111 results on '"Stéphane Fusil"'
Search Results
2. Visualizing Giant Ferroelectric Gating Effects in Large-Scale WSe2/BiFeO3 Heterostructures
- Author
-
Raphaël Salazar, Sara Varotto, Céline Vergnaud, Vincent Garcia, Stéphane Fusil, Julien Chaste, Thomas Maroutian, Alain Marty, Frédéric Bonell, Debora Pierucci, Abdelkarim Ouerghi, François Bertran, Patrick Le Fèvre, Matthieu Jamet, Manuel Bibes, Julien Rault, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de photonique et de nanostructures (LPN), ANR-18-CE24-0007,MAGICVALLEY,Polarisation de vallée induite par couplage d'échange magnétique dans les matériaux 2D à grande échelle(2018), and ANR-18-CE24-0015,CORNFLAKE,Contrôle ferroélectrique du couplage spin-orbite dans les dichalcogenides de métaux de transition(2018)
- Subjects
perovskite oxides ,Condensed Matter - Materials Science ,Strongly Correlated Electrons (cond-mat.str-el) ,quantum materials ,Mechanical Engineering ,ferroelectrics ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,Bioengineering ,General Chemistry ,Condensed Matter Physics ,Condensed Matter - Strongly Correlated Electrons ,heterostructures ,transition-metal dichalcogenides ,General Materials Science ,angle-resolved photoemission spectroscopy ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] - Abstract
International audience; Multilayers based on quantum materials (complex oxides, topological insulators, transition-metal dichalcogenides, etc.) have enabled the design of devices that could revolutionize microelectronics and optoelectronics. However, heterostructures incorporating quantum materials from different families remain scarce, while they would immensely broaden the range of possible applications. Here we demonstrate the large-scale integration of compounds from two highly multifunctional families: perovskite oxides and transition-metal dichalcogenides (TMDs). We couple BiFeO 3 , a room-temperature multiferroic oxide, and WSe 2 , a semiconducting two-dimensional material with potential for photovoltaics and photonics. WSe 2 is grown by molecular beam epitaxy and transferred on a centimeter-scale onto BiFeO 3 films. Using angle-resolved photoemission spectroscopy, we visualize the electronic structure of 1 to 3 monolayers of WSe 2 and evidence a giant energy shift as large as 0.75 eV induced by the ferroelectric polarization direction in the underlying BiFeO 3. Such a strong shift opens new perspectives in the efficient manipulation of TMD properties by proximity effects.
- Published
- 2022
3. Ferroelectric phase transitions in epitaxial antiferroelectric PbZrO3 thin films
- Author
-
Pauline Dufour, Thomas Maroutian, Maxime Vallet, Kinnary Patel, André Chanthbouala, Charlotte Jacquemont, Lluis Yedra, Vincent Humbert, Florian Godel, Bin Xu, Sergey Prosandeev, Laurent Bellaiche, Mojca Otoničar, Stéphane Fusil, Brahim Dkhil, Vincent Garcia, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Centre de Nanosciences et de Nanotechnologies (C2N), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Arkansas [Fayetteville], Soochow University, Jozef Stefan Institute [Ljubljana] (IJS), ANR-21-CE09-0033,TATOO,Contrôle des états topologiques dans les multiferroïques(2021), ANR-17-CE24-0032,EXPAND,Exploration des oxydes antiferroélectritriques comme nouvel brique technologique pour de futurs dispositifs nanoélectroniques(2017), and European Project: 964931,TSAR
- Subjects
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Physics and Astronomy - Abstract
International audience; The archetypical antiferroelectric, PbZrO3, is currently attracting a lot of interest, but no consensus can be clearly established on the nature of its ground state as well as on the influence of external stimuli over its physical properties. Here, the antiferroelectric state of 45-nm-thick epitaxial thin films of PbZrO3 is established by observing the characteristic structural periodicity of antiparallel dipoles at the atomic scale, combined with clear double hysteresis of the polarization-electric field response related to antiferroelectric–to–ferroelectric phase transitions. Surprisingly, while the antiferroelectric state is identified as the ground state, temperature-dependent measurements show that a transition to a ferroelectric-like state appears in a large temperature window (100 K). Atomistic simulations further confirm the existence, and provides the origin, of such ferroelectric state in the films. Electric-field-induced ferroelectric transitions are also detected by the divergence of the piezoresponse force microscopy response. Using this technique, we further reveal the signature of a ferroelectric ground state for 4-nm-thick PbZrO3 films. Compared with bulk crystals, these results suggest a more complex competition between ferroelectric and antiferroelectric phases in epitaxial thin films of PbZrO3.
- Published
- 2023
4. Ultrafast light-induced strain and symmetry breaking in ferroic materials
- Author
-
Ruizhe Gu, Gwenaëlle Vaudel, Vincent Juve, Stéphane Fusil, Vincent Garcia, Daniel Sando, Mads Weber, Charles Paillard, Vitalyi E. Goussev, Houssny Bouyanfif, Brahim Dkhil, Claire Laulhé, and Pascal Ruello
- Published
- 2022
5. Imaging topological defects in a non-collinear antiferromagnet
- Author
-
Aurore Finco, Angela Haykal, Stéphane Fusil, Pawan Kumar, Pauline Dufour, Anne Forget, Dorothée Colson, Jean-Yves Chauleau, Michel Viret, Nicolas Jaouen, Vincent Garcia, Vincent Jacques, Laboratoire Charles Coulomb (L2C), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), and ANR-21-CE09-0033,TATOO,Contrôle des états topologiques dans les multiferroïques(2021)
- Subjects
Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Physics and Astronomy ,FOS: Physical sciences ,Condensed Matter::Strongly Correlated Electrons ,Physics - Applied Physics ,Applied Physics (physics.app-ph) - Abstract
We report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO$_3$ crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wavevectors. We then show that the direction of these wavevectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wavevectors. At the junctions between the magnetic domains, we observe topological line defects identical to those found in a broad variety of lamellar physical systems with rotational symmetries. Our work establishes the presence of these magnetic objects at room temperature in the multiferroic antiferromagnet BiFeO$_3$, offering new possibilities for their use in spintronics., Comment: 7 pages, 4 figures, supplemental material as ancillary file
- Published
- 2022
- Full Text
- View/download PDF
6. Voltage-based magnetization switching and reading in magnetoelectric spin-orbit nanodevices
- Author
-
Diogo C. Vaz, Chia-Ching Lin, John J. Plombon, Won Young Choi, Inge Groen, Isabel C. Arango, Andrey Chuvilin, Luis E. Hueso, Dmitri E. Nikonov, Hai Li, Punyashloka Debashis, Scott B. Clendenning, Tanay A. Gosavi, Yen-Lin Huang, Bhagwati Prasad, Ramamoorthy Ramesh, Aymeric Vecchiola, Manuel Bibes, Karim Bouzehouane, Stephane Fusil, Vincent Garcia, Ian A. Young, and Fèlix Casanova
- Subjects
Science - Abstract
Abstract As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO3, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO3. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.
- Published
- 2024
- Full Text
- View/download PDF
7. Quantitative imaging of antiferromagnetic spin cycloidal textures on strain engineered BiFeO3 thin films with a scanning nitrogen-vacancy magnetometer
- Author
-
Karim Bouzehouane, Mathieu Munsch, A. Finco, Hai Zhong, Felipe Fávaro de Oliveira, Stéphane Fusil, J. Fischer, Vincent Garcia, Alexander Stark, A. Haykal, Patrick Maletinsky, and Vincent Jacques
- Subjects
chemistry.chemical_compound ,Piezoresponse force microscopy ,Domain wall (magnetism) ,Strain engineering ,Materials science ,chemistry ,Condensed matter physics ,Spintronics ,Multiferroics ,Texture (crystalline) ,Ferroelectricity ,Bismuth ferrite - Abstract
Antiferromagnetic thin films attract significant interest for future low-power spintronic devices [1]. Multiferroics, such as bismuth ferrite BiFeO3, in which antiferromagnetism and ferroelectricity coexist at room temperature, appears as a unique platform for spintronic [2] and magnonic devices [3]. The nanoscale structure of its ferroelectric domains has been widely investigated with piezoresponse force microscopy (PFM), revealing unique domain structures and domain wall functionalities [4]. However, the nanoscale magnetic textures present in BiFeO3 and their potential for spin-based technology remain concealed. In this report, we present two different antiferromagnetic spin textures in multiferroic BiFeO3 thin films with different epitaxial strains, using a commercial non-invasive scanning Nitrogen-Vacancy (NV) magnetometer based on a single NV defect in diamond, with a calibrated NV flying height of 60 nm and a proven DC field sensitivity of 1 T/Hz. Two BiFeO3 samples were grown on DyScO3 (110) and SmScO3 (110) substrates (later mentioned as BFO/DSO and BFO/SSO, respectively) using pulsed laser deposition. The striped ferroelectric domains in both samples are first observed by the in-plane PFM. The scanning NV magnetometry (SNVM) confirms the existence of the spin cycloid texture, with zig-zag wiggling angles of 90 and 127, and propagation wavelength of DSO=64 nm andSSO=103 nm, respectively. At the local scale, the combination of PFM and SNVM allows to identify the relative orientation of the ferroelectric polarization and cycloid propagation directions on both sides of a domain wall. For the BFO/DSO sample, the 90-degree in-plane rotation of the ferroelectric polarization imprints the 90-degree in-plane rotation of the cycloidal propagation direction along k1=[-1 1 0], corresponding to the type-I cycloid. On the contrary, in the BFO/SSO sample, the propagation vectors are found to be along k1'=[-2 1 1] and k2'= [1 -2 1] directions in the neighboring domains separated by the 71 domain wall. It is worth to mentioned that in the previous report [5], BFO/SSO, prepared in another growth chamber, showed G-type antiferromagnetic textures, compared to the observed type-II cycloid here. Our results here shed the light on future potential for reconfigurable nanoscale spin textures on multiferroic systems by strain engineering.
- Published
- 2021
8. Patterning enhanced tetragonality in BiFeO3 thin films with effective negative pressure by helium implantation
- Author
-
Pierre Fertey, Vincent Garcia, Jean-Nicolas Audinot, E. Elkaim, Jens Kreisel, S. Farokhipoor, I. Peral Alonso, Lluís Yedra, F. Carla, Tom Wirtz, J. Fischer, Mael Guennou, Beatriz Noheda, Amélie Jarnac, Constance Toulouse, and Stéphane Fusil
- Subjects
Phase transition ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,chemistry.chemical_element ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Epitaxy ,01 natural sciences ,chemistry.chemical_compound ,symbols.namesake ,chemistry ,Phase (matter) ,0103 physical sciences ,symbols ,General Materials Science ,Deformation (engineering) ,Thin film ,010306 general physics ,0210 nano-technology ,Raman spectroscopy ,Helium ,Bismuth ferrite - Abstract
Helium implantation in epitaxial thin films is a way to control the out-of-plane deformation independently from the in-plane strain controlled by epitaxy. In particular, implantation by means of a helium microscope allows for local implantation and patterning down to the nanometer resolution, which is of interest for device applications. We present here a study of bismuth ferrite (BiFeO3) films where strain was patterned locally by helium implantation. Our combined Raman, XRD and TEM study shows that the implantation causes an elongation of the BiFeO3 unit cell and ultimately a transition towards the so-called super-tetragonal polymorph via states with mixed phases. In addition, TEM reveals the onset of amorphization at a threshold dose that does not seem to impede the overall increase in tetragonality. The phase transition from the R-like to T-like BiFeO3 appears as first-order in character, with regions of phase coexistence and abrupt changes in lattice parameters.
- Published
- 2021
9. Surface and bulk ferroelectric phase transition in super-tetragonal BiFeO 3 thin films
- Author
-
D. Martinotti, Aymeric Vecchiola, Qiuxiang Zhu, Myriam Lachheb, Nicholas Barrett, Claire Mathieu, Christophe Lubin, Stéphane Fusil, Manuel Bibes, Xiaoyan Li-Bourrelier, A. Pancotti, Vincent Garcia, Qiang Wu, Alexandre Gloter, C. Carrétéro, Brahim Dkhil, Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Kelvin probe force microscope ,Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Electron energy loss spectroscopy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,Tetragonal crystal system ,Piezoresponse force microscopy ,X-ray photoelectron spectroscopy ,0103 physical sciences ,Scanning transmission electron microscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Curie temperature ,General Materials Science ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
The temperature-dependent ferroelectric properties of super-tetragonal ${\mathrm{BiFeO}}_{3}$ are investigated using surface-sensitive low-energy electron microscopy (LEEM). We use epitaxial oxide ${\mathrm{BiFeO}}_{3}/{\mathrm{Ca}}_{0.96}{\mathrm{Ce}}_{0.04}{\mathrm{MnO}}_{3}$ bilayers grown by pulsed laser deposition on ${\mathrm{YAlO}}_{3}$ substrates. Ferroelectric, micrometer-scale domains are written by piezoresponse force microscopy and subsequently observed by LEEM from room temperature up to about 950 K. Kelvin probe force microscopy and LEEM spectroscopy reveal that the surface potential is efficiently (g50%) screened by adsorbates that are only released after annealing above 873 $\ifmmode\pm\else\textpm\fi{}$ 50 K in ultrahigh vacuum. The surface structure and chemistry of the ferroelectric thin films are analyzed using scanning transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron spectroscopy, discarding the occurrence of a putative ``skin layer'' effect. While its magnetic and structural transitions were reported in the literature, the true, ferroelectric Curie temperature of super-tetragonal ${\mathrm{BiFeO}}_{3}$ has not been determined so far. Here, we measure a Curie temperature of 930 $\ifmmode\pm\else\textpm\fi{}$ 30 K for the super-tetragonal ${\mathrm{BiFeO}}_{3}$ surface and corroborate it with volume-sensitive, temperature-dependent x-ray diffraction measurements. These results suggest that LEEM can be used as a powerful tool to probe surface charge and ferroelectric transitions in ultrathin films.
- Published
- 2021
10. X-ray absorption and x-ray magnetic circular dichroism in bulk and thin films of ferrimagnetic GdTi O 3
- Author
-
A. Barthélémy, F. Choueikani, B. Delley, Markus Braden, G. Sanchez-Santolino, T. Fröhlich, J. Varignon, Stéphane Fusil, Manuel Bibes, Maria Varela, Philippe Ohresser, Richard Mattana, Mathieu N. Grisolia, Cinthia Piamonteze, Raphael Aeschlimann, Jesus Santamaria, Vincent Garcia, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Magnetic structure ,Magnetic circular dichroism ,Order (ring theory) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Condensed Matter::Materials Science ,Ferromagnetism ,X-ray magnetic circular dichroism ,Ferrimagnetism ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Antiferromagnetism ,Condensed Matter::Strongly Correlated Electrons ,General Materials Science ,Absorption (logic) ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
Perovskite rare-earth titanates are prototypical Mott insulators in which ${\mathrm{Ti}}^{3+}$ ions with $3{d}^{1}$ electronic configuration exhibit ferromagnetic or antiferromagnetic spin order, depending on the rare-earth size. This peculiar magnetic behavior has, however, been barely studied with element-specific probes, either in bulk or in thin films. The recent finding of fingerprints of ferromagnetism in two-dimensional electron gases at oxide interfaces involving rare-earth titanates has produced a surge of the interest in these complex materials. Harnessing the interfacial magnetic states in these heterostructures calls for a better understanding of their insufficiently explored magnetic states in bulk and especially in thin film form. In this paper, we combine high-resolution transmission electron microscopy with x-ray absorption spectroscopy and x-ray magnetic circular dichroism (XMCD) to determine the structural, electronic, and magnetic structure of $\mathrm{GdTi}{\mathrm{O}}_{3}$ in bulk and thin film form. In both cases, we find that the sample surface is strongly overoxidized but a few nm below, Ti is mostly 3+ and shows a large XMCD. We provide evidence for the ferrimagnetic nature of $\mathrm{GdTi}{\mathrm{O}}_{3}$ with antialigned Gd and Ti sublattices and show that, just as in antiferromagnetic $\mathrm{LaTi}{\mathrm{O}}_{3}$ or ferromagnetic $\mathrm{YTi}{\mathrm{O}}_{3}$, Ti carries no orbital moment.
- Published
- 2021
11. Voltage-Controlled Reconfigurable Magnonic Crystal at the Sub-micrometer Scale
- Author
-
Diane Gouéré, P. Bortolotti, H. Merbouche, Vincent Garcia, C. Carrétéro, Abdelmadjid Anane, Isabella Boventer, Romain Lebrun, Laurent Vila, Agnès Barthélémy, Aymeric Vecchiola, Victor Haspot, Stéphane Fusil, Manuel Bibes, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Université Paris-Saclay, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-THALES, THALES [France]-Centre National de la Recherche Scientifique (CNRS), and ANR-17-CE24-0026,OISO,SPINORBITRONIQUE A BASE D'OXYDES.(2017)
- Subjects
Materials science ,General Physics and Astronomy ,FOS: Physical sciences ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,spin waves ,law.invention ,Condensed Matter::Materials Science ,Spin wave ,law ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,General Materials Science ,Multiferroics ,magnonics ,frequency filtering ,ComputingMilieux_MISCELLANEOUS ,Magnonics ,Condensed Matter - Mesoscale and Nanoscale Physics ,business.industry ,Condensed Matter::Other ,voltage control ,General Engineering ,Reconfigurability ,021001 nanoscience & nanotechnology ,Polarization (waves) ,0104 chemical sciences ,Ferromagnetism ,Modulation ,functional oxides ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology ,business ,Waveguide ,reconfigurable magnonic crystal - Abstract
Multiferroics offer an elegant means to implement voltage-control and on the fly reconfigurability in microscopic, nanoscaled systems based on ferromagnetic materials. These properties are particularly interesting for the field of magnonics, where spin waves are used to perform advanced logical or analogue functions. Recently, the emergence of nano-magnonics {\color{black} is expected to} eventually lead to the large-scale integration of magnonic devices. However, a compact voltage-controlled, on demand reconfigurable magnonic system has yet to be shown. Here, we introduce the combination of multiferroics with ferromagnets in a fully epitaxial heterostructure to achieve such voltage-controlled and reconfigurable magnonic systems. Imprinting a remnant electrical polarization in thin multiferroic $\mathrm{BiFeO_3}$ with a periodicity of $500\,\mathrm{nm}$ yields a modulation of the effective magnetic field in the micron-scale, ferromagnetic $\mathrm{La_{2/3}Sr_{1/3}MnO_3}$ magnonic waveguide. We evidence the magneto-electrical coupling by characterizing the spin wave propagation spectrum in this artificial, voltage induced, magnonic crystal and demonstrate the occurrence of a robust magnonic bandgap with $>20 \,\mathrm{dB}$ rejection.
- Published
- 2021
12. In‐Depth Atomic Mapping of Polarization Switching in a Ferroelectric Field‐Effect Transistor
- Author
-
Agnès Barthélémy, Stéphane Fusil, Qiuxiang Zhu, Manuel Bibes, Lorenzo Vistoli, Xiaoyan Li, Alexandre Gloter, Vincent Garcia, Laboratoire de Physique des Solides (LPS), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,ferroelectric field effect ,ferroelectric domains ,business.industry ,Mechanical Engineering ,Electron energy loss spectroscopy ,02 engineering and technology ,021001 nanoscience & nanotechnology ,Polarization (waves) ,01 natural sciences ,Ferroelectricity ,electronic charge modulation ,Mott transistor ,Mechanics of Materials ,0103 physical sciences ,Scanning transmission electron microscopy ,scanning transmission electron microscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Field-effect transistor ,electron-energy loss spectroscopy ,010306 general physics ,0210 nano-technology ,business ,ComputingMilieux_MISCELLANEOUS - Abstract
The ferroelectric control of a Mott transistor is a promising strategy for nonvolatile low-power electronics. Understanding the fundamental limits of the ferroelectric-field effect is challenging, as the relevant length scales are restricted to a few atomic planes within the interface. Here, the polarization switching process of a prototypical ferroelectric Mott transistor combining BiFeO3, a ferroelectric material with a large polarization, and (Ca,Ce)MnO3, a charge-transfer insulator in which a few percent of Ce doping triggers a metal–insulator transition is investigated. While scanning probe microscopy indicates a complete switching of the ferroelectric gate, in-depth atomic-scale polarization mapping with scanning transmission electron microscopy reveals incomplete polarization reversal at the interface. Therefore, transport measurements show that the electronic properties of the Mott channel are virtually unchanged by the polarization direction. Nevertheless, in nanometer size areas where interfacial polarization switching occurs, dramatic changes of the electronic properties of (Ca,Ce)MnO3 are revealed. These results indicate how the performance of mesoscale Mott devices is hindered, and at the same time reveal the possibility of nanoscale energy-efficient Mott transistors.
- Published
- 2020
13. Electric and antiferromagnetic chiral textures at multiferroic domain walls
- Author
-
Jean-Yves Chauleau, Théophile Chirac, Nicolas Jaouen, Pascal Manuel, A. Finco, Camille Blouzon, I. Gross, Julien Tranchida, Stéphane Fusil, Brahim Dkhil, W. Akhtar, Manuel Bibes, Vincent Jacques, Vincent Garcia, Pascal Thibaudeau, Michel Viret, Dmitry D. Khalyavin, Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), CEA Le Ripault (CEA Le Ripault), Direction des Applications Militaires (DAM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ISIS Facility, STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC)-Science and Technology Facilities Council (STFC), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), THALES [France]-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE09-0030,PIAF,Imagerie et manipulation des antiferromagnétiques(2017), Centre National de la Recherche Scientifique (CNRS)-THALES, CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
Physics ,Condensed matter physics ,Spintronics ,Mechanical Engineering ,Skyrmion ,Ferroics ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,0104 chemical sciences ,Magnetization ,Domain wall (string theory) ,Condensed Matter::Materials Science ,Ferromagnetism ,Mechanics of Materials ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Multiferroics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Translational symmetry - Abstract
International audience; Chirality, a foundational concept throughout science, may arise at ferromagnetic domain walls 1 22 and in related objects such as skyrmions 2. However, chiral textures should also exist in other types 23 of ferroics such as antiferromagnets for which theory predicts that they should move faster for 24 lower power 3 , and ferroelectrics where they should be extremely small and possess unusual 25 topologies 4,5. Here we report the concomitant observation of antiferromagnetic and electric chiral 26 textures at domain walls in the room-temperature ferroelectric antiferromagnet BiFeO 3. 27 Combining reciprocal and real-space characterization techniques, we reveal the presence of 28 periodic chiral antiferromagnetic objects along the domain walls as well as a priori energetically 29 unfavorable chiral ferroelectric domain walls. We discuss the mechanisms underlying their 30 formation and their relevance for electrically controlled topological oxide electronics and 31 spintronics. 32 33 Metallic ferromagnets have been the elemental bricks of spintronics for the last three decades and 34 continue to hold promises on the basis of non-collinear chiral spin textures such as skyrmions. These 35 topologically protected objects are envisioned to be the future of magnetic data storage thanks to 36 their specific stability, dynamics, and scalability 2. In parallel, antiferromagnets (AFs) are emerging as a 37 new paradigm for spintronics 6. They are intrinsically stable (being insensitive to spurious magnetic 38 fields), scalable (no cross talk between neighbouring memory cells), and fast (switching frequencies 39 in the THz regime). The opportunity of gathering the best of these two worlds and realize 40 "antiferromagnetic skyrmions" is then tremendously appealing but faces at least two major 41 challenges. The first one is to achieve antiferromagnetic chirality and the second one is to identify 42 appropriate control stimuli to create, annihilate and move these chiral objects. 43 On one hand, chirality may naturally emerge at domain walls. The antiferromagnetic domain wall 44 structure is a virtually uncharted territory but this is where translational symmetry is broken and spin 45 rotation favoured. On the other hand, AF manipulation is hampered by the intrinsic lack of net 46 magnetization, which prevents a straightforward magnetic actuation. This fundamental issue may be 47
- Published
- 2020
14. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system
- Author
-
Paul Noël, Laurent Vila, Luis M. Vicente Arche, Agnès Barthélémy, Felix Trier, Stéphane Fusil, Manuel Bibes, Diogo C. Vaz, Jean-Philippe Attané, Vincent Garcia, Julien Bréhin, SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Physics ,State variable ,Multidisciplinary ,Condensed matter physics ,Spintronics ,Charge (physics) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Ferroelectricity ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,Ferromagnetism ,chemistry ,0103 physical sciences ,Strontium titanate ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Multiferroics ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,0210 nano-technology ,Spin-½ - Abstract
After 50 years of development, the technology of today’s electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems1 needs to be contained. These two factors require the introduction of non-traditional materials and state variables. As recently highlighted2, the remanence associated with collective switching in ferroic systems is an appealing way to reduce power consumption. A promising approach is spintronics, which relies on ferromagnets to provide non-volatility and to generate and detect spin currents3. However, magnetization reversal by spin transfer torques4 is a power-consuming process. This is driving research on multiferroics to achieve low-power electric-field control of magnetization5, but practical materials are scarce and magnetoelectric switching remains difficult to control. Here we demonstrate an alternative strategy to achieve low-power spin detection, in a non-magnetic system. We harness the electric-field-induced ferroelectric-like state of strontium titanate (SrTiO3)6–9 to manipulate the spin–orbit properties10 of a two-dimensional electron gas11, and efficiently convert spin currents into positive or negative charge currents, depending on the polarization direction. This non-volatile effect opens the way to the electric-field control of spin currents and to ultralow-power spintronics, in which non-volatility would be provided by ferroelectricity rather than by ferromagnetism. The polarization direction of a ferroelectric-like state can be used to control the conversion of spin currents into charge currents at the surface of strontium titanate, a non-magnetic oxide.
- Published
- 2020
- Full Text
- View/download PDF
15. Antiferromagnetic textures in BiFeO3 controlled by strain and electric field
- Author
-
Daniel Sando, Vincent Jacques, Vincent Garcia, Michel Viret, A. Finco, W. Akhtar, Florian Godel, Jean-Yves Chauleau, Stéphane Fusil, Manuel Bibes, A. Haykal, C. Carrétéro, Yorick A. Birkhölzer, Nicolas Jaouen, J. Fischer, Inorganic Materials Science, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institute for Nanotechnology (MESA+), University of Twente, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-17-CE09-0030,PIAF,Imagerie et manipulation des antiferromagnétiques(2017), THALES-Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), University of Twente [Netherlands], Centre National de la Recherche Scientifique (CNRS)-THALES, Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et nanosciences d'Alsace (FMNGE), and Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
- Subjects
Ferroelectrics and multiferroics ,Materials science ,Science ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Condensed Matter::Materials Science ,Magnetic properties and materials ,Electric field ,Condensed Matter::Superconductivity ,0103 physical sciences ,Antiferromagnetism ,Multiferroics ,010306 general physics ,lcsh:Science ,Spin-½ ,Magnonics ,Multidisciplinary ,Spintronics ,Condensed matter physics ,Condensed Matter::Other ,General Chemistry ,021001 nanoscience & nanotechnology ,Ferroelectricity ,Piezoresponse force microscopy ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,lcsh:Q ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology - Abstract
Antiferromagnetic thin films are currently generating considerable excitement for low dissipation magnonics and spintronics. However, while tuneable antiferromagnetic textures form the backbone of functional devices, they are virtually unknown at the submicron scale. Here we image a wide variety of antiferromagnetic spin textures in multiferroic BiFeO3 thin films that can be tuned by strain and manipulated by electric fields through room-temperature magnetoelectric coupling. Using piezoresponse force microscopy and scanning NV magnetometry in self-organized ferroelectric patterns of BiFeO3, we reveal how strain stabilizes different types of non-collinear antiferromagnetic states (bulk-like and exotic spin cycloids) as well as collinear antiferromagnetic textures. Beyond these local-scale observations, resonant elastic X-ray scattering confirms the existence of both types of spin cycloids. Finally, we show that electric-field control of the ferroelectric landscape induces transitions either between collinear and non-collinear states or between different cycloids, offering perspectives for the design of reconfigurable antiferromagnetic spin textures on demand., Tailoring antiferromagnetic domains is critical for the development of low-dissipative spintronic and magnonic devices. Here the authors demonstrate the control of antiferromagnetic spin textures in multiferroic bismuth ferrite thin films using strain and electric fields.
- Published
- 2020
- Full Text
- View/download PDF
16. Switchable two-dimensional electron gas based on ferroelectric Ca:SrTiO3
- Author
-
Felix Trier, Anke Sander, Alain Sacuto, Yann Gallais, Laurent Vila, Pierre Hemme, Maxen Cosset-Cheneau, Stéphane Fusil, Manuel Bibes, Vincent Garcia, Brahim Dkhil, Maximilien Cazayous, Paul Noël, Agnès Barthélémy, Julien Bréhin, Luis M. Vicente-Arche, Jean-Philippe Attané, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), SPINtronique et TEchnologie des Composants (SPINTEC), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), and ANR-17-CE24-0026,OISO,SPINORBITRONIQUE A BASE D'OXYDES.(2017)
- Subjects
Phase transition ,Condensed Matter - Materials Science ,Materials science ,Physics and Astronomy (miscellaneous) ,Spintronics ,Condensed matter physics ,business.industry ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences ,02 engineering and technology ,Electron ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,Condensed Matter::Materials Science ,Semiconductor ,Electric field ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,010306 general physics ,0210 nano-technology ,business ,Single crystal ,Sheet resistance - Abstract
International audience; Two-dimensional electron gases (2DEGs) can form at the surface of oxides and semiconductors or in carefully designed quantum wells and interfaces. Depending on the shape of the confining potential, 2DEGs may experience a finite electric field, which gives rise to relativistic effects such as the Rashba spin-orbit coupling. Although the amplitude of this electric field can be modulated by an external gate voltage, which in turn tunes the 2DEG carrier density, sheet resistance and other related properties, this modulation is volatile. Here, we report the design of a "ferroelectric" 2DEG whose transport properties can be electrostatically switched in a nonvolatile way. We generate a 2DEG by depositing a thin Al layer onto a SrTiO 3 single crystal in which 1% of Sr is substituted by Ca to make it ferroelectric. Signatures of the ferroelectric phase transition at 25 K are visible in the Raman response and in the temperature dependences of the carrier density and sheet resistance that shows a hysteretic dependence on electric field as a consequence of ferroelectricity. We suggest that this behavior may be extended to other oxide 2DEGs, leading to novel types of ferromagnet-free spintronic architectures.
- Published
- 2020
- Full Text
- View/download PDF
17. Imaging and Harnessing Percolation at the Metal-Insulator Transition of NdNiO
- Author
-
Jin Hong, Lee, Felix, Trier, Tom, Cornelissen, Daniele, Preziosi, Karim, Bouzehouane, Stéphane, Fusil, Sergio, Valencia, and Manuel, Bibes
- Abstract
Competition between coexisting electronic phases in first-order phase transitions can lead to a sharp change in the resistivity as the material is subjected to small variations in the driving parameter, for example, the temperature. One example of this phenomenon is the metal-insulator transition (MIT) in perovskite rare-earth nickelates. In such systems, reducing the transport measurement area to dimensions comparable to the domain size of insulating and metallic phases around the MIT should strongly influence the shape of the resistance-temperature curve. Here we measure the temperature dependence of the local resistance and the nanoscale domain distribution of NdNiO
- Published
- 2019
18. Imaging and Harnessing Percolation at the Metal–Insulator Transition of NdNiO 3 Nanogaps
- Author
-
Stéphane Fusil, Manuel Bibes, Tom Cornelissen, Sergio Valencia, Jin Hong Lee, Felix Trier, Daniele Preziosi, Karim Bouzehouane, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Helmholtz-Zentrum Berlin für Materialen & Energie, and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Phase transition ,Materials science ,Condensed matter physics ,Mechanical Engineering ,Bioengineering ,02 engineering and technology ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Electrical resistivity and conductivity ,Percolation ,General Materials Science ,Condensed Matter::Strongly Correlated Electrons ,Metal–insulator transition ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,0210 nano-technology ,Nanodevice ,Computer Science::Databases - Abstract
International audience; Keywords: metal-insulator transition, phase separation, domain percolation, nanodevice J.H.L. and F.T. contributed equally to this work. Competition between co-existing electronic phases in first-order phase transitions can lead to a sharp change in the resistivity as the material is subjected to small variations in the driving parameter, e.g., the temperature. One example of this phenomenon is the metal-insulator transition (MIT) in perovskite rare-earth nickelates. In such systems, reducing the transport measurement area to dimensions comparable to the domain size of insulating and metallic phases around the MIT should strongly influence the shape of the resistance-temperature curve. Here, we measure the temperature dependence of the local resistance and the nanoscale domain distribution of NdNiO3 areas between Au contacts gapped by 260 down to 40 nm. We find that a sharp resistance drop appears below the bulk MIT temperature at ~105 K, with an amplitude inversely scaling with the nanogap width. By using X-ray photoemission electron microscopy, we directly correlate the resistance drop with the emergence and coalescence of individual metallic domains at the nanogap. Our observation provides a direct insight into percolation at the MIT of rare-earth nickelates.
- Published
- 2019
19. Influence of flexoelectricity on the spin cycloid in (110)-oriented BiFe O 3 films
- Author
-
Florian Appert, Stuart R. Burns, A. Barthélémy, Qi Zhang, Daniel Sando, Yann Gallais, C. Carrétéro, Alain Sacuto, Stéphane Fusil, Manuel Bibes, Jean Juraszek, Vincent Garcia, Valanoor Nagarajan, J.M. Le Breton, Maximilien Cazayous, Mark Wainwright Analytical Centre, University of New South Wales [Sydney] (UNSW), School of Materials Science and Engineering, Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Argonne National Laboratory [Lemont] (ANL), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thalès (UMP CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Mark Wainwright Analytical Centre [Sydney] (UNSW ), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,Condensed matter physics ,Relaxation (NMR) ,Flexoelectricity ,Order (ring theory) ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Orientation (vector space) ,symbols.namesake ,0103 physical sciences ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Antiferromagnetism ,General Materials Science ,Texture (crystalline) ,010306 general physics ,0210 nano-technology ,Crystal twinning ,Raman spectroscopy ,ComputingMilieux_MISCELLANEOUS - Abstract
The influence of film orientation, strain relaxation, and flexoelectric fields on the stability of the spin cycloid in (110)-oriented $\mathrm{BiFe}{\mathrm{O}}_{3}$ epitaxial films grown on $\mathrm{LaAl}{\mathrm{O}}_{3}$ substrates is investigated. By means of advanced x-ray-diffraction techniques, we show that thinner films have very large strain gradients which give rise to high flexoelectric fields. Using low-energy Raman spectroscopy and conversion electron M\"ossbauer spectroscopy (CEMS) we show that films up to 53 nm thick possess collinear antiferromagnetic order, with no cycloidal modulation. This suppression of the cycloid is proposed to be from strain and strain-gradient-induced flexoelectric fields. On the other hand, films thicker than 90 nm show a complex spin texture consistent with two separate cycloids, likely with different propagation directions. Interestingly, CEMS analysis suggests that the two cycloids have the same spin rotation plane. The multiple cycloids are suggested to arise from different ferroelastic domains (in turn influenced by twinning in the substrate) with different strain relaxation behaviors. These results offer insight into the factors that influence cycloid stability in the less common (110) film orientation and have implications for future magnonic devices.
- Published
- 2019
20. Non-volatile electric control of spin-charge conversion in a SrTiO
- Author
-
Paul, Noël, Felix, Trier, Luis M, Vicente Arche, Julien, Bréhin, Diogo C, Vaz, Vincent, Garcia, Stéphane, Fusil, Agnès, Barthélémy, Laurent, Vila, Manuel, Bibes, and Jean-Philippe, Attané
- Abstract
After 50 years of development, the technology of today's electronics is approaching its physical limits, with feature sizes smaller than 10 nanometres. It is also becoming clear that the ever-increasing power consumption of information and communication systems
- Published
- 2019
21. Giant topological Hall effect in correlated oxide thin films
- Author
-
Sergio Valencia, Hiroshi Kohno, Kazuki Nakazawa, Weida Wu, Qiuxiang Zhu, Lorenzo Vistoli, Rafael Cichelero, Wenbo Wang, Blai Casals, Agnès Barthélémy, Jacobo Santamaria, Radu Abrudan, Eugen Weschke, Stéphane Fusil, Manuel Bibes, Gervasi Herranz, Vincent Garcia, Anke Sander, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), Institut de Ciencia de materials de barcelone, Helmholtz-Zentrum Berlin für Materialen & Energie, Institut für Experimentalphysik / Festkörperphysik, Ruhr-Universität Bochum [Bochum], BESSY II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Osaka University [Osaka], Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), European Research Council, Agence Nationale de la Recherche (France), Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), Generalitat de Catalunya, and Department of Energy (US)
- Subjects
Materials science ,FOS: Physical sciences ,General Physics and Astronomy ,Applied Physics (physics.app-ph) ,Topology ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Condensed Matter::Materials Science ,Hall effect ,Electric field ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,0103 physical sciences ,Thin film ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Superconductivity ,Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Magnetoresistance ,Skyrmion ,Doping ,Materials Science (cond-mat.mtrl-sci) ,Physics - Applied Physics ,Magnetic field ,Dynamics ,Condensed Matter::Strongly Correlated Electrons ,Magnetic force microscope - Abstract
Strong electronic correlations can produce remarkable phenomena such as metal–insulator transitions and greatly enhance superconductivity, thermoelectricity or optical nonlinearity. In correlated systems, spatially varying charge textures also amplify magnetoelectric effects or electroresistance in mesostructures. However, how spatially varying spin textures may influence electron transport in the presence of correlations remains unclear. Here we demonstrate a very large topological Hall effect (THE) in thin films of a lightly electron-doped charge-transfer insulator, (Ca,Ce)MnO3. Magnetic force microscopy reveals the presence of magnetic bubbles, whose density as a function of magnetic field peaks near the THE maximum. The THE critically depends on carrier concentration and diverges at low doping, near the metal–insulator transition. We discuss the strong amplification of the THE by correlation effects and give perspectives for its non-volatile control by electric fields., The authors thank V. Cros, V. Dobrosavljevic, J. Iñiguez, J.-V. Kim, D. Maccariello, J. Matsuno, I. Mertig, N. Nagaosa and N. Reyren for useful discussions, J.-Y. Chauleau and M. Viret for second harmonic generation experiments, N. Jaouen for resonant magnetic X-ray diffraction, J. Varignon for preparing Fig. 1a and J.-M. George for his help with some magnetotransport measurements. This research received financial support from the ERC Consolidator grant ‘MINT’ (contract no. 615759) and ANR project ‘FERROMON’. This work was also supported by a public grant overseen by the ANR as part of the ‘Investissement d’Avenir’ programme (LABEX NanoSaclay, ref. ANR-10-LABX-0035) through projects ‘FERROMOTT’ and ‘AXION’ and by the Spanish Government through project no. MAT2014-56063-C2-1-R and MAT2017-85232-R (AEI/FEDER, UE), and Severo Ochoa SEV-2015-0496 and the Generalitat de Catalunya (2014SGR 734 project). B.C. acknowledges grant no. FPI BES-2012-059023, R.C. acknowledges support from CNPq-Brazil, and J.S. thanks the University Paris-Saclay (D’Alembert programme) and CNRS for financing his stay at CNRS/Thales. Work at Rutgers was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy under award no. DE-SC0018153. H.K. is supported by JSPS KAKENHI grants nos. 25400339, 15H05702 and 17H02929. K.N. is supported by a Grant-in-Aid for JSPS Research Fellow grant no. 16J05516, and by a Program for Leading Graduate Schools ‘Integrative Graduate Education and Research in Green Natural Sciences’.
- Published
- 2019
22. Tunnel electroresistance through organic ferroelectrics
- Author
-
Bobo Tian, J. L. Wang, A. Barthélémy, Vincent Garcia, J.H. Chu, Stéphane Fusil, Manuel Bibes, Yang Liu, Brahim Dkhil, Shuo Sun, Tie Lin, J.L. Sun, Xuelin Zhao, Chun-Gang Duan, Hongyan Shen, X. J. Meng, National laboratory for infrared physics, Shanghai institute of technical Pysics, University of Chinese Academy of Sciences [Beijing] (UCAS), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Key Laboratory of Polar Materials and Devices, and East China Normal University [Shangaï] (ECNU)
- Subjects
Materials science ,Silicon ,Science ,General Physics and Astronomy ,chemistry.chemical_element ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,Organic memory ,7. Clean energy ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,law.invention ,law ,Electronic paper ,Quantum tunnelling ,Organic electronics ,Multidisciplinary ,business.industry ,General Chemistry ,021001 nanoscience & nanotechnology ,Ferroelectricity ,0104 chemical sciences ,Piezoresponse force microscopy ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business ,Voltage - Abstract
Organic electronics is emerging for large-area applications such as photovoltaic cells, rollable displays or electronic paper. Its future development and integration will require a simple, low-power organic memory, that can be written, erased and readout electrically. Here we demonstrate a non-volatile memory in which the ferroelectric polarisation state of an organic tunnel barrier encodes the stored information and sets the readout tunnel current. We use high-sensitivity piezoresponse force microscopy to show that films as thin as one or two layers of ferroelectric poly(vinylidene fluoride) remain switchable with low voltages. Submicron junctions based on these films display tunnel electroresistance reaching 1,000% at room temperature that is driven by ferroelectric switching and explained by electrostatic effects in a direct tunnelling regime. Our findings provide a path to develop low-cost, large-scale arrays of organic ferroelectric tunnel junctions on silicon or flexible substrates., Ferroelectric organic materials can be used for tunnel barriers in memory devices as a cheaper and eco-friendly replacement of their inorganic counterparts. Here, Tian et al. use poly(vinylidene fluoride) with 1–2 layer thickness to achieve giant tunnel electroresistance of 1,000% at room temperature.
- Published
- 2016
23. Interfacial Strain Gradients Control Nanoscale Domain Morphology in Epitaxial BiFeO 3 Multiferroic Films
- Author
-
Valanoor Nagarajan, Stéphane Fusil, Manuel Bibes, Brahim Dkhil, Jean Juraszek, Mengjiao Han, J. Fischer, Oliver Paull, C. Carrétéro, Xiuliang Ma, Florian Appert, Vincent Garcia, Agnès Barthélémy, Vivasha Govinden, Yinlian Zhu, Daniel Sando, School of Materials Science and Engineering [Sydney], University of New South Wales [Sydney] (UNSW), Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research [Chinese Academy of Sciences] (IMR), Chinese Academy of Sciences [Beijing] (CAS)-Chinese Academy of Sciences [Beijing] (CAS), School of Physics [UNSW Sydney] (UNSW), Groupe de physique des matériaux (GPM), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), ANR-17-CE09-0030,PIAF,Imagerie et manipulation des antiferromagnétiques(2017), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Mark Wainwright Analytical Centre [Sydney] (UNSW ), THALES-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Diffraction ,Materials science ,multiferroics ,interface effects ,strain gradients ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Biomaterials ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,domain structure ,Scanning transmission electron microscopy ,Electrochemistry ,Multiferroics ,Thin film ,Nanoscopic scale ,ComputingMilieux_MISCELLANEOUS ,Bismuth ferrite ,[PHYS]Physics [physics] ,Condensed matter physics ,Strain (chemistry) ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Ferroelectricity ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,BiFeO3 ,thin films ,chemistry ,flexoelectricity ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,strain gradient ,0210 nano-technology - Abstract
International audience; In ferroelectric thin films, the domain structure defines ferroelectric switching pathways and thus influences device performance. In epitaxial bismuth ferrite (BiFeO3) films, fractal-like domains have been observed, but direct evidence of their origins has remained unclear. Here, we show that the nature of the ferroelectric domain structure-i.e. striped vs. fractal-like-in epitaxial BiFeO3 is defined by the strain profile across the film-substrate interface. In samples with fractal-like domains, X-ray diffraction analysis reveals strong strain gradients, while geometric phase analysis using atomic resolution scanning transmission electron microscopy reveals that within a few nanometers of the film-substrate interface, the out of plane strain shows an anomalous dip while the in-plane strain is constant. Electron energy-loss near edge structure at the oxygen K edge shows that in the vicinity of the interface, the oxygen coordination is locally modified; this combined with the anomalous strain behavior thus drives the formation of fractal-like domains. Conversely, if uniform strain is maintained across the interface, characteristic striped domains are formed. Interestingly, conversion from the fractal-like arrangement to striped domains is found possible by an ex-situ thermal treatment step. Critically, the antiferromagnetic state of the BiFeO3 is influenced by the domain structure, whereby the fractal-like domains disrupt the long-range spin cycloid. Finally, as a demonstration of the applicability of this concept, we show that a carefully engineered lower electrode with large strain gradient can be used to induce fractal domains.
- Published
- 2020
24. Depth Profiling Charge Accumulation from a Ferroelectric into a Doped Mott Insulator
- Author
-
Gunnar K. Pálsson, Hiroyuki Yamada, Stéphane Fusil, Manuel Bibes, Jean-Pascal Rueff, Julien E. Rault, Katia March, Alexandre Gloter, Maya Marinova, Vincent Garcia, Slavomír Nemšák, Christian Colliex, Charles S. Fadley, Agnès Barthélémy, C. Carrétéro, Odile Stéphan, Laboratoire de Physique des Solides (LPS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Institut Laue-Langevin (ILL), ILL, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, ANR-11-BS10-0016,NOMILOPS,Nouvelles interfaces magnétoélectriques pour la spintronique faible puissance(2011), European Project: 312483,EC:FP7:INFRA,FP7-INFRASTRUCTURES-2012-1,ESTEEM 2(2012), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Chimie Physique - Matière et Rayonnement (LCPMR), Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and THALES [France]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Photoemission spectroscopy ,Oxide ,FOS: Physical sciences ,Bioengineering ,Nanotechnology ,Condensed Matter::Materials Science ,chemistry.chemical_compound ,Electric field ,Scanning transmission electron microscopy ,[CHIM]Chemical Sciences ,General Materials Science ,Condensed Matter - Materials Science ,business.industry ,Mechanical Engineering ,Mott insulator ,Electron energy loss spectroscopy ,Materials Science (cond-mat.mtrl-sci) ,Charge density ,General Chemistry ,Condensed Matter Physics ,Ferroelectricity ,chemistry ,ddc:540 ,Optoelectronics ,business - Abstract
The electric field control of functional properties is a crucial goal in oxide-based electronics. Non-volatile switching between different resistivity or magnetic states in an oxide channel can be achieved through charge accumulation or depletion from an adjacent ferroelectric. However, the way in which charge distributes near the interface between the ferroelectric and the oxide remains poorly known, which limits our understanding of such switching effects. Here we use a first-of-a-kind combination of scanning transmission electron microscopy with electron energy loss spectroscopy, near-total-reflection hard X-ray photoemission spectroscopy, and ab-initio theory to address this issue. We achieve a direct, quantitative, atomic-scale characterization of the polarization-induced charge density changes at the interface between the ferroelectric BiFeO3 and the doped Mott insulator Ca1-xCexMnO3, thus providing insight on how interface-engineering can enhance these switching effects., Work supported by ERC Consolidator grant MINT (Contract No. 615759)
- Published
- 2015
25. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3
- Author
-
Agnès Barthélémy, Philippe Ghosez, Vincent Garcia, C. Carrétéro, Daniel Dolfi, Eric Bousquet, Laurent Bellaiche, Stéphane Fusil, Manuel Bibes, Daniel Sando, Yurong Yang, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Materials science ,Science ,FOS: Physical sciences ,General Physics and Astronomy ,Nanotechnology ,02 engineering and technology ,01 natural sciences ,General Biochemistry, Genetics and Molecular Biology ,Article ,Strain engineering ,0103 physical sciences ,Multiferroics ,Thin film ,010306 general physics ,Condensed Matter - Materials Science ,Multidisciplinary ,Spintronics ,business.industry ,Materials Science (cond-mat.mtrl-sci) ,General Chemistry ,021001 nanoscience & nanotechnology ,Ferroelectricity ,Piezoelectricity ,Electrochromism ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,Photonics ,0210 nano-technology ,business - Abstract
The control of optical fields is usually achieved through the electro-optic or acousto-optic effect in single-crystal ferroelectric or polar compounds such as LiNbO3 or quartz. In recent years, tremendous progress has been made in ferroelectric oxide thin film technology - a field which is now a strong driving force in areas such as electronics, spintronics and photovoltaics. Here, we apply epitaxial strain engineering to tune the optical response of BiFeO3 thin films, and find a very large variation of the optical index with strain, corresponding to an effective elasto-optic coefficient larger than that of quartz. We observe a concomitant strain-driven variation in light absorption - reminiscent of piezochromism - which we show can be manipulated by an electric field. This constitutes an electrochromic effect that is reversible, remanent and not driven by defects. These findings broaden the potential of multiferroics towards photonics and thin film acousto-optic devices, and suggest exciting device opportunities arising from the coupling of ferroic, piezoelectric and optical responses., Work supported by ERC Consolidator grant MINT (Contract No. 615759)
- Published
- 2017
26. Intrinsic polarization switching mechanisms inBiFeO3
- Author
-
Bin Xu, Stéphane Fusil, Manuel Bibes, Vincent Garcia, Laurent Bellaiche, Department of Electronic Engineering (Xiamen University), Xiamen University, Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe IMAGES-CREATIVE, Signal, Images et Systèmes (Laboratoire I3S - SIS), Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Department of Physics Department [Fayetteville], and University of Arkansas [Fayetteville]
- Subjects
Materials science ,Condensed matter physics ,Nucleation ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,Trigonal crystal system ,021001 nanoscience & nanotechnology ,Polarization (waves) ,Intrinsic polarization ,01 natural sciences ,symbols.namesake ,Homogeneous ,Electric field ,0103 physical sciences ,symbols ,010306 general physics ,0210 nano-technology ,Hamiltonian (quantum mechanics) ,ComputingMilieux_MISCELLANEOUS - Abstract
A first-principles-based effective Hamiltonian technique is used to investigate the polarization switching mechanisms in two polymorphic phases of ${\mathrm{BiFeO}}_{3}$ having no defects. The switching mechanism is homogeneous for any switching field in the rhombohedral phase, while in the supertetragonal phase it changes from the classical nucleation and domain-wall motion to nucleation-limited switching with virtually no propagation, and then to homogeneous switching with increasing electric field. The first two inhomogeneous switching mechanisms of the supertetragonal phase of ${\mathrm{BiFeO}}_{3}$ are thus intrinsic in nature, and can be well described by the classical and nucleation-limited switching models, respectively. The reason behind their absence in the rhombohedral phase is also indicated. Moreover, the field-induced changes of switching mechanism within the supertetragonal phase are further elucidated from an energetic point of view.
- Published
- 2017
27. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer
- Author
-
Stéphane Fusil, Manuel Bibes, Karin Garcia, Jean-Yves Chauleau, W. Akhtar, S. Chouaieb, C. Carrétéro, Agnès Barthélémy, Patrick Appel, Joo-Von Kim, Vincent Jacques, I. Gross, Vincent Garcia, Luis Martinez, Michel Viret, Patrick Maletinsky, Nicolas Jaouen, Laboratoire Charles Coulomb (L2C), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Aimé Cotton (LAC), École normale supérieure - Cachan (ENS Cachan)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), University of Basel (Unibas), Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), ANR-15-CE24-0003,FERROMON,Contrôle ferroélectrique d'un isolant de Mott aux échelles nanométrique/nanoseconde(2015), ANR-17-CE09-0030,PIAF,Imagerie et manipulation des antiferromagnétiques(2017), ANR-11-IDEX-0003,IPS,Idex Paris-Saclay(2011), European Project: 639802,H2020,ERC-2014-STG,IMAGINE(2015), European Project: 611143,EC:FP7:ICT,FP7-ICT-2013-10,DIADEMS(2013), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-École normale supérieure - Cachan (ENS Cachan), Centre National de la Recherche Scientifique (CNRS)-THALES, and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay
- Subjects
Materials science ,Magnetism ,Magnetometer ,FOS: Physical sciences ,02 engineering and technology ,01 natural sciences ,law.invention ,Magnetization ,chemistry.chemical_compound ,Condensed Matter::Materials Science ,law ,0103 physical sciences ,Antiferromagnetism ,010306 general physics ,Bismuth ferrite ,Condensed Matter - Materials Science ,Multidisciplinary ,Magnetic moment ,Spintronics ,Condensed matter physics ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,Ferromagnetism ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Condensed Matter::Strongly Correlated Electrons ,0210 nano-technology - Abstract
While ferromagnets are at the heart of daily life applications, their large magnetization and resulting energy cost for switching bring into question their suitability for reliable low-power spintronic devices. Non-collinear antiferromagnetic systems do not suffer from this problem and often possess remarkable extra functionalities: non-collinear spin order may break space-inversion symmetry and thus allow electric-field control of magnetism, or produce emergent spin-orbit effects, which enable efficient spin-charge interconversion. To harness these unique traits for next-generation spintronics, the nanoscale control and imaging capabilities that are now routine for ferromagnets must be developed for antiferromagnetic systems. Here, using a non-invasive scanning nanomagnetometer based on a single nitrogen-vacancy (NV) defect in diamond, we demonstrate the first real-space visualization of non-collinear antiferromagnetic order in a magnetic thin film, at room temperature. We image the spin cycloid of a multiferroic BiFeO$_3$ thin film and extract a period of $\sim70$ nm, consistent with values determined by macroscopic diffraction. In addition, we take advantage of the magnetoelectric coupling present in BiFeO$_3$ to manipulate the cycloid propagation direction by an electric field. Besides highlighting the unique potential of NV magnetometry for imaging complex antiferromagnetic orders at the nanoscale, these results demonstrate how BiFeO$_3$ can be used as a versatile platform for the design of reconfigurable nanoscale spin textures.
- Published
- 2017
28. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging
- Author
-
Stéphane Fusil, C. Carrétéro, Michel Viret, Eloi Haltz, Jean-Yves Chauleau, Laboratoire Nano-Magnétisme et Oxydes (LNO), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut Rayonnement Matière de Saclay (IRAMIS), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES [France]-Centre National de la Recherche Scientifique (CNRS), ANR-12-BS04-0010,MULTIDOLLS,Parois de domaines multiferroiques(2012), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
[PHYS]Physics [physics] ,Materials science ,Condensed matter physics ,Mechanical Engineering ,Second-harmonic imaging microscopy ,02 engineering and technology ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Ferroelectricity ,Magnetization ,Coupling (physics) ,Mechanics of Materials ,Power consumption ,Electric field ,0103 physical sciences ,Antiferromagnetism ,General Materials Science ,Multiferroics ,010306 general physics ,0210 nano-technology - Abstract
International audience; Among the variety of magnetic textures available in nature, antiferromagnetism is one of the most 'discrete' because of the exact cancellation of its staggered internal magnetization. It is therefore very challenging to probe. However, its insensitivity to external magnetic perturbations, together with the intrinsic sub-picosecond dynamics, make it very appealing for tomorrow's information technologies . Thus, it is essential to understand the microscopic mechanisms governing antiferromagnetic domains to achieve accurate manipulation and control. Using optical second-harmonic generation , a unique and laboratory-available tool , we succeeded in imaging with sub-micrometre resolution both electric and antiferromagnetic orders in the model multiferroic BiFeO$_3$. We show here that antiferromagnetic domains can be manipulated with low power consumption, using sub-coercive electric fields and sub-picosecond light pulses. Interestingly, we also show that antiferromagnetic and ferroelectric domains can behave independently, thus revealing that magneto-electric coupling can lead to various arrangements of the two orders.
- Published
- 2017
29. High-Temperature-Superconducting Weak Link Defined by the Ferroelectric Field Effect
- Author
-
V. Rouco, Juan Trastoy, R. Bernard, Vincent Garcia, Laura Begon-Lours, J. Santamaría, Stéphane Fusil, Manuel Bibes, Eric Jacquet, Anke Sander, A. Barthélémy, Javier E. Villegas, Karim Bouzehouane, Ohio State University [Columbus] (OSU), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, Laboratoire d'Application de la Chimie à l'Environnement (LACE), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Instituto Universitario de Investigacion de Nanocienca de Aragon, and University of Zaragoza - Universidad de Zaragoza [Zaragoza]
- Subjects
Superconductivity ,Josephson effect ,Materials science ,Condensed matter physics ,Condensed Matter - Superconductivity ,Doping ,FOS: Physical sciences ,General Physics and Astronomy ,Field effect ,[CHIM.MATE]Chemical Sciences/Material chemistry ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,Overlayer ,Superconductivity (cond-mat.supr-con) ,Condensed Matter::Materials Science ,Planar ,Condensed Matter::Superconductivity ,0103 physical sciences ,Cuprate ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
In all-oxide ferroelectric (FE) - superconductor (S) bilayers, due to the low carrier concentration of oxides compared to transition metals, the FE interfacial polarization charges induce an accumulation (or depletion) of charge carriers in the S. This leads either to an enhancement or a depression of its critical temperature depending on FE polarization direction.Here we exploit this effect at a local scale to define planar weak-links in high-temperature superconducting wires. This is realized in BiFeO3(FE)/YBa2Cu3O7(S)bilayers in which the remnant FE domain structure is written at will by locally applying voltage pulses with a conductive-tip atomic force microscope. In this fashion, the FE domain pattern defines a spatial modulation of superconductivity. This allows us to write a device whose electrical transport shows different temperature regimes and magnetic field matching effects that are characteristic of Josephson coupled weak-links. This illustrates the potential of the ferroelectric approach for the realization of high-temperature superconducting devices.
- Published
- 2017
- Full Text
- View/download PDF
30. Magnetoelectric Devices for Spintronics
- Author
-
A. Barthélémy, Stéphane Fusil, Manuel Bibes, Vincent Garcia, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Magnetoresistance ,Spintronics ,Condensed matter physics ,Magnetism ,Insulator (electricity) ,02 engineering and technology ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Ferroelectricity ,Condensed Matter::Materials Science ,Magnetic anisotropy ,Ferromagnetism ,Electric field ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,010306 general physics ,0210 nano-technology ,ComputingMilieux_MISCELLANEOUS - Abstract
The control of magnetism by electric fields is an important goal for the future development of low-power spintronics. Various approaches have been proposed on the basis of either single-phase multiferroic materials or hybrid structures in which a ferromagnet is influenced by the electric field applied to an adjacent insulator (usually having a ferroelectric, piezoelectric, or multiferroic character). The electric field effect on magnetism can be driven by purely electronic or electrostatic effects or can occur through strain coupling. Here we review progress in the electrical control of magnetic properties (anisotropy, spin order, ordering temperature, domain structure) and its application to prototype spintronic devices (spin valves, magnetic tunnel junctions). We tentatively identify the main outstanding difficulties and give perspectives for spintronics and other fields.
- Published
- 2014
31. Ferroelectric/dielectric composite tunnel junctions: influence of the stacking sequence on their microstructure
- Author
-
Frédéric Pailloux, Matthieu Bugnet, Arnaud Crassous, Stéphane Fusil, Vincent Garcia, Manuel Bibes, Gianluigi Botton, Agnès Barthélémy, and Jéröme Pacaud
- Published
- 2016
32. Tunnel electroresistance in BiFeO 3 junctions: size does matter
- Author
-
J. M. Gregg, Stéphane Fusil, Manuel Bibes, Alan Douglas, Vincent Garcia, P. W. Turner, Camille Blouzon, Sören Boyn, Agnès Barthélémy, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), THALES-Centre National de la Recherche Scientifique (CNRS), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Materials science ,Physics and Astronomy (miscellaneous) ,business.industry ,Nanotechnology ,02 engineering and technology ,Memristor ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,law.invention ,Tunnel barrier ,Neuromorphic engineering ,law ,0103 physical sciences ,Electrode ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,010306 general physics ,0210 nano-technology ,business ,Polarization (electrochemistry) ,ComputingMilieux_MISCELLANEOUS - Abstract
In ferroelectric tunnel junctions, the tunnel resistance depends on the polarization orientation of the ferroelectric tunnel barrier, giving rise to tunnel electroresistance. These devices are promising to be used as memristors in neuromorphic architectures and as non‐volatile memory elements. For both applications device scalability is essential, which requires a clear understanding of the relationship between polarization reversal and resistance change as junction size shrinks. Here we show robust tunnel electroresistance in BiFeO3‐based junctions with diameters ranging from 1200 to 180nm. We demonstrate that the tunnel electroresistance and the corresponding fraction of reversed ferroelectric domains change drastically with the junction diameter: while micron‐size junctions display reversal in less than 10% of the area, the smallest junctions show an almost complete polarization reversal. Modeling the electric‐field distribution, we highlight the critical role of the bottom electrode resistance which significantly diminishes the actual electric field applied to the ferroelectric barrier in the mixed polarization state. A polarization‐dependent critical electric field below which further reversal is prohibited is found to explain the large differences between the ferroelectric switchability of nano‐ and micron‐size junctions. Our results indicate that ferroelectric junctions are downscalable and suggest that specific junction shapes facilitate complete polarization reversal.
- Published
- 2016
33. Author Correction: Electric and antiferromagnetic chiral textures at multiferroic domain walls
- Author
-
Jean-Yves Chauleau, I. Gross, C. Blouzon, Stéphane Fusil, Manuel Bibes, Michel Viret, Brahim Dkhil, Pascal Manuel, T. Chirac, Nicolas Jaouen, Pascal Thibaudeau, Vincent Garcia, Dmitry D. Khalyavin, W. Akhtar, Aurore Finco, Julien Tranchida, and Vincent Jacques
- Subjects
Physics ,Condensed matter physics ,Mechanics of Materials ,Mechanical Engineering ,Antiferromagnetism ,General Materials Science ,Multiferroics ,General Chemistry ,Condensed Matter Physics ,Domain (software engineering) - Published
- 2019
34. Simple and advanced ferromagnet/molecule spinterfaces
- Author
-
F. Djedhloul, Fatima Ibrahim, Hashim Jabbar, Philippe Ohresser, Fabrice Scheurer, Kai Chen, Edwige Otero, Jacek Arabski, Clément Barraud, P. Le Fèvre, Richard Mattana, Samar Hajjar-Garreau, Wulf Wulfhekel, Samy Boukari, Ufuk Halisdemir, François Bertran, E. Urbain, Hironari Isshiki, Frédéric Petroff, Moritz Peter, Martin Bowen, Mebarek Alouani, Pierre Seneor, A. Taleb-Ibrahimi, P. Wetzel, Loïc Joly, Cyrile Deranlot, Michał Studniarek, Eric Beaurepaire, V. Da Costa, Fadi Choueikani, Stéphane Fusil, D. Xenioti, Hervé Bulou, G. Garreau, Jinjie Chen, Karim Bouzehouane, V. Davesne, Wolfgang Weber, and Manuel Gruber
- Subjects
Materials science ,Condensed matter physics ,Spin polarization ,Fermi level ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Organic semiconductor ,Condensed Matter::Materials Science ,symbols.namesake ,Exchange bias ,Ferromagnetism ,Spin crossover ,0103 physical sciences ,symbols ,Antiferromagnetism ,Condensed Matter::Strongly Correlated Electrons ,010306 general physics ,0210 nano-technology ,Quantum tunnelling - Abstract
Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface’s ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.
- Published
- 2016
35. Photovoltaic response around a unique180∘ferroelectric domain wall in single-crystallineBiFeO3
- Author
-
Jean-Yves Chauleau, Stéphane Fusil, Michel Viret, Camille Blouzon, and Alexandra Mougin
- Subjects
Photocurrent ,Materials science ,business.industry ,Photovoltaic system ,Schottky diode ,02 engineering and technology ,Photoelectric effect ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,Ferroelectricity ,Domain wall (magnetism) ,Optics ,Distortion ,0103 physical sciences ,Electrode ,Optoelectronics ,010306 general physics ,0210 nano-technology ,business - Abstract
Using an experimental setup designed to scan a submicron sized light spot and collect the photogenerated current through larger electrodes, we map the photovoltaic response in ferroelectric BiFeO$_3$ single crystals. We study the effect produced by a unique 180° ferroelectric domain wall (DW) and show that the photocurrent maps are significantly affected by its presence and shape. The effect is large in its vicinity and in the Schottky barriers at the interface with the Au electrodes, but no extra photocurrent is observed when the illuminating spot touches the DW, indicating that this particular entity is not the heart of specific photoelectric properties. Using 3D modeling, we argue that the measured effect is due to the spatial distribution of internal fields which are significantly affected by the charge of the DW due to its distortion.
- Published
- 2016
36. Millionfold Resistance Change in Ferroelectric Tunnel Junctions Based on Nickelate Electrodes
- Author
-
Alexandre Gloter, Stéphane Xavier, Maya Marinova, Cyrile Deranlot, Flavio Y. Bruno, Stéphane Fusil, Manuel Bibes, Stéphanie Girod, Sören Boyn, Vincent Garcia, Agnès Barthélémy, C. Carrétéro, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,business.industry ,Heterojunction ,Nanotechnology ,02 engineering and technology ,Atmospheric temperature range ,021001 nanoscience & nanotechnology ,01 natural sciences ,Ferroelectricity ,Electronic, Optical and Magnetic Materials ,chemistry.chemical_compound ,Piezoresponse force microscopy ,chemistry ,Electrical resistivity and conductivity ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,010306 general physics ,0210 nano-technology ,business ,Polarization (electrochemistry) ,Quantum tunnelling ,ComputingMilieux_MISCELLANEOUS ,Bismuth ferrite - Abstract
When electrons tunnel through an ultrathin ferroelectric, large variations of the tunnel transmission can result from the switching of the ferroelectric polarization. High-quality ultrathin films of BiFeO3 with atomically flat terraces and single unit-cell steps on epitaxial electrodes of LaNiO3 have been fabricated. The films crystallize in the pure polymorph of BiFeO3 with giant tetragonality; they show tunnel transport characteristics up to ten unit cells and a clear ferroelectric signal from scanning probe techniques. Sub-micrometer solid-state tunnel junctions defined from these heterostructures are switched by nanosecond voltage pulses. A complete reversal of the ferroelectric polarization results in large variations of the junction resistance, but partial switching of the polarization favors the reversibility of the resistance switching. Finally, the electrical transport characteristics of fully patterned tunnel junctions are investigated in the 300 K–80 K temperature range. Owing to the low resistivity of LaNiO3 electrodes, the junctions display record tunnel electroresistance values of more than 106 at 80 K combined with weak temperature dependences as expected for electron tunneling transport. These results will motivate further work to trigger metal–insulator transitions by electric-field effects in ferroelectric tunnel junctions combined with strongly correlated nickelates.
- Published
- 2016
37. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors
- Author
-
J.L. Sun, Shuo Sun, Hong Shen, Xiang Jian Meng, J. L. Wang, Brahim Dkhil, Guoliang Yuan, Vincent Garcia, Liu Fang Chen, Bobo Tian, J.H. Chu, Stéphane Fusil, Yang Liu, Laboratoire Structures, Propriétés et Modélisation des solides (SPMS), Institut de Chimie du CNRS (INC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Nanjing University of Science and Technology (NJUST), Department of Neurology (Dep Neuro - HEBEI PROVINCE), Yutian County Hospital, National laboratory for infrared physics, Shanghai institute of technical Pysics, University of Chineses Academy of Sciences, IBM [Yorktown] (IBM), IBM, School of Materials Science and Engineering, Nanjing University (NJU), Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), and Centre National de la Recherche Scientifique (CNRS)-THALES
- Subjects
Work (thermodynamics) ,Materials science ,Silicon ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,Article ,law.invention ,Metal ,law ,0103 physical sciences ,Electronics ,010302 applied physics ,Multidisciplinary ,business.industry ,021001 nanoscience & nanotechnology ,Ferroelectricity ,Space charge ,Capacitor ,chemistry ,visual_art ,Resistive switching ,visual_art.visual_art_medium ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Optoelectronics ,0210 nano-technology ,business ,Telecommunications - Abstract
Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.
- Published
- 2015
38. Interface-induced room-temperature multiferroicity in BaTiO3
- Author
-
Laura Bocher, A. Gaupp, A. Crassous, R. Cherifi, Florin Radu, Radu Abrudan, Sergio Valencia, Agnès Barthélémy, Karim Bouzehouane, Alexandre Gloter, Cyrile Deranlot, Alberto Zobelli, Vincent Garcia, Xavier Moya, Stéphane Fusil, Manuel Bibes, Neil D. Mathur, Unité mixte de physique CNRS/Thales (UMPhy CNRS/THALES), Centre National de la Recherche Scientifique (CNRS)-THALES, and THALES-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Materials science ,Condensed matter physics ,Magnetism ,Mechanical Engineering ,chemistry.chemical_element ,02 engineering and technology ,General Chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Polarization (waves) ,01 natural sciences ,Ferroelectricity ,chemistry ,Mechanics of Materials ,0103 physical sciences ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Multiferroics ,010306 general physics ,0210 nano-technology ,Cobalt ,ComputingMilieux_MISCELLANEOUS - Abstract
With only a few known useful room-temperature multiferroics, other ways of achieving materials showing magnetism as well as electrical polarization are sought. The discovery that the ferroelectric BaTiO3 also shows magnetism at room temperature at the interface with iron or cobalt marks a new approach to achieving multiferroic properties.
- Published
- 2011
39. Publisher Correction: Giant topological Hall effect in correlated oxide thin films
- Author
-
Blai Casals, Sergio Valencia, Anke Sander, Qiuxiang Zhu, Vincent Garcia, Wenbo Wang, Lorenzo Vistoli, Rafael Cichelero, Kazuki Nakazawa, Gervasi Herranz, Agnès Barthélémy, Jacobo Santamaria, Eugen Weschke, Radu Abrudan, Hiroshi Kohno, Weida Wu, Stéphane Fusil, and Manuel Bibes
- Subjects
Physics ,chemistry.chemical_compound ,chemistry ,Condensed matter physics ,Hall effect ,0103 physical sciences ,Oxide ,General Physics and Astronomy ,Thin film ,Space Science ,010306 general physics ,01 natural sciences ,010305 fluids & plasmas - Abstract
In the version of this Letter originally published, Hiroshi Kohno’s affiliation was incorrectly listed as Department of Earth and Space Science, Graduate School of Science, Osaka University, Osaka, Japan; it should have been Department of Physics, Nagoya University, Nagoya, Japan. This has been corrected in all versions of the Letter.
- Published
- 2018
40. Anisotropic magneto-Coulomb effects and magnetic single-electron-transistor action in a single nanoparticle
- Author
-
Albert Fert, Cyrile Deranlot, Frédéric Petroff, Stéphane Fusil, Anne Bernand-Mantel, Pierre Seneor, and Karim Bouzehouane
- Subjects
Physics ,Magnetoresistance ,Condensed matter physics ,Transistor ,General Physics and Astronomy ,Nanoparticle ,Coulomb blockade ,Physicist ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,law.invention ,Condensed Matter::Materials Science ,Ferromagnetism ,law ,Coulomb ,Condensed Matter::Strongly Correlated Electrons ,Magneto - Abstract
Anisotropies in the response of ferromagnetic electrodes attached to a gold nanoparticle lead to Coulomb blockade and spin-valve-like magnetoresistance phenomena. Such behaviour could allow the development of magnetically gated single-electron transistors composed of just two terminals.
- Published
- 2009
41. Study of atomic force microscopy nanoindentation for the development of nanostructures
- Author
-
Karim Bouzehouane, J.-M. George, Stéphane Fusil, Vicent Cros, and Martin Sirena
- Subjects
Fabrication ,Materials science ,Nanostructure ,Ballistic conduction ,Indentation ,Composite number ,Nanotechnology ,Electrical and Electronic Engineering ,Photoresist ,Nanoindentation ,Condensed Matter Physics ,Temperature measurement ,Electronic, Optical and Magnetic Materials - Abstract
We have studied the fabrication of atomic force microscope (AFM) based nanotemplates using electrically controlled indentation (ECI) and a composite barrier (photoresist/alumina) that is resistant to the lithography process and presents good mechanical properties for indentation. The indentation process is affected by several factors such as the indentation speed, the trigger voltage and the barrier type. We have used the nanotemplate technique to fabricate small gold–gold nanocontacts (1–10 nm). In this limit, the size of the contacts that is obtained through the indentation process seems to be stochastic. However, low dimension, clean metallic contacts were achieved with high temporal stability and compatible with low temperature measurements. The fabricated nanotemplates are versatile and can be used in a wide range of applications, from nanojunctions to connecting a single nano-object. Small area metallic contacts can be used to study spin injection or ballistic transport.
- Published
- 2009
42. Phase-locking of magnetic vortices mediated by antivortices
- Author
-
Albert Fert, Antonio Ruotolo, Stéphane Fusil, Julie Grollier, A. Dussaux, Benoit Georges, Cyrile Deranlot, Vincent Cros, R. Guillemet, and Karim Bouzehouane
- Subjects
Physics ,Condensed matter physics ,Biomedical Engineering ,Bioengineering ,Condensed Matter Physics ,Inductor ,Atomic and Molecular Physics, and Optics ,Power (physics) ,Topological defect ,Magnetic field ,law.invention ,Vortex ,Synchronization (alternating current) ,Capacitor ,Classical mechanics ,law ,General Materials Science ,Electrical and Electronic Engineering ,Microwave - Abstract
Synchronized spin-valve oscillators may lead to nanosized microwave generators that do not require discrete elements such as capacitors or inductors. Uniformly magnetized oscillators have been synchronized, but offer low power. Gyrating magnetic vortices offer greater power, but vortex synchronization has yet to be demonstrated. Here we find that vortices can interact with each other through the mediation of antivortices, leading to synchronization when they are closely spaced. The synchronization does not require a magnetic field, making the system attractive for electronic device integration. Also, because each vortex is a topological soliton, this work presents a model experimental system for the study of interacting solitons.
- Published
- 2009
43. Control of the Cation Stoichiometry in the Multiferroic BiFeO3 Thin Films
- Author
-
Andrey R. Kaul, Alain Barthélémy, O. Yu. Gorbenko, M. S. Kartavtseva, Stéphane Fusil, and Karim Bouzehouane
- Subjects
Piezoresponse force microscopy ,Materials science ,Carbon film ,Chemical engineering ,Chemical vapor deposition ,Metalorganic vapour phase epitaxy ,Combustion chemical vapor deposition ,Thin film ,Condensed Matter Physics ,Epitaxy ,Ferroelectricity ,Electronic, Optical and Magnetic Materials - Abstract
The epitaxial BiFeO3 films on different substrates were prepared by metal organic chemical vapor deposition (MOCVD). The ferroelectric properties of the films were controlled by Piezoresponse Force...
- Published
- 2008
44. Integration of Multiferroic BiFeO$_3$ Thin Films into Heterostructures for Spintronics
- Author
-
Karim Bouzehouane, Alain Barthélémy, Cyrile Deranlot, Eric Jacquet, Hélène Béa, Xiao-Hong Zhu, Stéphane Fusil, Manuel Bibes, and Gervasi Herranz
- Subjects
Materials science ,Spintronics ,Condensed matter physics ,Condensed Matter::Other ,Spin valve ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Ferroelectricity ,Engineering physics ,Electronic, Optical and Magnetic Materials ,Condensed Matter::Materials Science ,Exchange bias ,Ferromagnetism ,Multiferroics ,Electrical and Electronic Engineering ,Thin film ,Quantum tunnelling - Abstract
The revival of multiferroics is motivated by their exciting physics and their ability to bring novel functionalities to a number of technological fields such as spintronics. The lack of room temperature ferroelectric ferromagnets is a problem and has driven most of the attention thus far to BiFeO3, a ferroelectric weak-ferromagnet with both transition temperatures superior to 300 K. In this paper, we report on the properties of BiFeO3 heterostructures and focus on two types of approaches towards BiFeO3-based spintronics devices. One uses BiFeO3 as an exchange bias layer in spin-valve structures in which the magnetic configuration is potentially switchable by an electric field, via the magnetoelectric coupling existing in BiFeO3. The other consists in integrating BiFeO3 ultrathin films as tunnel barriers in magnetic tunnel junctions with the objective of exploiting their ferroelectric character along with their specific symmetry filtering properties. General perspectives for multiferroics in spintronics are given.
- Published
- 2008
45. Charge imbalance at oxide interfaces: How nature deals with it
- Author
-
Stéphane Fusil, Manuel Bibes, Isabelle Devos, D. Imhoff, Jean-Luc Maurice, Agnès Barthélémy, Karim Bouzehouane, B. Domengès, Cyrile Deranlot, Eric Jacquet, Gervasi Herranz, D.-G. Crété, Dominique Ballutaud, G. Gachet, C. Carrétéro, and Marie-José Casanove
- Subjects
Materials science ,Valence (chemistry) ,business.industry ,Mechanical Engineering ,Doping ,Electron ,Conductivity ,Condensed Matter Physics ,Space charge ,Engineering physics ,Semiconductor ,Mechanics of Materials ,General Materials Science ,Charge transfer insulators ,Charge carrier ,Atomic physics ,business - Abstract
Some interfaces in semiconductors or insulators structurally cause a valence mismatch, which leads to a two-dimensional space charge that must be balanced by localised or mobile charge carriers. Screening by mobile electrons presents a lot of theoretical as well as practical interests. However it is extremely rare, so that we are aware of only one case, on which we focus here: the (0 0 1) interface between LaAlO 3 and TiO 2 -terminated SrTiO 3 . Theoretically, this interface between two insulators is positively charged. Electron conductivity is observed in this system, but whether it is associated with the interface screening or an extrinsic unintended doping is not yet settled. Here, we use the literature and our own numerical and practical experiments to discuss the physics of this system.
- Published
- 2007
46. Template-Grown NiFe/Cu/NiFe Nanowires for Spin Transfer Devices
- Author
-
Krystel Renard, Stéphane Fusil, Vlad Antohe, Karim Bouzehouane, Stefan Mátéfi-Tempfli, Raphael Guillemet, Mária Mátéfi-Tempfli, Luc Piraux, and Vincent Cros
- Subjects
Fabrication ,Materials science ,Macromolecular Substances ,Surface Properties ,Iron ,Molecular Conformation ,Spin valve ,Nanowire ,Bioengineering ,Giant magnetoresistance ,Condensed Matter::Materials Science ,Nuclear magnetic resonance ,Nickel ,Spin wave ,Materials Testing ,Nanotechnology ,General Materials Science ,Particle Size ,Nanotubes ,business.industry ,Mechanical Engineering ,General Chemistry ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Condensed Matter Physics ,Electrical connection ,Nanostructures ,Template reaction ,Nanolithography ,Optoelectronics ,Spin Labels ,Crystallization ,business ,Copper - Abstract
We have developed a new reliable method combining template synthesis and nanolithography-based contacting technique to elaborate current perpendicular-to-plane giant magnetoresistance spin valve nanowires, which are very promising for the exploration of electrical spin transfer phenomena. The method allows the electrical connection of one single nanowire in a large assembly of wires embedded in anodic porous alumina supported on Si substrate with diameters and periodicities to be controllable to a large extent. Both magnetic excitations and switching phenomena driven by a spin-polarized current were clearly demonstrated in our electrodeposited NiFe/Cu/ NiFe trilayer nanowires. This novel approach promises to be of strong interest for subsequent fabrication of phase-locked arrays of spin transfer nano-oscillators with increased output power for microwave applications.
- Published
- 2007
47. Tunnel junctions with multiferroic barriers
- Author
-
Stéphane Fusil, Manuel Bibes, Josep Fontcuberta, Agnès Barthélémy, Karim Bouzehouane, M. Gajek, and Albert Fert
- Subjects
Magnetoresistive random-access memory ,Materials science ,business.industry ,Mechanical Engineering ,Nanotechnology ,General Chemistry ,Condensed Matter Physics ,Smart material ,Ferroelectricity ,Ferroelectric capacitor ,Condensed Matter::Materials Science ,Magnetization ,Polarization density ,Mechanics of Materials ,Ferroelectric RAM ,Optoelectronics ,General Materials Science ,Multiferroics ,business - Abstract
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
- Published
- 2007
48. Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions
- Author
-
Frédéric Petroff, Pierre Seneor, Stéphane Fusil, Clément Barraud, Dong Jik Kim, Martin Bowen, Jacek Arabski, Cyrile Deranlot, C. Kieber, Samy Boukari, Richard Mattana, Hashim Jabbar, Eric Beaurepaire, Rajib Rakshit, and Karim Bouzehouane
- Subjects
Tunnel magnetoresistance ,Spin polarization ,Spintronics ,Condensed matter physics ,Ferromagnetism ,Field (physics) ,Electric field ,General Physics and Astronomy ,Condensed Matter::Strongly Correlated Electrons ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,Anisotropy ,Spin (physics) - Abstract
Organic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes. In this Letter, we provide direct evidence of a hybrid interface spin polarization reversal due to the differing hybridization between phthalocyanine molecules and each cobalt electrode in Co/CoPc/Co magnetic tunnel junctions. Tunnel magnetoresistance and anisotropic tunnel magnetoresistance experiments show that interfacial hybridized electronic states have a unidirectional anisotropy that can be controlled by an electric field and that spin hybridization at the bottom and top interfaces differ, leading to an inverse tunnel magnetoresistance.
- Published
- 2015
49. NiFe2O4: A Versatile Spinel Material Brings New Opportunities for Spintronics
- Author
-
Albert Fert, Agnès Barthélémy, Eric Jacquet, J.-P. Contour, Ulrike Lüders, Josep Fontcuberta, Jean-François Bobo, Stéphane Fusil, Manuel Bibes, and Karim Bouzehouane
- Subjects
Materials science ,Condensed matter physics ,Spintronics ,Mechanics of Materials ,Mechanical Engineering ,Spinel ,engineering ,General Materials Science ,Nanotechnology ,engineering.material - Published
- 2006
50. Nanolithography based contacting method for electrical measurements on single template synthesized nanowires
- Author
-
Cyrile Deranlot, Cyro Ketzer Saul, Sébastien Michotte, Luis Gustavo Pereira, Karim Bouzehouane, Stefan Mátéfi-Tempfli, Maria-Rita Mátéfi-Tempfli, Luc Piraux, J.-M. George, Vincent Cros, and Stéphane Fusil
- Subjects
Nanostructure ,Materials science ,Mechanical Engineering ,Nanowire ,Bioengineering ,Nanotechnology ,General Chemistry ,Nanoindentation ,Point contact ,Nanolithography ,Resist ,Mechanics of Materials ,General Materials Science ,Electrical measurements ,Electrical and Electronic Engineering ,Spin injection - Abstract
A reliable method enabling electrical measurements on single nanowires prepared by electrodeposition in an alumina template is described. This technique is based on electrically controlled nanoindentation of a thin insulating resist deposited on the top face of the template filled by the nanowires. We show that this method is very flexible, allowing us to electrically address single nanowires of controlled length down to 100 nm and of desired composition. Using this approach, current densities as large as 10(9) A cm(-2) were successfully injected through a point contact on a single magnetic multilayered nanowire. This demonstrates that the technique is very promising for the exploration of electrical spin injection in magnetic nanostructures.
- Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.