1. Quantum spin dynamics in Fock space following quenches: Caustics and vortices
- Author
-
Mumford, J., Turner, E., Sprung, D. W. L., and O'Dell, D. H. J.
- Subjects
Condensed Matter - Quantum Gases - Abstract
Caustics occur widely in dynamics and take on shapes classified by catastrophe theory. At finite wavelengths they produce interference patterns containing networks of vortices (phase singularities). Here we investigate caustics in quantized fields, focusing on the collective dynamics of quantum spins. We show that, following a quench, caustics are generated in the Fock space amplitudes specifying the many-body configuration and which are accessible in experiments with cold atoms, ions or photons. The granularity of quantum fields removes all singularities, including phase singularities, converting point vortices into nonlocal vortices that annihilate in pairs as the quantization scale is increased. Furthermore, the continuous scaling laws of wave catastrophes are replaced by discrete versions. Such `quantum catastrophes' are expected to be universal dynamical features of quantized fields., Comment: The original title of this paper was "Morphology of a quantum catastrophe". The title was changed to reflect its relevance to collective spin dynamics. There are 4 figures
- Published
- 2016
- Full Text
- View/download PDF