\'{e}el magnetization rotations, anti-skyrmions show partly N\'{e}el and partly Bloch rotations. The latter do not produce magnetic charges and thus cost less dipolar energy. Both magnetic configurations are stable when the magnetic energies almost cancel each other, which means that a small variation of one parameter can drastically change their configuration, size and energy., Comment: Published as Physical Review B 97, 134404 (2018)
- Published
- 2018
19. Skyrmion morphology in ultrathin magnetic films
- Author
-
W. Akhtar, Brendan Shields, S. Chouaieb, Aleš Hrabec, Luis Martinez, Patrick Maletinsky, Stanislas Rohart, Vincent Jacques, André Thiaville, Joao Sampaio, I. Gross, Laboratoire Charles Coulomb (L2C), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quenching ,Condensed Matter - Materials Science ,Materials science ,Morphology (linguistics) ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Skyrmion ,High resolution ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Static disorder ,3. Good health ,Magnetic field ,0103 physical sciences ,Microscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Magnetic films ,010306 general physics ,0210 nano-technology - Abstract
Nitrogen-vacancy magnetic microscopy is employed in quenching mode as a non-invasive, high resolution tool to investigate the morphology of isolated skyrmions in ultrathin magnetic films. The skyrmion size and shape are found to be strongly affected by local pinning effects and magnetic field history. Micromagnetic simulations including static disorder, based on a physical model of grain-to-grain thickness variations, reproduce all experimental observations and reveal the key role of disorder and magnetic history in the stabilization of skyrmions in ultrathin magnetic films. This work opens the way to an in-depth understanding of skyrmion dynamics in real, disordered media., 9 pages, 8 figures, including supplementary informations
- Published
- 2017
20. Anisotropic Dzyaloshinskii-Moriya Interaction in ultra-thin epitaxial Au/Co/W(110)
- Author
-
Andrei A. Stashkevich, Yves Roussigné, Laurent Ranno, Stanislas Rohart, Maurizio De Santis, Olivier Fruchart, Stefania Pizzini, Mohamed Belmeguenai, Lorenzo Camosi, S. M. Chérif, Jan Vogel, Micro et NanoMagnétisme (MNM ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire des Sciences des Procédés et des Matériaux (LSPM), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Centre National de la Recherche Scientifique (CNRS), Surfaces, Interfaces et Nanostructures (SIN ), ANR-14-CE26-0012,ULTRASKY,Skyrmions dans les couches magnétiques ultraminces en vue d'une spintronique basse consommation(2014), ANR-10-LABX-0051,LANEF,Laboratory of Alliances on Nanosciences - Energy for the Future(2010), Micro et NanoMagnétisme (NEEL - MNM), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Surfaces, Interfaces et Nanostructures (NEEL - SIN)
- Subjects
FOS: Physical sciences ,02 engineering and technology ,Crystal structure ,Brillouin Light Scattering ,Epitaxy ,01 natural sciences ,Condensed Matter::Materials Science ,Stack (abstract data type) ,0103 physical sciences ,010306 general physics ,Anisotropy ,Physics ,Dzyaloshinskii-Moriya interaction ,Condensed Matter - Materials Science ,Condensed matter physics ,Skyrmion ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Symmetry (physics) ,Condensed Matter - Other Condensed Matter ,Brillouin zone ,Skyrmions ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology ,Other Condensed Matter (cond-mat.other) - Abstract
We have used Brillouin Light Scattering spectroscopy to independently determine the in-plane Magneto-Crystalline Anisotropy and the Dzyaloshinskii-Moriya Interaction (DMI) in out-of-plane magnetized Au/Co/W(110). We found that the DMI strength is 2-3 times larger along the bcc$[\bar{1}10]$ than along the bcc$[001]$ direction. We use analytical considerations to illustrate the relationship between the crystal symmetry of the stack and the anisotropy of microscopic DMI. Such an anisotropic DMI is the first step to realize isolated elliptical skyrmions or anti-skyrmions in thin film systems with $C_{2v}$ symmetry., Revised and extended version
- Published
- 2017
21. Making the Dzyaloshinskii-Moriya interaction visible
- Author
-
Yves Roussigné, S. M. Chérif, Aleš Hrabec, Stanislas Rohart, André Thiaville, Andrey Stashkevich, and Mohamed Belmeguenai
- Subjects
Condensed Matter - Materials Science ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Magnon ,Point reflection ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Substrate (electronics) ,Dielectric ,021001 nanoscience & nanotechnology ,01 natural sciences ,Signal ,Brillouin zone ,Condensed Matter::Materials Science ,0103 physical sciences ,Condensed Matter::Strongly Correlated Electrons ,Thin film ,010306 general physics ,0210 nano-technology ,Spectroscopy - Abstract
Brillouin light spectroscopy is a powerful and robust technique for measuring the interfacial Dzyaloshinskii-Moriya interaction in thin films with broken inversion symmetry. Here we show that the magnon visibility, i.e. the intensity of the inelastically scattered light, strongly depends on the thickness of the dielectric seed material - SiO$_2$. By using both, analytical thin-film optics and numerical calculations, we reproduce the experimental data. We therefore provide a guideline for the maximization of the signal by adapting the substrate properties to the geometry of the measurement. Such a boost-up of the signal eases the magnon visualization in ultrathin magnetic films, speeds-up the measurement and increases the reliability of the data.
- Published
- 2017
22. Erratum: Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces [Phys. Rev. Lett. 115 , 267210 (2015)]
- Author
-
Stanislas Rohart, Albert Fert, Mairbek Chshiev, André Thiaville, and Hongxin Yang
- Subjects
Materials science ,Condensed matter physics ,Published Erratum ,0103 physical sciences ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,01 natural sciences - Published
- 2017
23. Reply to 'Comment on ‘Path to collapse for an isolated Néel skyrmion' '
- Author
-
Jacques Miltat, André Thiaville, and Stanislas Rohart
- Subjects
Path (topology) ,Physics ,Quantum mechanics ,Skyrmion ,0103 physical sciences ,Collapse (topology) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,010306 general physics ,0210 nano-technology ,01 natural sciences - Published
- 2017
24. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope
- Author
-
Vincent Jacques, André Thiaville, Karin Garcia, T. Hingant, Jean-Philippe Tetienne, L. Herrera Diez, Stanislas Rohart, Jean-François Roch, Dafiné Ravelosona, J.-P. Adam, and Joo-Von Kim
- Subjects
Multidisciplinary ,Microscope ,Spintronics ,business.industry ,Nanowire ,Diamond ,Nanotechnology ,engineering.material ,law.invention ,Domain wall (magnetism) ,Ferromagnetism ,law ,Microscopy ,engineering ,Optoelectronics ,business ,Nitrogen-vacancy center - Abstract
Observing jumping domain walls Domain walls, which separate regions of opposite magnetization in a ferromagnet, have rich dynamics that are difficult to characterize in small samples. Tetienne et al. imaged the magnetization of a thin ferromagnetic wire and observed the jumping of a domain wall between different positions along the wire. They used a scanning magnetic microscope based on a defect in diamond. The laser light needed to operate the microscope also enabled the control of the domain wall motion by causing local heating, which made the illuminated position more likely to contain a domain wall. Science , this issue p. 1366
- Published
- 2014
25. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
- Author
-
Vincent Cros, André Thiaville, Stanislas Rohart, Joao Sampaio, Albert Fert, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Nanostructure ,Biomedical Engineering ,Nucleation ,Bioengineering ,02 engineering and technology ,Magnetic skyrmion ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,Condensed Matter::Materials Science ,0103 physical sciences ,General Materials Science ,Electrical and Electronic Engineering ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Spin-½ ,[PHYS]Physics [physics] ,Physics ,Condensed matter physics ,Spintronics ,Skyrmion ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Coupling (physics) ,Condensed Matter::Strongly Correlated Electrons ,Current (fluid) ,0210 nano-technology - Abstract
Magnetic skyrmions are topologically stable spin configurations, which usually originate from chiral interactions known as Dzyaloshinskii-Moriya interactions. Skyrmion lattices were initially observed in bulk non-centrosymmetric crystals, but have more recently been noted in ultrathin films, where their existence is explained by interfacial Dzyaloshinskii-Moriya interactions induced by the proximity to an adjacent layer with strong spin-orbit coupling. Skyrmions are promising candidates as information carriers for future information-processing devices due to their small size (down to a few nanometres) and to the very small current densities needed to displace skyrmion lattices. However, any practical application will probably require the creation, manipulation and detection of isolated skyrmions in magnetic thin-film nanostructures. Here, we demonstrate by numerical investigations that an isolated skyrmion can be a stable configuration in a nanostructure, can be locally nucleated by injection of spin-polarized current, and can be displaced by current-induced spin torques, even in the presence of large defects.
- Published
- 2013
26. Direct measurement of interfacial Dzyaloshinskii-Moriya interaction inX|CoFeB|MgOheterostructures with a scanning NV magnetometer(X=Ta,TaN, and W)
- Author
-
Jean-Philippe Tetienne, I. Gross, J.-P. Adam, Masamitsu Hayashi, Vincent Jacques, Karin Garcia, T. Hingant, Jacob Torrejon, Jean-François Roch, R. Soucaille, Stanislas Rohart, Luis Martinez, Joo-Von Kim, and André Thiaville
- Subjects
Materials science ,Magnetic domain ,Condensed matter physics ,Spintronics ,Magnetometer ,02 engineering and technology ,Spin structure ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,law.invention ,Condensed Matter::Materials Science ,Domain wall (magnetism) ,Ferromagnetism ,law ,0103 physical sciences ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology ,Local field - Abstract
The Dzyaloshinskii-Moriya Interaction (DMI) has recently attracted considerable interest owing to its fundamental role in the stabilization of chiral spin textures in ultrathin ferromagnets, which are interesting candidates for novel spintronic technologies. Here, the authors present an experimental study of the DMI strength that is induced in nanometer-thick CoFeB ferromagnetic thin films in contact with different nonmagnetic metal underlayers. They use a novel technique for noninvasive high-sensitivity sensing of magnetic field: a scanning nanomagnetometer based on the magnetic response of a single nitrogen-vacancy defect in diamond. The magnetic domain walls are mapped, the spin structure and type of domain wall determined, and the DMI strength extracted. Importantly, the authors find local variation of the DMI constant, which clearly suggests that local field mapping techniques are extremely important to study this physics.
- Published
- 2016
27. Path to collapse for an isolated Néel skyrmion
- Author
-
Stanislas Rohart, André Thiaville, and Jacques Miltat
- Subjects
Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Field (physics) ,Condensed matter physics ,Skyrmion ,Collapse (topology) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic units ,0103 physical sciences ,Monolayer ,Path (graph theory) ,010306 general physics ,0210 nano-technology ,Langevin dynamics ,Topology (chemistry) - Abstract
A path method is implemented in order to precisely and generally describe the collapse of isolated skyrmions in a Co/Pt(111) monolayer, on the basis of atomic scale simulations. Two collapse mechanisms with different energy barriers are found. The most obvious path, featuring a homogeneous shrinking gives the largest energy, whereas the lowest energy barrier is shown to comply with the outcome of Langevin dynamics under a destabilizing field of 0.25 T, with a lifetime of 20~ns at around 80~K. For this lowest energy barrier path, skyrmion destabilization occurs much before any topology change, suggesting that topology plays a minor role in the skyrmion stability. On the contrary, an important role appears devoted to the Dzyaloshinskii-Moriya interaction, establishing a route towards improved skyrmion stability., Comment: 9 pages, 6 figures
- Published
- 2016
28. Strain-induced magnetic domain wall control by voltage in hybrid piezoelectric BaTiO3 ferrimagnetic TbFe structures
- Author
-
Alexandra Mougin, Stanislas Rohart, O. Rousseau, and R. Weil
- Subjects
Multidisciplinary ,Materials science ,Condensed matter physics ,Magnetic domain ,Nucleation ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Piezoelectricity ,Ferroelectricity ,Article ,Crystal ,Condensed Matter::Materials Science ,Ferromagnetism ,Ferrimagnetism ,Condensed Matter::Superconductivity ,0103 physical sciences ,010306 general physics ,0210 nano-technology ,Single crystal - Abstract
This paper reports on the voltage dependence of the magnetization reversal of a thin amorphous ferromagnetic TbFe film grown on a ferroelectric and piezoelectric BaTiO3 single crystal. Magneto-optical measurements, at macroscopic scale or in a microscope, demonstrate how the ferroelectric BaTiO3 polarisation history influences the properties of the perpendicularly magnetized TbFe film. Unpolarised and twinned regions are obtained when the sample is zero voltage cooled whereas flat and saturated regions are obtained when the sample is voltage cooled through the ferroelectric ordering temperature of the BaTiO3 crystal, as supported by atomic force microscopy experiments. The two steps involved in the TbFe magnetization reversal, namely nucleation and propagation of magnetic domain walls, depend on the polarisation history. Nucleation is associated to coupling through strains with the piezoelectric BaTiO3 crystal and propagation to pinning with the ferroelastic surface patterns visible in the BaTiO3 topography.
- Published
- 2016
29. Domain wall dynamics in ultrathin Pt/Co/AlOx microstrips under large combined magnetic fields
- Author
-
André Thiaville, Jacques Miltat, Marlio Bonfim, Stanislas Rohart, Joao Sampaio, Emilie Jué, Stefania Pizzini, Liliana D. Buda-Prejbeanu, Ioan Mihai Miron, Stéphane Auffret, Gilles Gaudin, Jan Vogel, Olivier Boulle, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Micro et NanoMagnétisme (MNM ), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Departamento de Engenharia Elétrica, Universidade Federal do Paraná (UFPR), ANR-11-BS10-0008,ESPERADO,Effets du couple de transfert de spin et des champs Rashba et Oersted sur la dynamique de parois(2011), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Micro et NanoMagnétisme (NEEL - MNM)
- Subjects
Materials science ,Field (physics) ,Magnetic domain ,Condensed matter physics ,Dzyaloshinskii - Moriya interaction ,domain walls ,02 engineering and technology ,Type (model theory) ,021001 nanoscience & nanotechnology ,01 natural sciences ,magnetic thin films ,Magnetic field ,Magnetic anisotropy ,Domain wall (magnetism) ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Domain (ring theory) ,Perpendicular ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,010306 general physics ,0210 nano-technology - Abstract
The dynamics of magnetic domain walls in ultrathin strip-patterned Pt/Co/AlOx samples with perpendicular easy axis has been studied experimentally under an easy-axis field, superposed to a hard-axis field oriented along the strip. The easy-axis field is large so that the domain walls move well beyond the creep regime. A chiral effect is observed where the domain wall velocity shows a monotonous and surprisingly large variation with an in-plane field. A micromagnetic analysis, combining analytic, one-dimensional, and two-dimensional simulations with structural disorder, shows that this behavior can be reproduced with a Dzyaloshinskii-Moriya interaction of the interfacial type, with due consideration of the dynamics of the tilt degree of freedom of the domain wall. The estimated effective value of this interaction ($D\ensuremath{\approx}\ensuremath{-}2.2\phantom{\rule{0.28em}{0ex}}\mathrm{mJ}/{\mathrm{m}}^{2}$ for a 0.6 nm Co thickness) is consistent with values obtained by other techniques. It is also shown, by micromagnetic analysis, that several modes and characteristic times occur in the dynamics of the tilt of such domain walls.
- Published
- 2016
- Full Text
- View/download PDF
30. Magnetic Anisotropy Dispersion in CoPt Nanoparticles: An Evaluation Using the NÉel Model
- Author
-
Véronique Dupuis, Florent Tournus, and Stanislas Rohart
- Subjects
Magnetic anisotropy ,Materials science ,Condensed matter physics ,Magnetoresistance ,Perpendicular magnetic anisotropy ,Dispersion (optics) ,Nanoparticle ,Shape-memory alloy ,Electrical and Electronic Engineering ,Anisotropy ,Electronic, Optical and Magnetic Materials - Abstract
Various contributions to the magnetic anisotropy energy (MAE) dispersion for an assembly of CoPt nanoparticles are examined, using the empirical Neel anisotropy model. It is shown that, while small shape and composition variations have negligible effects, the statistical distribution of chemical arrangements can be the major source of MAE dispersion.
- Published
- 2008
31. Interface effect on the magnetic anisotropy of CoPt clusters
- Author
-
E. Bernstein, Luc Favre, Edgar Bonet, Cécile Raufast, Véronique Dupuis, Wolfgang Wernsdorfer, Stanislas Rohart, Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Consortium de Recherches pour l'Emergence des Technologies Avancées (CRETA), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), QuantECA - Circuits électroniques quantiques Alpes, Institut Néel (NEEL), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Hydrologie-Hydraulique (UR HHLY), Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Circuits électroniques quantiques Alpes (QuantECA), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS), Circuits électroniques quantiques Alpes (NEEL - QuantECA), and Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
- Subjects
Materials science ,Condensed matter physics ,Magnetism ,Condensation ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Materials Science ,Magnetic anisotropy ,Exchange bias ,Transmission electron microscopy ,Phase (matter) ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Physics::Atomic and Molecular Clusters ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,010306 general physics ,0210 nano-technology ,Anisotropy ,ComputingMilieux_MISCELLANEOUS ,Superparamagnetism - Abstract
We study the magnetic anisotropy of CoPt clusters produced by condensation of a stoichiometric vapor with an inert gas (helium) and co-deposited with various matrices. From electron transmission microscopy we show that the clusters have a mean diameter of about 2 nm with a narrow size distribution and present the FCC A1 disordered phase. At high temperature, the clusters display a superparamagnetic behavior. The transition to the blocked state enables us to determine the clusters magnetic anisotropy energy (MAE). From a careful analysis, we show in the one hand that CoPt clusters present a higher volume and intrinsic surface MAE than pure Co ones. In the other hand, the presence of platinum at the interface in CoPt clusters decreases the strong interfacial exchange anisotropy observed for Co clusters embedded in MgO.
- Published
- 2007
32. Highly asymmetric magnetic domain wall propagation due to coupling to a periodic pinning potential
- Author
-
Gilles Gaudin, Peter J. Metaxas, Jacques Ferré, Alexandra Mougin, Robert Stamps, Raphaël Weil, B. Rodmacq, Pierre-Jean Zermatten, R.L. Novak, Stanislas Rohart, Vincent Baltz, J.P. Jamet, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), The University of Western Australia (UWA), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, SUPA School of Physics and Astronomy [Glasgow], University of Glasgow, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Acoustics and Ultrasonics ,Magnetic domain ,Field (physics) ,Condensed matter physics ,Magnetometer ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,law.invention ,Condensed Matter::Materials Science ,Magnetization ,Dipole ,Hysteresis ,Ferromagnetism ,law ,0103 physical sciences ,Nanodot ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Magneto-optical microscopy and magnetometry have been used to study magnetization reversal in an ultrathin magnetically soft (Pt/Co)2 ferromagnetic film coupled to an array of magnetically harder (Co/Pt)4 nanodots via a predominantly dipolar interaction across a 3 nm Pt spacer. This interaction generates a spatially periodic pinning potential for domain walls propagating through the continuous magnetic film. When reversing the applied field with respect to the static nanodot array magnetization orientation, strong asymmetries in the wall velocity and switching fields are observed. Asymmetric switching fields mean that hysteresis of the film is characterized by a large bias field of dipolar origin which is linked to the wall velocity asymmetry. This latter asymmetry, though large at low fields, vanishes at high fields where the domains become round and compact. A field-polarity-controlled transition from dendritic to compact faceted domain structures is also seen at intermediate fields and a model is proposed to interpret the transition.
- Published
- 2015
33. Anatomy of Dzyaloshinskii-Moriya Interaction at Co / Pt Interfaces
- Author
-
Hongxin Yang, Stanislas Rohart, André Thiaville, Albert Fert, Mairbek Chshiev, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, ANR-13-BS10-0005,SOspin,Courants de spin et couple de transfert de spin produits par des effets spin-orbites(2013), ANR-11-BS10-0008,ESPERADO,Effets du couple de transfert de spin et des champs Rashba et Oersted sur la dynamique de parois(2011), ANR-14-CE26-0012,ULTRASKY,Skyrmions dans les couches magnétiques ultraminces en vue d'une spintronique basse consommation(2014), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Condensed Matter - Materials Science ,Spins ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Magnetism ,Skyrmion ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Heavy metals ,Coupling (physics) ,Domain wall (magnetism) ,Ferromagnetism ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Condensed Matter::Strongly Correlated Electrons ,Domain wall dynamics - Abstract
The Dzyaloshinskii-Moriya Interaction (DMI) between spins is induced by spin-orbit coupling in magnetic materials lacking inversion symmetry. DMI is recognized to play a crucial role at the interface between ferromagnetic (FM) and heavy nonmagnetic (NM) metals to create topological textures called magnetic skyrmions which are very attractive for ultra-dense information storage and spintronic devices. DMI also plays an essential role for fast domain wall (DW) dynamics driven by spin-orbit torques. Here, we present first principles calculations which clarify the main features and microscopic mechanisms of DMI in Co/Pt bilayers. DMI is found to be predominantly located at the interfacial Co layer, originating from spin-orbit energy provided by the adjacent NM layer. Furthermore, no direct correlation is found between DMI and proximity induced magnetism in Pt. These results clarify underlying mechanisms of DMI at FM/NM bilayers and should help optimizing material combinations for skyrmion- and DW-based storage and memory devices., 16 pages, 4 figures
- Published
- 2015
34. Building uniform and long-range ordered nanostructures on a surface by nucleation on a point defect array
- Author
-
Yann Girard, Stanislas Rohart, Antonio Tejeda, V. Repain, Sylvie Rousset, Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), and Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Materials science ,Nanostructure ,business.industry ,Nucleation ,chemistry.chemical_element ,02 engineering and technology ,Rate equation ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Condensed Matter::Materials Science ,Optics ,chemistry ,Chemical physics ,0103 physical sciences ,General Materials Science ,Kinetic Monte Carlo ,010306 general physics ,0210 nano-technology ,business ,Cobalt ,Vicinal ,Quantum tunnelling - Abstract
International Workshop on Self-Organized Nanostructures, Cargese, FRANCE, JUL 17-23, 2005; International audience; We present both experimental and simulated results of ordered growth of cobalt nano-islands on a Au(111) vicinal template. Firstly, the temperature range for ordered growth and the islands size distributions are investigated by a rate equation model and kinetic Monte Carlo (KMC) simulations. Secondly, the incidence of the surface structure on the growth of cobalt is studied in detail by means of variable temperature scanning tunnelling microscopy experiments and KMC simulations. The underlying atomic processes responsible for the ordered growth are discussed.
- Published
- 2006
35. Temperature dependence of ordered cobalt nanodots growth on Au(7 8 8)
- Author
-
G. Baudot, H. Ellmer, Stanislas Rohart, V. Repain, Yann Girard, and Sylvie Rousset
- Subjects
Nanostructure ,Morphology (linguistics) ,Materials science ,Superlattice ,General Physics and Astronomy ,chemistry.chemical_element ,Nanotechnology ,Surfaces and Interfaces ,General Chemistry ,Substrate (electronics) ,Condensed Matter Physics ,Surfaces, Coatings and Films ,chemistry ,Chemical physics ,Nanodot ,Cobalt ,Vicinal ,Deposition (law) - Abstract
A complete study of the link between growth conditions and cobalt nanodots morphology is performed on a Au(7 8 8) vicinal template using STM images at different temperatures. Once a good long-range order is established for the nanostructure superlattice, we elucidate how the substrate temperature during deposition influence the local order of the dots array. This work allows a full control of the local order of the nanostructure assembly and thus is an important step for the one who wants to perform physical properties measurements of nano-objects.
- Published
- 2003
36. Publisher's Note: 'Making the Dzyaloshinskii-Moriya interaction visible' [Appl. Phys. Lett. 110, 242402 (2017)]
- Author
-
M. Belmeguenai, Stanislas Rohart, Andrey Stashkevich, Yves Roussigné, S. M. Chérif, Aleš Hrabec, and André Thiaville
- Subjects
Physics and Astronomy (miscellaneous) - Published
- 2017
37. Chirality-Induced Asymmetric Magnetic Nucleation inPt/Co/AlOxUltrathin Microstructures
- Author
-
Ioan Mihai Miron, Gilles Gaudin, Stanislas Rohart, Stefania Pizzini, Jan Vogel, E. Jué, C. K. Safeer, Stéphane Auffret, André Thiaville, Olivier Boulle, and Liliana D. Buda-Prejbeanu
- Subjects
Magnetization ,Materials science ,Field (physics) ,Condensed matter physics ,Magnetic domain ,Nucleation ,General Physics and Astronomy ,Chirality (chemistry) ,Microstructure ,Anisotropy ,Magnetic field - Abstract
The nucleation of reversed magnetic domains in Pt/Co/AlO(x) microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. A quantitative explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.
- Published
- 2014
38. Spin waves: close-up on spin dynamics
- Author
-
Stanislas, Rohart and Guillemin, Rodary
- Published
- 2014
39. Nitrogen-vacancy-center imaging of bubble domains in a 6-Å film of cobalt with perpendicular magnetization
- Author
-
Vincent Jacques, André Thiaville, Jean-François Roch, Loïc Rondin, Jean-Philippe Tetienne, Emilie Jué, T. Hingant, Gilles Gaudin, Stanislas Rohart, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Laboratoire de Photonique Quantique et Moléculaire (LPQM), École normale supérieure - Cachan (ENS Cachan)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Microscope ,Materials science ,Condensed matter physics ,Magnetic domain ,Bubble ,Demagnetizing field ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,law.invention ,Magnetization ,Domain wall (magnetism) ,law ,[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other] ,0103 physical sciences ,Perpendicular ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,010306 general physics ,0210 nano-technology ,Nitrogen-vacancy center ,ComputingMilieux_MISCELLANEOUS - Abstract
We employ a scanning nitrogen-vacancy-center microscope to perform stray field imaging of bubble magnetic domains in a perpendicularly magnetized Pt/Co/AlOx trilayer with 6 A of Co. The stray field created by the domain walls is quantitatively mapped with few-nanometer spatial resolution, with a probe-sample distance of about 100 nm. As an example of application, we show that it should be possible to determine the Bloch or Neel nature of the domain walls, which is of crucial importance to the understanding of current-controlled domain wall motion.
- Published
- 2014
40. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry
- Author
-
Gilles Gaudin, T. Hingant, Laurent Vila, J.-P. Adam, L. Herrera Diez, Berthold Ocker, Jean-Philippe Tetienne, André Thiaville, Dafiné Ravelosona, Karin Garcia, Jean-François Roch, Joo-Von Kim, Stanislas Rohart, Luis Martinez, Ioan Mihai Miron, Vincent Jacques, Laboratoire Aimé Cotton (LAC), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Singulus technology AG, ANR-09-PDOC-0008,DIAMAG,Magnétomètre à centres colorés du diamant(2009), ANR-11-BS10-0008,ESPERADO,Effets du couple de transfert de spin et des champs Rashba et Oersted sur la dynamique de parois(2011), European Project: 611143,EC:FP7:ICT,FP7-ICT-2013-10,DIADEMS(2013), European Project: 257707,EC:FP7:ICT,FP7-ICT-2009-5,MAGWIRE(2010), and École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,Multidisciplinary ,Materials science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Magnetic domain ,Spintronics ,Skyrmion ,Orbit Torques ,General Physics and Astronomy ,Diamond ,FOS: Physical sciences ,Heterojunction ,Chiral Spin Torque ,General Chemistry ,engineering.material ,General Biochemistry, Genetics and Molecular Biology ,Dynamics ,Symmetry ,Ferromagnetism ,Microscopy ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,engineering ,Spin Hall effect ,Heterostructures - Abstract
The recent observation of current-induced domain wall (DW) motion with large velocity in ultrathin magnetic wires has opened new opportunities for spintronic devices. However, there is still no consensus on the underlying mechanisms of DW motion. Key to this debate is the DW structure, which can be of Bloch or N\'eel type, and dramatically affects the efficiency of the different proposed mechanisms. To date, most experiments aiming to address this question have relied on deducing the DW structure and chirality from its motion under additional in-plane applied fields, which is indirect and involves strong assumptions on its dynamics. Here we introduce a general method enabling direct, in situ, determination of the DW structure in ultrathin ferromagnets. It relies on local measurements of the stray field distribution above the DW using a scanning nanomagnetometer based on the Nitrogen-Vacancy defect in diamond. We first apply the method to a Ta/Co40Fe40B20(1 nm)/MgO magnetic wire and find clear signature of pure Bloch DWs. In contrast, we observe left-handed N\'eel DWs in a Pt/Co(0.6 nm)/AlOx wire, providing direct evidence for the presence of a sizable Dzyaloshinskii-Moriya interaction (DMI) at the Pt/Co interface. This method offers a new path for exploring interfacial DMI in ultrathin ferromagnets and elucidating the physics of DW motion under current., Comment: Main text and Supplementary Information, 33 pages and 12 figures
- Published
- 2014
- Full Text
- View/download PDF
41. Quantitative stray field imaging of a magnetic vortex core
- Author
-
André Thiaville, Jean-François Roch, Loïc Rondin, Vincent Jacques, Stanislas Rohart, Jean-Philippe Tetienne, and T. Hingant
- Subjects
Permalloy ,Microscope ,FOS: Physical sciences ,02 engineering and technology ,Spin structure ,01 natural sciences ,law.invention ,Condensed Matter::Materials Science ,Optics ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,010306 general physics ,Physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,business.industry ,Demagnetizing field ,Center (category theory) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetic field ,Vortex ,Ferromagnetism ,0210 nano-technology ,business - Abstract
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (~10 nm) of their core, earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray magnetic field above a 1 micron-diameter disk of permalloy, unambiguously revealing the vortex core. Analysis of both probe-to-sample distance and tip motion effects through stroboscopic measurements, allows us to compare directly our quantitative images to micromagnetic simulations of an ideal structure. Slight perturbations with respect to the perfect vortex structure are clearly detected either due to an applied in-plane magnetic field or imperfections of the magnetic structures. This work demonstrates the potential of scanning NV microscopy to map tiny stray field variations from nanostructures, providing a nanoscale, non-perturbative detection of their magnetic texture., 5 pages, 4 figures
- Published
- 2013
42. Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction
- Author
-
André Thiaville and Stanislas Rohart
- Subjects
Materials science ,Nanostructure ,Condensed Matter - Mesoscale and Nanoscale Physics ,Condensed matter physics ,Skyrmion ,FOS: Physical sciences ,Large range ,Magnetic skyrmion ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Magnetization ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Boundary value problem ,Nanodot ,Micromagnetics - Abstract
We study the modification of micromagnetic configurations in nanostructures, due to the Dzyaloshinskii-Moriya interaction (DMI) that appear at the interface of an ultrathin film. We show that this interaction leads to new micromagnetic boundary conditions that bend the magnetization at the edges. We explore several cases of ultrathin film nanostructures that allow analytical calculations (1D systems, domain walls, cycloids and skyrmions), compare with fully numerical calculations, and show that a good physical understanding of this new type of micromagnetics can be reached. We particularly focus on skyrmions confined in circular nanodots and show that edges allow for the isolation of single skyrmions for a large range of the DMI parameter., Comment: Author adress: Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS UMR 8502, F-91405 Orsay Cedex, France
- Published
- 2013
43. Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks
- Author
-
Stefania Pizzini, Emilie Jué, Gilles Gaudin, Stanislas Rohart, Jan Vogel, Liliana D. Buda-Prejbeanu, André Thiaville, Olivier Boulle, Ioan Mihai Miron, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Micro et NanoMagnétisme (MNM), Institut Néel (NEEL), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Micro et NanoMagnétisme (NEEL - MNM), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,Condensed Matter - Materials Science ,Condensed matter physics ,media_common.quotation_subject ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,General Physics and Astronomy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Magnetostatics ,01 natural sciences ,Asymmetry ,Magnetic field ,Out of plane ,Magnetic anisotropy ,symbols.namesake ,Transverse plane ,0103 physical sciences ,Perpendicular ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,010306 general physics ,0210 nano-technology ,Lagrangian ,media_common - Abstract
We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems., 12 pages, 3 figures, 1 Supplementary Materials
- Published
- 2013
44. Spatially periodic domain wall pinning potentials: Asymmetric pinning and dipolar biasing
- Author
-
Robert Stamps, Raphaël Weil, Vincent Baltz, J.-P. Jamet, Peter J. Metaxas, Stanislas Rohart, J. Ferré, Gilles Gaudin, Pierre-Jean Zermatten, R.L. Novak, Bernard Rodmacq, Alexandra Mougin, The University of Western Australia (UWA), Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), SUPA School of Physics and Astronomy [Glasgow], and University of Glasgow
- Subjects
Physics ,Field (physics) ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,Coercivity ,021001 nanoscience & nanotechnology ,01 natural sciences ,Magnetic field ,Magnetization ,Hysteresis ,Exchange bias ,Domain wall (magnetism) ,Ferromagnetism ,0103 physical sciences ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology - Abstract
Domain wall propagation has been measured in continuous, weakly disordered, quasi-two-dimensional, Ising-like magnetic layers that are subject to spatially periodic domain wall pinning potentials. The potentials are generated non-destructively using the stray magnetic field of ordered arrays of magnetically hard [Co/Pt]$_m$ nanoplatelets which are patterned above and are physically separated from the continuous magnetic layer. The effect of the periodic pinning potentials on thermally activated domain wall creep dynamics is shown to be equivalent, at first approximation, to that of a uniform, effective retardation field, $H_{ret}$, which acts against the applied field, $H$. We show that $H_{ret}$ depends not only on the array geometry but also on the relative orientation of $H$ and the magnetization of the nanoplatelets. A result of the latter dependence is that wall-mediated hysteresis loops obtained for a set nanoplatelet magnetization exhibit many properties that are normally associated with ferromagnet/antiferromagnet exchange bias systems. These include a switchable bias, coercivity enhancement and domain wall roughness that is dependent on the applied field polarity., Comment: 12 pages, 9 figures
- Published
- 2013
- Full Text
- View/download PDF
45. Stray-field imaging of magnetic vortices with a single diamond spin
- Author
-
André Thiaville, Jean-Philippe Tetienne, Stanislas Rohart, Loïc Rondin, Jean-François Roch, T. Hingant, Vincent Jacques, and Piernicola Spinicelli
- Subjects
Permalloy ,Multidisciplinary ,Materials science ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Magnetometer ,Demagnetizing field ,General Physics and Astronomy ,Diamond ,FOS: Physical sciences ,General Chemistry ,engineering.material ,General Biochemistry, Genetics and Molecular Biology ,Vortex state ,Vortex ,law.invention ,Magnetic field ,Magnetization ,Condensed Matter::Materials Science ,law ,Condensed Matter::Superconductivity ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,engineering - Abstract
Despite decades of advances in magnetic imaging, obtaining direct, quantitative information with nanometre scale spatial resolution remains an outstanding challenge. Recently, a technique has emerged that employs a single nitrogen-vacancy defect in diamond as an atomic-size magnetometer, which promises significant advances. However, the effectiveness of the technique when applied to magnetic nanostructures remains to be demonstrated. Here we use a scanning nitrogen-vacancy magnetometer to image a magnetic vortex, which is one of the most iconic objects of nanomagnetism, owing to the small size (~10 nm) of the vortex core. We report three-dimensional, vectorial and quantitative measurements of the stray magnetic field emitted by a vortex in a ferromagnetic square dot, including the detection of the vortex core. We find excellent agreement with micromagnetic simulations, both for regular vortex structures and for higher-order magnetization states. These experiments establish scanning nitrogen-vacancy magnetometry as a practical and unique tool for fundamental studies in nanomagnetism. Obtaining quantitative information on nanoscale magnetic structures is a challenge. Here, the authors apply scanning probe magnetometry based on a single nitrogen-vacancy defect in diamond to quantitatively map the stray magnetic field emitted by a vortex state in a ferromagnetic dot.
- Published
- 2013
- Full Text
- View/download PDF
46. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films
- Author
-
André Thiaville, Emilie Jué, Albert Fert, Stanislas Rohart, and Vincent Cros
- Subjects
Physics ,Condensed Matter - Materials Science ,Condensed matter physics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Dynamics (mechanics) ,General Physics and Astronomy ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Physics::Fluid Dynamics ,Domain wall (magnetism) ,Stationary conditions ,Domain (ring theory) ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Spin Hall effect ,Perpendicular anisotropy ,Magnetic films ,Condensed Matter::Strongly Correlated Electrons ,Micromagnetics - Abstract
We explore a new type of domain wall structure in ultrathin films with perpendicular anisotropy, that is influenced by the Dzyaloshinskii-Moriya interaction due to the adjacent layers. This study is performed by numerical and analytical micromagnetics. We show that these walls can behave like Neel walls with very high stability, moving in stationary conditions at large velocities under large fields. We discuss the relevance of such walls, that we propose to call Dzyaloshinskii domain walls, for current-driven domain wall motion under the spin Hall effect., 7 pages, 3 figures. Accepted for publication in Europhysics Letters
- Published
- 2012
47. Magnetization reversal by confined droplet growth in soft/hard hybrid nanodisks with perpendicular anisotropy
- Author
-
Raphaël Weil, Jacques Ferré, Stanislas Rohart, Alexandra Mougin, J.-P. Jamet, Giancarlo Faini, J.-P. Adam, Harry Bernas, Laboratoire de Physique des Solides (LPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), CSNSM PS2, Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Laboratoire de photonique et de nanostructures (LPN), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
DYNAMICS ,Materials science ,Kerr effect ,FERROMAGNETIC PARTICLES ,02 engineering and technology ,01 natural sciences ,Ion ,Geomagnetic reversal ,MEDIA ,Metastability ,0103 physical sciences ,Perpendicular ,010306 general physics ,Condensed matter physics ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,IRRADIATION ,MODEL ,Domain wall (magnetism) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Polar ,75.60.Jk, 68.55.Ln, 75.75.Jn ,Deformation (engineering) ,0210 nano-technology ,NUCLEATION - Abstract
Magnetization reversal dynamics in single perpendicular Pt/Co/Pt high aspect ratio nanodisks have been studied by polar magneto-optical Kerr effect microscopy. The He${}^{+}$ ion process used to pattern these nanodisks resulted in a soft/hard nanodisk structure. The energy barrier field dependence was determined from the simple exponential variation of the nonswitching probability with time. The standard coherent reversal scenario fails to account for it whereas a two-dimensional-confined droplet model supports the experimental observations. From a ring shaped metastable domain wall in the magnetically soft outer ring, the reversal progresses via the deformation of the domain wall and the expansion of a reversed confined droplet through the nanodisk hard core. This magnetic reversal, governed by domain wall propagation alone, ensures a magnetization reversal reproducibility from nanodisk to nanodisk and the very narrow energy barrier distribution observed.
- Published
- 2012
48. Nanoscale magnetic field mapping with a single spin scanning probe magnetometer
- Author
-
Jean-Philippe Tetienne, Stanislas Rohart, Géraldine Dantelle, Piernicola Spinicelli, Loïc Rondin, C. Dal Savio, Jean-François Roch, Khaled Karrai, Vincent Jacques, and André Thiaville
- Subjects
Physics ,Physics and Astronomy (miscellaneous) ,Spintronics ,Condensed Matter - Mesoscale and Nanoscale Physics ,Magnetometer ,business.industry ,Resolution (electron density) ,Diamond ,FOS: Physical sciences ,engineering.material ,law.invention ,Magnetic field ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,engineering ,Optoelectronics ,Electron paramagnetic resonance ,Spin (physics) ,business ,Nanoscopic scale - Abstract
We demonstrate quantitative magnetic field mapping with nanoscale resolution, by applying a lock-in technique on the electron spin resonance frequency of a single nitrogen-vacancy defect placed at the apex of an atomic force microscope tip. In addition, we report an all-optical magnetic imaging technique which is sensitive to large off-axis magnetic fields, thus extending the operation range of diamond-based magnetometry. Both techniques are illustrated by using a magnetic hard disk as a test sample. Owing to the non-perturbing and quantitative nature of the magnetic probe, this work should open up numerous perspectives in nanomagnetism and spintronics.
- Published
- 2011
49. Magnetization textures in NiPd nanostructures
- Author
-
Jacques Miltat, Jean-Yves Chauleau, Stanislas Rohart, Andrea Locatelli, Benjamin J. McMorran, André Thiaville, R. Belkhou, Tevfik Onur Menteş, John Unguris, Miguel Angel Niño, and Nicolas Bergeard
- Subjects
Materials science ,Condensed matter physics ,Scanning electron microscope ,business.industry ,Condensed Matter Physics ,Polarization (waves) ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Materials Science ,Magnetization ,Photoemission electron microscopy ,Optics ,Energy filtered transmission electron microscopy ,Magnetic force microscope ,Anisotropy ,business ,Photoconductive atomic force microscopy - Abstract
We have observed peculiar magnetization textures in Ni${}_{80}$Pd${}_{20}$ nanostrips using three different imaging techniques: magnetic force microscopy, photoemission electron microscopy under polarized x-ray absorption, and scanning electron microscopy with polarization analysis. The appearance of diamondlike domains with strong lateral charges and of weak-stripe structures reveals the presence of both a transverse and a perpendicular anisotropy in these nanostructures. The anisotropy is seen to reinforce as temperature decreases, as testified by observations performed at 150 K. A thermal stress model with relaxation is proposed to account for these observations. Elastic calculations coupled to micromagnetic simulations support qualitatively this model.
- Published
- 2011
50. Close-up on spin dynamics
- Author
-
Guillemin Rodary and Stanislas Rohart
- Subjects
Materials science ,Condensed matter physics ,Spin dynamics ,Spin polarization ,Mechanical Engineering ,Spin engineering ,General Chemistry ,Electron ,Condensed Matter Physics ,Magnetization ,Ferromagnetism ,Mechanics of Materials ,Spin wave ,Excited state ,General Materials Science ,Atomic physics - Abstract
Standing spin-waves can be excited in artificial chains of magnetic atoms using inelastic electron tunnelling spectroscopy, thereby offering a route to speed up the switching of their magnetization.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.