1. Micron-size tire tread particles leach organic compounds at higher rates than centimeter-size particles: Compound identification and profile comparison.
- Author
-
Stack ME, Hollman K, Mladenov N, Harper B, Pinongcos F, Sant KE, Rochman CM, Richardot W, Dodder NG, and Hoh E
- Subjects
- Gas Chromatography-Mass Spectrometry, Particle Size, Risk Assessment, Dissolved Organic Matter analysis, Dissolved Organic Matter chemistry, Dissolved Organic Matter classification, Plastics analysis, Plastics chemistry, Plastics classification, Water Pollutants, Chemical analysis, Water Pollutants, Chemical chemistry, Water Pollutants, Chemical classification, Phenylenediamines analysis, Phenylenediamines chemistry, Phenylenediamines classification
- Abstract
Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 μm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds. Nontargeted chemical analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) was used to compare the chemical profiles of leachates. After leaching for 12 days, DOC was 4.0 times higher in the micron TTP leachate than in the centimeter TTP leachate, and TDN was 2.6 times higher. The total GC×GC/TOF-MS chromatographic feature peak area was 2.9 times greater in the micron TTP leachate than the centimeter TTP leachate, and similarly, the total relative abundance of 54 tentatively identified compounds was 3.3 times greater. We identified frequently measured tire-related chemicals, such as 6PPD, N-cyclohexyl-N'-phenylurea (CPU), and hexa(methoxymethyl)melamine (HMMM), but nearly 50% of detected chemicals were not previously reported in tire literature or lacked toxicity information. Overall, the results demonstrate that smaller TTP have a greater potential to leach chemicals into aquatic systems, but a significant portion of these chemicals are not well-studied and require further risk assessment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF