Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contralateral side of the cerebellum. We aimed to evaluate behavior associated with the cerebellum, to acquire cerebellar abundant metabolic alterations using in vivo 1H magnetic resonance spectroscopy (1H MRS), and to determine GFAP, NeuN, and MBP protein expression in the left cerebellum, in adult rats after mild early postnatal HI on the right forebrain at day 3 (PND3). From PND45, HI animals exhibited increased locomotion in the open field while there is neither asymmetrical forelimb use nor coordination deficits in the motor tasks. Despite the fact that metabolic differences between two cerebellar hemispheres were noticeable, a global increase in glutamine of HI rats was observed and became significant in the left cerebellum compared to the sham-operated group. Furthermore, increases in glutamate, glycine, the sum of glutamate and glutamine and total choline, only occurred in the left cerebellum of HI rats. Remarkably, there were decreased expression of MBP and NeuN but no detectable reactive astrogliosis in the contralateral side of the cerebellum of HI rats. Taken together, the detected alterations observed in the left cerebellum of HI rats may reflect disequilibrium in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons from hypoxic-ischemic origin. Our data provides in vivo evidence of long-term changes in the corresponding cerebellum following mild neonatal HI in very immature rats, supporting the notion that systemic HI could cause cell death in the cerebellum, a distant region from the expected injury site. HIGHLIGHTS simple - Neonatal hypoxia-ischemia (HI) in very immature rats induces hyperactivity toward adulthood. simple - 1H magnetic resonance spectroscopy detects long-term cerebellar metabolic changes in adult rats after neonatal HI at postnatal day 3. simple - Substantial decreases of expression of neuronal and myelin markers in adult rats cerebellum after neonatal cortical mild HI. Keywords: hypoxia-ischemia, prematurity, 1H magnetic resonance spectroscopy, 1H MRS, cerebellum, brain Introduction Complications derived from premature birth account for 29% of global neonatal deaths yearly and around 3% of total disability during the lifespan (Lawn et al., 2010; Howson et al., 2013). Premature newborns have a high incidence of neonatal brain injury (Gopagondanahalli et al., 2016) linked to subcortical white and gray matter lesions, impaired structural connectivity (Volpe et al., 2011; Salmaso et al., 2014) which cause lifelong neurodevelopment disturbances (Robinson, 2005; Allin et al., 2008; Delobel-Ayoub et al., 2009; Pyhala, 2012; Breeman et al., 2015; Hubner et al., 2015; Thomason et al., 2017). Neonatal hypoxia-ischemia (HI) contributes to pathologies such as cerebral palsy (CP), developmental delay, attention deficit and hyperactivity disorder (ADHD) learning deficits and others (Fatemi et al., 2009; Volpe, 2009a; Phillips et al., 2013). The most used experimental model of neonatal HI (Levine, 1960; Rice et al., 1981) consists of unilateral carotid ligation followed by a period of hypoxic exposure leading to deficits in motor coordination (Lubics et al., 2005), anxiety-related behavior and cognitive impairment in early and late development, due to lesions in hippocampus, striatum and cortex (Arteni et al., 2010; Sanches et al., 2015). Also, studies using HI at postnatal day 7 have shown that cell death occurs in brain regions that are not directly affected by ischemia, such as the cerebellum (Joyal et al., 1996; Kim et al., 2004; Northington et al., 2011) suggesting that neuronal connectivity may play a role in neurodegeneration following HI to the immature brain. The HI model performed at postnatal day 3 mimics the lesion observed in very preterm infants’ brains (Sizonenko et al., 2003; Sanches et al., 2013; Ginet et al., 2016). HI in the very immature rat brain causes disruption in cell metabolism, development and in cortical cytoarchitecture (Sizonenko et al., 2008; van de Looij et al., 2011; Misumi et al., 2016), alters the myelination pattern and leads to behavioral impairments (Huang et al., 2009; Sanches et al., 2015; Misumi et al., 2016). HI injury characteristics can be detected in infants born preterm via magnetic resonance imaging. Alderliesten et al. (2013) found high correlation between neuropathological evidence of cerebellar injury and MRI analysis (Alderliesten et al., 2013). Since cerebellum has a major role in high order brain functions, lesions in its connections with cortical and sub-cortical centers could lead not only to motor and verbal impairments (Marr, 1969; Barradas et al., 2016) but also to cognitive, affective and social disturbances (Schmahmann et al., 2008; Limperopoulos et al., 2009; Kitai et al., 2015). Strikingly, pathologic evidence of cerebellar injury in neonates has gained valuable input with the advances in numerous magnetic resonance imaging (MRI) techniques (reviewed by Smyser et al., 2018) in which many HI injury characteristics (Schneider et al., 2009; Matsufuji et al., 2017) and other early-life cerebellar impairments associated with brain injury in premature infants can be detected (Limperopoulos, 2005a,b). Despite the improving imaging techniques, early diagnosis before the formation of MRI-detectable lesions remains challenging (Gopagondanahalli et al., 2016). In addition, 1H MR spectroscopy (1H MRS) offers abundant cerebral metabolites and are applicable to neonatal HI in preterm newborns (Cheong et al., 2006; Xu and Vigneron, 2010) but remains less explored in the cerebellum and even less so in the long-term perspective. Besides, 1H MRS shows early alterations in brain structure and metabolism highly correlated to HI in clinical and preclinical settings (Roelants-Van Rijn et al., 2001; van de Looij et al., 2015; Xu et al., 2015) and could be used as a biomarker for late-term neurodevelopmental outcomes following HI. The cerebellum is not classically considered a brain region vulnerable to hypoxic-ischemic insults mainly due to its relative distance from the injury site in initial phases of injury (only suffering from systemic hypoxia). However, recent data suggests the presence of cerebellar injury following experimental HI (Taylor et al., 2006; Biran et al., 2011). Since neonatal HI in very immature rats is highly variable and affects the cerebellum up to weeks later (Biran et al., 2011), and may not be detected by standard MRI in adulthood, we aimed to evaluate the long-term effects of mild HI (Sanches et al., 2018) on (1) cerebellar metabolism at adulthood using 1H MRS; (2) locomotor function, and (3) expression of astrocytes, neurons and myelin proteins.