Many researchers have developed applications using transactional memory (TM) with the purpose of benchmarking different implementations, and studying whether or not TM is easy to use. However, comparatively little has been done to provide general-purpose tools for profiling and optimizing programs which use transactions. In this paper we introduce a series of profiling and optimization techniques for TM applications. The profiling techniques are of three types: (i) techniques to identify multiple potential conflicts from a single program run, (ii) techniques to identify the data structures involved in conflicts by using a symbolic path through the heap, rather than a machine address, and (iii) visualization techniques to summarize how threads spend their time and which of their transactions conflict most frequently. Altogether they provide in-depth and comprehensive information about the wasted work caused by aborting transactions. To reduce the contention between transactions we suggest several TM specific optimizations which leverage nested transactions, transaction checkpoints, early release and etc. To examine the effectiveness of the profiling and optimization techniques, we provide a series of illustrations from the STAMP TM benchmark suite and from the synthetic WormBench workload. First we analyze the performance of TM applications using our profiling techniques and then we apply various optimizations to improve the performance of the Bayes, Labyrinth and Intruder applications. We discuss the design and implementation of the profiling techniques in the Bartok-STM system. We process data offline or during garbage collection, where possible, in order to minimize the probe effect introduced by profiling. © 2011 Springer Science+Business Media, LLC., This work is supported by the cooperation agreement between the Barcelona Supercomputing Center National Supercomputer Facility and Microsoft Research, by the Ministry of Science and Technology of Spain and the European Union (FEDER funds) under contract TIN2007-60625, by the European Network of Excellence on High-Performance Embedded Architecture and Compilation (HiPEAC) and by the European Commission FP7 project VELOX (216852). Ferad Zyulkyarov is also supported by a scholarship from the Government of Catalonia.