25 results on '"Spicher, F."'
Search Results
2. Effects of experimental warming at the microhabitat scale on oak leaf traits and insect herbivory across a contrasting environmental gradient
- Author
-
European Research Council, Consejo Superior de Investigaciones Científicas (España), Xunta de Galicia, Moreira, Xoaquín [0000-0003-0166-838X], Abdala-Roberts, L. [0000-0003-1394-3043], De Pauw, K. [0000-0001-8369-2679], Iacopetti, G. [0000-0002-1472-4435], Sanczuk, P. [0000-0003-1107-4905], Moreira Tomé, Xoaquín, Abdala-Roberts, Luis, Lago-Núñez, Beatriz, Cao Caamaño, Ana, De Pauw, K., Ron Pedreira, Antonio Miguel de, Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Meeussen, C., Plue, J., Sanczuk, P., Selvi, F., Spicher, F., Vanden Broeck, A., De Frenne, Pieter, European Research Council, Consejo Superior de Investigaciones Científicas (España), Xunta de Galicia, Moreira, Xoaquín [0000-0003-0166-838X], Abdala-Roberts, L. [0000-0003-1394-3043], De Pauw, K. [0000-0001-8369-2679], Iacopetti, G. [0000-0002-1472-4435], Sanczuk, P. [0000-0003-1107-4905], Moreira Tomé, Xoaquín, Abdala-Roberts, Luis, Lago-Núñez, Beatriz, Cao Caamaño, Ana, De Pauw, K., Ron Pedreira, Antonio Miguel de, Gasperini, C., Hedwall, P.-O., Iacopetti, G., Lenoir, J., Meeussen, C., Plue, J., Sanczuk, P., Selvi, F., Spicher, F., Vanden Broeck, A., and De Frenne, Pieter
- Abstract
Forest microclimatic variation can result in substantial temperature differences at local scales with concomitant impacts on plant defences and herbivory. Such microclimatic effects, however, may differ across abiotically contrasting sites depending on background environmental differences. To test these cross-scale effects shaping species ecological and evolutionary responses, we experimentally tested the effects of aboveground microhabitat warming on insect leaf herbivory and leaf defences (toughness, phenolic compounds) for saplings of sessile oak Quercus petraea across two abiotically contrasting sites spanning 9° latitude. We found higher levels of herbivory at the low-latitude site, but leaf traits showed mixed patterns across sites. Toughness and condensed tannins were higher at the high-latitude site, whereas hydrolysable tannins and hydroxycinnamic acids were higher at the low-latitude site. At the microhabitat scale, experimental warming increased herbivory, but did not affect any of the measured leaf traits. Condensed tannins were negatively correlated with herbivory, suggesting that they drive variation in leaf damage at both scales. Moreover, the effects of microhabitat warming on herbivory and leaf traits were consistent across sites, i.e. effects at the microhabitat scale play out similarly despite variation in factors acting at broader scales. These findings together suggest that herbivory responds to both microhabitat (warming) and broad-scale environmental factors, whereas leaf traits appear to respond more to environmental factors operating at broad scales (e.g. macroclimatic factors) than to warming at the microhabitat scale. In turn, leaf secondary chemistry (tannins) appears to drive both broad-scale and microhabitat-scale variation in herbivory. Further studies are needed using reciprocal transplants with more populations across a greater number of sites to tease apart plant plasticity from genetic differences contributing to leaf trait and ass
- Published
- 2023
3. Initial oak regeneration responses to experimental warming along microclimatic and macroclimatic gradients
- Author
-
Meeussen, C., De Pauw, K., Sanczuk, P., Brunet, J., Cousins, S. A. O., Gasperini, C., Hedwall, P.‐O., Iacopetti, G., Lenoir, J., Plue, J., Selvi, F., Spicher, F., Uria Diez, J., Verheyen, K., Vangansbeke, P., and De Frenne, P.
- Subjects
Climate Change ,edge influence ,Plant Science ,INFRARED HEATER ,Forests ,Trees ,Quercus ,climate change, edge influence, forest structure, temperate deciduous forests, transplant experiment, Quercus ,FAGUS-SYLVATICA ,temperate deciduous forests ,transplant experiment ,TREE ,Ecology, Evolution, Behavior and Systematics ,BUD BURST ,QUERCUS-ROBUR ,CLIMATE-CHANGE ,FROST HARDINESS ,Biology and Life Sciences ,Microclimate ,General Medicine ,FOREST ,climate change ,LIGHT ,Earth and Environmental Sciences ,GROWTH ,forest structure - Abstract
Quercus spp. are one of the most important tree genera in temperate deciduous forests in terms of biodiversity, economic and cultural perspectives. However, natural regeneration of oaks, depending on specific environmental conditions, is still not sufficiently understood. Oak regeneration dynamics are impacted by climate change, but these climate impacts will depend on local forest management and light and temperature conditions. Here, we studied germination, survival and seedling performance (i.e. aboveground biomass, height, root collar diameter and specific leaf area) of four oak species (Q. cerris, Q. ilex, Q. robur and Q. petraea). Acorns were sown across a wide latitudinal gradient, from Italy to Sweden, and across several microclimatic gradients located within and beyond the species' natural ranges. Microclimatic gradients were applied in terms of forest structure, distance to the forest edge and experimental warming. We found strong interactions between species and latitude, as well as between microclimate and latitude or species. The species thus reacted differently to local and regional changes in light and temperature ; in southern regions the temperate Q. robur and Q. petraea performed best in plots with a complex structure, whereas the Mediterranean Q. ilex and Q. cerris performed better in simply structured forests with a reduced microclimatic buffering capacity. The experimental warming treatment only enhanced height and aboveground biomass of Mediterranean species. Our results show that local microclimatic gradients play a key role in the initial stages of oak regeneration; however, one needs to consider the species-specific responses to forest structure and the macroclimatic context.
- Published
- 2022
- Full Text
- View/download PDF
4. Global maps of soil temperature
- Author
-
Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), Lenoir, J. (Jonathan), Lembrechts, J. J. (Jonas J.), van den Hoogen, J. (Johan), Aalto, J. (Juha), Ashcroft, M. B. (Michael B.), De Frenne, P. (Pieter), Kemppinen, J. (Julia), Kopecky, M. (Martin), Luoto, M. (Miska), Maclean, I. M. (Ilya M. D.), Crowther, T. W. (Thomas W.), Bailey, J. J. (Joseph J.), Haesen, S. (Stef), Klinges, D. H. (David H.), Niittynen, P. (Pekka), Scheffers, B. R. (Brett R.), Van Meerbeek, K. (Koenraad), Aartsma, P. (Peter), Abdalaze, O. (Otar), Abedi, M. (Mehdi), Aerts, R. (Rien), Ahmadian, N. (Negar), Ahrends, A. (Antje), Alatalo, J. M. (Juha M.), Alexander, J. M. (Jake M.), Allonsius, C. N. (Camille Nina), Altman, J. (Jan), Ammann, C. (Christof), Andres, C. (Christian), Andrews, C. (Christopher), Ardo, J. (Jonas), Arriga, N. (Nicola), Arzac, A. (Alberto), Aschero, V. (Valeria), Assis, R. L. (Rafael L.), Assmann, J. J. (Jakob Johann), Bader, M. Y. (Maaike Y.), Bahalkeh, K. (Khadijeh), Barancok, P. (Peter), Barrio, I. C. (Isabel C.), Barros, A. (Agustina), Barthel, M. (Matti), Basham, E. W. (Edmund W.), Bauters, M. (Marijn), Bazzichetto, M. (Manuele), Marchesini, L. B. (Luca Belelli), Bell, M. C. (Michael C.), Benavides, J. C. (Juan C.), Benito Alonso, J. L. (Jose Luis), Berauer, B. J. (Bernd J.), Bjerke, J. W. (Jarle W.), Bjork, R. G. (Robert G.), Bjorkman, M. P. (Mats P.), Bjornsdottir, K. (Katrin), Blonder, B. (Benjamin), Boeckx, P. (Pascal), Boike, J. (Julia), Bokhorst, S. (Stef), Brum, B. N. (Barbara N. S.), Bruna, J. (Josef), Buchmann, N. (Nina), Buysse, P. (Pauline), Camargo, J. L. (Jose Luis), Campoe, O. C. (Otavio C.), Candan, O. (Onur), Canessa, R. (Rafaella), Cannone, N. (Nicoletta), Carbognani, M. (Michele), Carnicer, J. (Jofre), Casanova-Katny, A. (Angelica), Cesarz, S. (Simone), Chojnicki, B. (Bogdan), Choler, P. (Philippe), Chown, S. L. (Steven L.), Cifuentes, E. F. (Edgar F.), Ciliak, M. (Marek), Contador, T. (Tamara), Convey, P. (Peter), Cooper, E. J. (Elisabeth J.), Cremonese, E. (Edoardo), Curasi, S. R. (Salvatore R.), Curtis, R. (Robin), Cutini, M. (Maurizio), Dahlberg, C. J. (C. Johan), Daskalova, G. N. (Gergana N.), Angel de Pablo, M. (Miguel), Della Chiesa, S. (Stefano), Dengler, J. (Juergen), Deronde, B. (Bart), Descombes, P. (Patrice), Di Cecco, V. (Valter), Di Musciano, M. (Michele), Dick, J. (Jan), Dimarco, R. D. (Romina D.), Dolezal, J. (Jiri), Dorrepaal, E. (Ellen), Dusek, J. (Jiri), Eisenhauer, N. (Nico), Eklundh, L. (Lars), Erickson, T. E. (Todd E.), Erschbamer, B. (Brigitta), Eugster, W. (Werner), Ewers, R. M. (Robert M.), Exton, D. A. (Dan A.), Fanin, N. (Nicolas), Fazlioglu, F. (Fatih), Feigenwinter, I. (Iris), Fenu, G. (Giuseppe), Ferlian, O. (Olga), Fernandez Calzado, M. R. (M. Rosa), Fernandez-Pascual, E. (Eduardo), Finckh, M. (Manfred), Higgens, R. F. (Rebecca Finger), Forte, T. G. (T'ai G. W.), Freeman, E. C. (Erika C.), Frei, E. R. (Esther R.), Fuentes-Lillo, E. (Eduardo), Garcia, R. A. (Rafael A.), Garcia, M. B. (Maria B.), Geron, C. (Charly), Gharun, M. (Mana), Ghosn, D. (Dany), Gigauri, K. (Khatuna), Gobin, A. (Anne), Goded, I. (Ignacio), Goeckede, M. (Mathias), Gottschall, F. (Felix), Goulding, K. (Keith), Govaert, S. (Sanne), Graae, B. J. (Bente Jessen), Greenwood, S. (Sarah), Greiser, C. (Caroline), Grelle, A. (Achim), Guenard, B. (Benoit), Guglielmin, M. (Mauro), Guillemot, J. (Joannes), Haase, P. (Peter), Haider, S. (Sylvia), Halbritter, A. H. (Aud H.), Hamid, M. (Maroof), Hammerle, A. (Albin), Hampe, A. (Arndt), Haugum, S. V. (Siri, V), Hederova, L. (Lucia), Heinesch, B. (Bernard), Helfter, C. (Carole), Hepenstrick, D. (Daniel), Herberich, M. (Maximiliane), Herbst, M. (Mathias), Hermanutz, L. (Luise), Hik, D. S. (David S.), Hoffren, R. (Raul), Homeier, J. (Juergen), Hörtnagl, L. (Lukas), Hoye, T. T. (Toke T.), Hrbacek, F. (Filip), Hylander, K. (Kristoffer), Iwata, H. (Hiroki), Jackowicz-Korczynski, M. A. (Marcin Antoni), Jactel, H. (Herve), Jarveoja, J. (Jarvi), Jastrzebowski, S. (Szymon), Jentsch, A. (Anke), Jimenez, J. J. (Juan J.), Jonsdottir, I. S. (Ingibjorg S.), Jucker, T. (Tommaso), Jump, A. S. (Alistair S.), Juszczak, R. (Radoslaw), Kanka, R. (Robert), Kaspar, V. (Vit), Kazakis, G. (George), Kelly, J. (Julia), Khuroo, A. A. (Anzar A.), Klemedtsson, L. (Leif), Klisz, M. (Marcin), Kljun, N. (Natascha), Knohl, A. (Alexander), Kobler, J. (Johannes), Kollar, J. (Jozef), Kotowska, M. M. (Martyna M.), Kovacs, B. (Bence), Kreyling, J. (Juergen), Lamprecht, A. (Andrea), Lang, S. I. (Simone, I), Larson, C. (Christian), Larson, K. (Keith), Laska, K. (Kamil), Maire, G. I. (Guerric Ie), Leihy, R. I. (Rachel, I), Lens, L. (Luc), Liljebladh, B. (Bengt), Lohila, A. (Annalea), Lorite, J. (Juan), Loubet, B. (Benjamin), Lynn, J. (Joshua), Macek, M. (Martin), Mackenzie, R. (Roy), Magliulo, E. (Enzo), Maier, R. (Regine), Malfasi, F. (Francesco), Malis, F. (Frantisek), Man, M. (Matej), Manca, G. (Giovanni), Manco, A. (Antonio), Manise, T. (Tanguy), Manolaki, P. (Paraskevi), Marciniak, F. (Felipe), Matula, R. (Radim), Clara Mazzolari, A. (Ana), Medinets, S. (Sergiy), Medinets, V. (Volodymyr), Meeussen, C. (Camille), Merinero, S. (Sonia), Guimaraes Mesquita, R. d. (Rita de Cassia), Meusburger, K. (Katrin), Meysman, F. J. (Filip J. R.), Michaletz, S. T. (Sean T.), Milbau, A. (Ann), Moiseev, D. (Dmitry), Moiseev, P. (Pavel), Mondoni, A. (Andrea), Monfries, R. (Ruth), Montagnani, L. (Leonardo), Moriana-Armendariz, M. (Mikel), di Cella, U. M. (Umberto Morra), Moersdorf, M. (Martin), Mosedale, J. R. (Jonathan R.), Muffler, L. (Lena), Munoz-Rojas, M. (Miriam), Myers, J. A. (Jonathan A.), Myers-Smith, I. H. (Isla H.), Nagy, L. (Laszlo), Nardino, M. (Marianna), Naujokaitis-Lewis, I. (Ilona), Newling, E. (Emily), Nicklas, L. (Lena), Niedrist, G. (Georg), Niessner, A. (Armin), Nilsson, M. B. (Mats B.), Normand, S. (Signe), Nosetto, M. D. (Marcelo D.), Nouvellon, Y. (Yann), Nunez, M. A. (Martin A.), Ogaya, R. (Roma), Ogee, J. (Jerome), Okello, J. (Joseph), Olejnik, J. (Janusz), Olesen, J. E. (Jorgen Eivind), Opedal, O. H. (Oystein H.), Orsenigo, S. (Simone), Palaj, A. (Andrej), Pampuch, T. (Timo), Panov, A. V. (Alexey V.), Pärtel, M. (Meelis), Pastor, A. (Ada), Pauchard, A. (Aníbal), Pauli, H. (Harald), Pavelka, M. (Marian), Pearse, W. D. (William D.), Peichl, M. (Matthias), Pellissier, L. (Loïc), Penczykowski, R. M. (Rachel M.), Penuelas, J. (Josep), Petit Bon, M. (Matteo), Petraglia, A. (Alessandro), Phartyal, S. S. (Shyam S.), Phoenix, G. K. (Gareth K.), Pio, C. (Casimiro), Pitacco, A. (Andrea), Pitteloud, C. (Camille), Plichta, R. (Roman), Porro, F. (Francesco), Portillo-Estrada, M. (Miguel), Poulenard, J. (Jérôme), Poyatos, R. (Rafael), Prokushkin, A. S. (Anatoly S.), Puchalka, R. (Radoslaw), Pușcaș, M. (Mihai), Radujković, D. (Dajana), Randall, K. (Krystal), Ratier Backes, A. (Amanda), Remmele, S. (Sabine), Remmers, W. (Wolfram), Renault, D. (David), Risch, A. C. (Anita C.), Rixen, C. (Christian), Robinson, S. A. (Sharon A.), Robroek, B. J. (Bjorn J. M.), Rocha, A. V. (Adrian V.), Rossi, C. (Christian), Rossi, G. (Graziano), Roupsard, O. (Olivier), Rubtsov, A. V. (Alexey V.), Saccone, P. (Patrick), Sagot, C. (Clotilde), Sallo Bravo, J. (Jhonatan), Santos, C. C. (Cinthya C.), Sarneel, J. M. (Judith M.), Scharnweber, T. (Tobias), Schmeddes, J. (Jonas), Schmidt, M. (Marius), Scholten, T. (Thomas), Schuchardt, M. (Max), Schwartz, N. (Naomi), Scott, T. (Tony), Seeber, J. (Julia), Segalin De Andrade, A. C. (Ana Cristina), Seipel, T. (Tim), Semenchuk, P. (Philipp), Senior, R. A. (Rebecca A.), Serra-Diaz, J. M. (Josep M.), Sewerniak, P. (Piotr), Shekhar, A. (Ankit), Sidenko, N. V. (Nikita V.), Siebicke, L. (Lukas), Siegwart Collier, L. (Laura), Simpson, E. (Elizabeth), Siqueira, D. P. (David P.), Sitková, Z. (Zuzana), Six, J. (Johan), Smiljanic, M. (Marko), Smith, S. W. (Stuart W.), Smith-Tripp, S. (Sarah), Somers, B. (Ben), Sørensen, M. V. (Mia Vedel), Souza, J. J. (José João L. L.), Souza, B. I. (Bartolomeu Israel), Dias, A. S. (Arildo Souza), Spasojevic, M. J. (Marko J.), Speed, J. D. (James D. M.), Spicher, F. (Fabien), Stanisci, A. (Angela), Steinbauer, K. (Klaus), Steinbrecher, R. (Rainer), Steinwandter, M. (Michael), Stemkovski, M. (Michael), Stephan, J. G. (Jörg G.), Stiegler, C. (Christian), Stoll, S. (Stefan), Svátek, M. (Martin), Svoboda, M. (Miroslav), Tagesson, T. (Torbern), Tanentzap, A. J. (Andrew J.), Tanneberger, F. (Franziska), Theurillat, J.-P. (Jean-Paul), Thomas, H. J. (Haydn J. D.), Thomas, A. D. (Andrew D.), Tielbörger, K. (Katja), Tomaselli, M. (Marcello), Treier, U. A. (Urs Albert), Trouillier, M. (Mario), Turtureanu, P. D. (Pavel Dan), Tutton, R. (Rosamond), Tyystjärvi, V. A. (Vilna A.), Ueyama, M. (Masahito), Ujházy, K. (Karol), Ujházyová, M. (Mariana), Uogintas, D. (Domas), Urban, A. V. (Anastasiya V.), Urban, J. (Josef), Urbaniak, M. (Marek), Ursu, T.-M. (Tudor-Mihai), Vaccari, F. P. (Francesco Primo), Van De Vondel, S. (Stijn), Van Den Brink, L. (Liesbeth), Van Geel, M. (Maarten), Vandvik, V. (Vigdis), Vangansbeke, P. (Pieter), Varlagin, A. (Andrej), Veen, G. F. (G. F.), Veenendaal, E. (Elmar), Venn, S. E. (Susanna E.), Verbeeck, H. (Hans), Verbrugggen, E. (Erik), Verheijen, F. G. (Frank G. A.), Villar, L. (Luis), Vitale, L. (Luca), Vittoz, P. (Pascal), Vives-Ingla, M. (Maria), Von Oppen, J. (Jonathan), Walz, J. (Josefine), Wang, R. (Runxi), Wang, Y. (Yifeng), Way, R. G. (Robert G.), Wedegärtner, R. E. (Ronja E. M.), Weigel, R. (Robert), Wild, J. (Jan), Wilkinson, M. (Matthew), Wilmking, M. (Martin), Wingate, L. (Lisa), Winkler, M. (Manuela), Wipf, S. (Sonja), Wohlfahrt, G. (Georg), Xenakis, G. (Georgios), Yang, Y. (Yan), Yu, Z. (Zicheng), Yu, K. (Kailiang), Zellweger, F. (Florian), Zhang, J. (Jian), Zhang, Z. (Zhaochen), Zhao, P. (Peng), Ziemblińska, K. (Klaudia), Zimmermann, R. (Reiner), Zong, S. (Shengwei), Zyryanov, V. I. (Viacheslav I.), Nijs, I. (Ivan), and Lenoir, J. (Jonathan)
- Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0‐5 and 5‐15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1‐km² pixels (summarized from 8519 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10° degrees C (mean = 3.0 +/‐ 2.1° degrees C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 +/‐2.3° degrees C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (‐0.7 +/‐ 2.3° degrees C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological
- Published
- 2022
5. Global maps of soil temperature
- Author
-
Lembrechts, JJ, van den Hoogen, J, Aalto, J, Ashcroft, MB, De Frenne, P, Kemppinen, J, Kopecký, M, Luoto, M, Maclean, IMD, Crowther, TW, Bailey, JJ, Haesen, S, Klinges, DH, Niittynen, P, Scheffers, BR, Van Meerbeek, K, Aartsma, P, Abdalaze, O, Abedi, M, Aerts, R, Ahmadian, N, Ahrends, A, Alatalo, JM, Alexander, JM, Nina Allonsius, C, Altman, J, Ammann, C, Andres, C, Andrews, C, Ardö, J, Arriga, N, Arzac, A, Aschero, V, Assis, RL, Johann Assmann, J, Bader, MY, Bahalkeh, K, Barančok, P, Barrio, IC, Barros, A, Barthel, M, Basham, EW, Bauters, M, Bazzichetto, M, Belelli Marchesini, L, Bell, MC, Benavides, JC, Luis Benito Alonso, J, Berauer, BJ, Bjerke, JW, Björk, RG, Björkman, MP, Björnsdóttir, K, Blonder, B, Boeckx, P, Boike, J, Bokhorst, S, Brum, BNS, Brůna, J, Buchmann, N, Buysse, P, Luís Camargo, J, Campoe, OC, Candan, O, Canessa, R, Cannone, N, Carbognani, M, Carnicer, J, Casanova‐Katny, A, Cesarz, S, Chojnicki, B, Choler, P, Chown, SL, Cifuentes, EF, Čiliak, M, Contador, T, Convey, P, Cooper, EJ, Cremonese, E, Curasi, SR, Curtis, R, Cutini, M, Johan Dahlberg, C, Daskalova, GN, Angel de Pablo, M, Della Chiesa, S, Dengler, J, Deronde, B, Descombes, P, Di Cecco, V, Di Musciano, M, Dick, J, Dimarco, RD, Dolezal, J, Dorrepaal, E, Dušek, J, Eisenhauer, N, Eklundh, L, Erickson, TE, Erschbamer, B, Eugster, W, Ewers, RM, Exton, DA, Fanin, N, Fazlioglu, F, Feigenwinter, I, Fenu, G, Ferlian, O, Rosa Fernández Calzado, M, Fernández‐Pascual, E, Finckh, M, Finger Higgens, R, Forte, TGW, Freeman, EC, Frei, ER, Fuentes‐Lillo, E, García, RA, García, MB, Géron, C, Gharun, M, Ghosn, D, Gigauri, K, Gobin, A, Goded, I, Goeckede, M, Gottschall, F, Goulding, K, Govaert, S, Jessen Graae, B, Greenwood, S, Greiser, C, Grelle, A, Guénard, B, Guglielmin, M, Guillemot, J, Haase, P, Haider, S, Halbritter, AH, Hamid, M, Hammerle, A, Hampe, A, Haugum, SV, Hederová, L, Heinesch, B, Helfter, C, Hepenstrick, D, Herberich, M, Herbst, M, Hermanutz, L, Hik, DS, Hoffrén, R, Homeier, J, Hörtnagl, L, Høye, TT, Hrbacek, F, Hylander, K, Iwata, H, Antoni Jackowicz‐Korczynski, M, Jactel, H, Järveoja, J, Jastrzębowski, S, Jentsch, A, Jiménez, JJ, Jónsdóttir, IS, Jucker, T, Jump, AS, Juszczak, R, Kanka, R, Kašpar, V, Kazakis, G, Kelly, J, Khuroo, AA, Klemedtsson, L, Klisz, M, Kljun, N, Knohl, A, Kobler, J, Kollár, J, Kotowska, MM, Kovács, B, Kreyling, J, Lamprecht, A, Lang, SI, Larson, C, Larson, K, Laska, K, le Maire, G, Leihy, RI, Lens, L, Liljebladh, B, Lohila, A, Lorite, J, Loubet, B, Lynn, J, Macek, M, Mackenzie, R, Magliulo, E, Maier, R, Malfasi, F, Máliš, F, Man, M, Manca, G, Manco, A, Manise, T, Manolaki, P, Marciniak, F, Matula, R, Clara Mazzolari, A, Medinets, S, Medinets, V, Meeussen, C, Merinero, S, de Cássia Guimarães Mesquita, R, Meusburger, K, Meysman, FJR, Michaletz, ST, Milbau, A, Moiseev, D, Moiseev, P, Mondoni, A, Monfries, R, Montagnani, L, Moriana‐Armendariz, M, Morra di Cella, U, Mörsdorf, M, Mosedale, JR, Muffler, L, Muñoz‐Rojas, M, Myers, JA, Myers‐Smith, IH, Nagy, L, Nardino, M, Naujokaitis‐Lewis, I, Newling, Emily, Nicklas, L, Niedrist, G, Niessner, A, Nilsson, MB, Normand, S, Nosetto, MD, Nouvellon, Y, Nuñez, MA, Ogaya, R, Ogée, J, Okello, J, Olejnik, J, Eivind Olesen, J, Opedal, Ø, Orsenigo, S, Palaj, A, Pampuch, T, Panov, AV, Pärtel, M, Pastor, A, Pauchard, A, Pauli, H, Pavelka, M, Pearse, WD, Peichl, M, Pellissier, L, Penczykowski, RM, Penuelas, J, Petit Bon, M, Petraglia, A, Phartyal, SS, Phoenix, GK, Pio, C, Pitacco, A, Pitteloud, C, Plichta, R, Porro, F, Portillo‐Estrada, M, Poulenard, J, Poyatos, R, Prokushkin, AS, Puchalka, R, Pușcaș, M, Radujković, D, Randall, K, Ratier Backes, A, Remmele, S, Remmers, W, Renault, D, Risch, AC, Rixen, C, Robinson, SA, Robroek, BJM, Rocha, AV, Rossi, C, Rossi, G, Roupsard, O, Rubtsov, AV, Saccone, P, Sagot, C, Sallo Bravo, J, Santos, CC, Sarneel, JM, Scharnweber, T, Schmeddes, J, Schmidt, M, Scholten, T, Schuchardt, M, Schwartz, N, Scott, T, Seeber, J, Cristina Segalin de Andrade, A, Seipel, T, Semenchuk, P, Senior, RA, Serra‐Diaz, JM, Sewerniak, P, Shekhar, A, Sidenko, NV, Siebicke, L, Siegwart Collier, L, Simpson, E, Siqueira, DP, Sitková, Z, Six, J, Smiljanic, M, Smith, SW, Smith‐Tripp, S, Somers, B, Vedel Sørensen, M, João L. L. Souza, J, Israel Souza, B, Souza Dias, A, Spasojevic, MJ, Speed, JDM, Spicher, F, Stanisci, A, Steinbauer, K, Steinbrecher, R, Steinwandter, M, Stemkovski, M, Stephan, JG, Stiegler, C, Stoll, S, Svátek, M, Svoboda, M, Tagesson, T, Tanentzap, AJ, Tanneberger, F, Theurillat, J, Thomas, HJD, Thomas, AD, Tielbörger, K, Tomaselli, M, Albert Treier, U, Trouillier, M, Dan Turtureanu, P, Tutton, R, Tyystjärvi, VA, Ueyama, M, Ujházy, K, Ujházyová, M, Uogintas, D, Urban, AV, Urban, J, Urbaniak, M, Ursu, T, Primo Vaccari, F, Van de Vondel, S, van den Brink, L, Van Geel, M, Vandvik, V, Vangansbeke, P, Varlagin, A, Veen, GF, Veenendaal, E, Venn, Susanna, Verbeeck, H, Verbrugggen, E, Verheijen, FGA, Villar, L, Vitale, L, Vittoz, P, Vives‐Ingla, M, von Oppen, J, Walz, J, Wang, R, Wang, Y, Way, RG, Wedegärtner, REM, Weigel, R, Wild, J, Wilkinson, M, Wilmking, M, Wingate, L, Winkler, M, Wipf, S, Wohlfahrt, G, Xenakis, G, Yang, Y, Yu, Z, Yu, K, Zellweger, F, Zhang, J, Zhang, Z, Zhao, P, Ziemblińska, K, Zimmermann, R, Zong, S, Zyryanov, VI, Nijs, I, Lenoir, J, Lembrechts, JJ, van den Hoogen, J, Aalto, J, Ashcroft, MB, De Frenne, P, Kemppinen, J, Kopecký, M, Luoto, M, Maclean, IMD, Crowther, TW, Bailey, JJ, Haesen, S, Klinges, DH, Niittynen, P, Scheffers, BR, Van Meerbeek, K, Aartsma, P, Abdalaze, O, Abedi, M, Aerts, R, Ahmadian, N, Ahrends, A, Alatalo, JM, Alexander, JM, Nina Allonsius, C, Altman, J, Ammann, C, Andres, C, Andrews, C, Ardö, J, Arriga, N, Arzac, A, Aschero, V, Assis, RL, Johann Assmann, J, Bader, MY, Bahalkeh, K, Barančok, P, Barrio, IC, Barros, A, Barthel, M, Basham, EW, Bauters, M, Bazzichetto, M, Belelli Marchesini, L, Bell, MC, Benavides, JC, Luis Benito Alonso, J, Berauer, BJ, Bjerke, JW, Björk, RG, Björkman, MP, Björnsdóttir, K, Blonder, B, Boeckx, P, Boike, J, Bokhorst, S, Brum, BNS, Brůna, J, Buchmann, N, Buysse, P, Luís Camargo, J, Campoe, OC, Candan, O, Canessa, R, Cannone, N, Carbognani, M, Carnicer, J, Casanova‐Katny, A, Cesarz, S, Chojnicki, B, Choler, P, Chown, SL, Cifuentes, EF, Čiliak, M, Contador, T, Convey, P, Cooper, EJ, Cremonese, E, Curasi, SR, Curtis, R, Cutini, M, Johan Dahlberg, C, Daskalova, GN, Angel de Pablo, M, Della Chiesa, S, Dengler, J, Deronde, B, Descombes, P, Di Cecco, V, Di Musciano, M, Dick, J, Dimarco, RD, Dolezal, J, Dorrepaal, E, Dušek, J, Eisenhauer, N, Eklundh, L, Erickson, TE, Erschbamer, B, Eugster, W, Ewers, RM, Exton, DA, Fanin, N, Fazlioglu, F, Feigenwinter, I, Fenu, G, Ferlian, O, Rosa Fernández Calzado, M, Fernández‐Pascual, E, Finckh, M, Finger Higgens, R, Forte, TGW, Freeman, EC, Frei, ER, Fuentes‐Lillo, E, García, RA, García, MB, Géron, C, Gharun, M, Ghosn, D, Gigauri, K, Gobin, A, Goded, I, Goeckede, M, Gottschall, F, Goulding, K, Govaert, S, Jessen Graae, B, Greenwood, S, Greiser, C, Grelle, A, Guénard, B, Guglielmin, M, Guillemot, J, Haase, P, Haider, S, Halbritter, AH, Hamid, M, Hammerle, A, Hampe, A, Haugum, SV, Hederová, L, Heinesch, B, Helfter, C, Hepenstrick, D, Herberich, M, Herbst, M, Hermanutz, L, Hik, DS, Hoffrén, R, Homeier, J, Hörtnagl, L, Høye, TT, Hrbacek, F, Hylander, K, Iwata, H, Antoni Jackowicz‐Korczynski, M, Jactel, H, Järveoja, J, Jastrzębowski, S, Jentsch, A, Jiménez, JJ, Jónsdóttir, IS, Jucker, T, Jump, AS, Juszczak, R, Kanka, R, Kašpar, V, Kazakis, G, Kelly, J, Khuroo, AA, Klemedtsson, L, Klisz, M, Kljun, N, Knohl, A, Kobler, J, Kollár, J, Kotowska, MM, Kovács, B, Kreyling, J, Lamprecht, A, Lang, SI, Larson, C, Larson, K, Laska, K, le Maire, G, Leihy, RI, Lens, L, Liljebladh, B, Lohila, A, Lorite, J, Loubet, B, Lynn, J, Macek, M, Mackenzie, R, Magliulo, E, Maier, R, Malfasi, F, Máliš, F, Man, M, Manca, G, Manco, A, Manise, T, Manolaki, P, Marciniak, F, Matula, R, Clara Mazzolari, A, Medinets, S, Medinets, V, Meeussen, C, Merinero, S, de Cássia Guimarães Mesquita, R, Meusburger, K, Meysman, FJR, Michaletz, ST, Milbau, A, Moiseev, D, Moiseev, P, Mondoni, A, Monfries, R, Montagnani, L, Moriana‐Armendariz, M, Morra di Cella, U, Mörsdorf, M, Mosedale, JR, Muffler, L, Muñoz‐Rojas, M, Myers, JA, Myers‐Smith, IH, Nagy, L, Nardino, M, Naujokaitis‐Lewis, I, Newling, Emily, Nicklas, L, Niedrist, G, Niessner, A, Nilsson, MB, Normand, S, Nosetto, MD, Nouvellon, Y, Nuñez, MA, Ogaya, R, Ogée, J, Okello, J, Olejnik, J, Eivind Olesen, J, Opedal, Ø, Orsenigo, S, Palaj, A, Pampuch, T, Panov, AV, Pärtel, M, Pastor, A, Pauchard, A, Pauli, H, Pavelka, M, Pearse, WD, Peichl, M, Pellissier, L, Penczykowski, RM, Penuelas, J, Petit Bon, M, Petraglia, A, Phartyal, SS, Phoenix, GK, Pio, C, Pitacco, A, Pitteloud, C, Plichta, R, Porro, F, Portillo‐Estrada, M, Poulenard, J, Poyatos, R, Prokushkin, AS, Puchalka, R, Pușcaș, M, Radujković, D, Randall, K, Ratier Backes, A, Remmele, S, Remmers, W, Renault, D, Risch, AC, Rixen, C, Robinson, SA, Robroek, BJM, Rocha, AV, Rossi, C, Rossi, G, Roupsard, O, Rubtsov, AV, Saccone, P, Sagot, C, Sallo Bravo, J, Santos, CC, Sarneel, JM, Scharnweber, T, Schmeddes, J, Schmidt, M, Scholten, T, Schuchardt, M, Schwartz, N, Scott, T, Seeber, J, Cristina Segalin de Andrade, A, Seipel, T, Semenchuk, P, Senior, RA, Serra‐Diaz, JM, Sewerniak, P, Shekhar, A, Sidenko, NV, Siebicke, L, Siegwart Collier, L, Simpson, E, Siqueira, DP, Sitková, Z, Six, J, Smiljanic, M, Smith, SW, Smith‐Tripp, S, Somers, B, Vedel Sørensen, M, João L. L. Souza, J, Israel Souza, B, Souza Dias, A, Spasojevic, MJ, Speed, JDM, Spicher, F, Stanisci, A, Steinbauer, K, Steinbrecher, R, Steinwandter, M, Stemkovski, M, Stephan, JG, Stiegler, C, Stoll, S, Svátek, M, Svoboda, M, Tagesson, T, Tanentzap, AJ, Tanneberger, F, Theurillat, J, Thomas, HJD, Thomas, AD, Tielbörger, K, Tomaselli, M, Albert Treier, U, Trouillier, M, Dan Turtureanu, P, Tutton, R, Tyystjärvi, VA, Ueyama, M, Ujházy, K, Ujházyová, M, Uogintas, D, Urban, AV, Urban, J, Urbaniak, M, Ursu, T, Primo Vaccari, F, Van de Vondel, S, van den Brink, L, Van Geel, M, Vandvik, V, Vangansbeke, P, Varlagin, A, Veen, GF, Veenendaal, E, Venn, Susanna, Verbeeck, H, Verbrugggen, E, Verheijen, FGA, Villar, L, Vitale, L, Vittoz, P, Vives‐Ingla, M, von Oppen, J, Walz, J, Wang, R, Wang, Y, Way, RG, Wedegärtner, REM, Weigel, R, Wild, J, Wilkinson, M, Wilmking, M, Wingate, L, Winkler, M, Wipf, S, Wohlfahrt, G, Xenakis, G, Yang, Y, Yu, Z, Yu, K, Zellweger, F, Zhang, J, Zhang, Z, Zhao, P, Ziemblińska, K, Zimmermann, R, Zong, S, Zyryanov, VI, Nijs, I, and Lenoir, J
- Published
- 2021
6. Communautés microbiennes de sols agricoles et relations avec la contamination par les éléments traces métalliques-MicroPoll
- Author
-
Alahmad, A., Maxime Gommeaux, Duclercq, J., Benjamin Cancès, Alexandra Guillaneuf, Roger, D., Jérome Lacoux, Spicher, F., Béatrice Marin, Groupe d'Étude sur les Géomatériaux et Environnements Naturels, Anthropiques et Archéologiques - EA 3795 (GEGENAA), Université de Reims Champagne-Ardenne (URCA)-SFR Condorcet, Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS)-Maison des Sciences Humaines de Champagne-Ardenne (MSH-URCA), and Université de Reims Champagne-Ardenne (URCA)-Université de Reims Champagne-Ardenne (URCA)
- Subjects
[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2016
7. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization
- Author
-
Nivelle E., Verzeaux J., Habbib H., Kuzyakov Y., Decocq G., Roger D., Lacoux J., Duclercq J., Spicher F., Nava-Saucedo J., Catterou M., Dubois F., and Tetu T.
- Subjects
Soil management ,fungi ,food and beverages ,Carbon content ,Microbial functional responses - Abstract
© 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or cover crops with legumes for 5 years under a low biomass return in industrial crop production have a positive effect on: i) upper soil C content and microbial enzymes, irrespective of N fertilization regime; ii) soil microbial functional diversity in the absence of N fertilization.
- Published
- 2016
8. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization
- Author
-
Nivelle E., Verzeaux J., Habbib H., Kuzyakov Y., Decocq G., Roger D., Lacoux J., Duclercq J., Spicher F., Nava-Saucedo J., Catterou M., Dubois F., Tetu T., Nivelle E., Verzeaux J., Habbib H., Kuzyakov Y., Decocq G., Roger D., Lacoux J., Duclercq J., Spicher F., Nava-Saucedo J., Catterou M., Dubois F., and Tetu T.
- Abstract
© 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or c
9. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization
- Author
-
Nivelle E., Verzeaux J., Habbib H., Kuzyakov Y., Decocq G., Roger D., Lacoux J., Duclercq J., Spicher F., Nava-Saucedo J., Catterou M., Dubois F., Tetu T., Nivelle E., Verzeaux J., Habbib H., Kuzyakov Y., Decocq G., Roger D., Lacoux J., Duclercq J., Spicher F., Nava-Saucedo J., Catterou M., Dubois F., and Tetu T.
- Abstract
© 2016 Elsevier B.V.Agricultural practices such as tillage, cover crops, and nitrogen (N) fertilization affect physico-chemical and biological soil parameters. However, these factors were often studied separately and their combined effects remain unclear, especially with respect to soil microbial functional diversity and carbon (C) and N content. Thereafter, we aim to assess the links between cropping systems and functional response of microbial communities by using a large range of soil chemical and biological measurements. A 5-yr field experiment was conducted in Northern France using a combination of three factors: i) no-till (NT) vs. conventional tillage (CT); ii) with or without winter cover crops (bare fallow; cover crops with a low prevalence of legumes; cover crop with a high prevalence of legumes); and iii) with or without N fertilization. C and N inputs from cover crops and crop residues, C and N content, enzyme activities, and microbial functional diversity in the topsoil (0–10 cm) were measured over an industrial crop rotation: wheat, pea, corn, wheat, flax. No-till combined with any of the cover crops was characterized by increased total soil organic C and N contents by more than 20% between 2010 and 2015. Dehydrogenase and urease activities were significantly greatest under NT, irrespective of the presence of cover crops. Cover crops without N fertilization under no-till led to higher microbial functional activity (faster carbohydrate and phenolic compound degradation) and diversity. Bare fallow had lower soil microbial functional diversity and C and N contents compared with soil under NT and cover crops. On the other hand, NT associated with cover crops allowed to maintain the soil in both C and N, and to promote microbial activities without N fertilization. In conclusion, winter cover crops and/or NT are sustainable agricultural practices resulting in a greater soil quality index. These results demonstrate that NT and use of standard cover crops or c
10. Variation in insect herbivory across an urbanization gradient: The role of abiotic factors and leaf secondary metabolites.
- Author
-
Moreira X, Van den Bossche A, Moeys K, Van Meerbeek K, Thomaes A, Vázquez-González C, Abdala-Roberts L, Brunet J, Cousins SAO, Defossez E, De Pauw K, Diekmann M, Glauser G, Graae BJ, Hagenblad J, Heavyside P, Hedwall PO, Heinken T, Huang S, Lago-Núñez B, Lenoir J, Lindgren J, Lindmo S, Mazalla L, Naaf T, Orczewska A, Paulssen J, Plue J, Rasmann S, Spicher F, Vanneste T, Verschuren L, Visakorpi K, Wulf M, and De Frenne P
- Subjects
- Animals, Fraxinus metabolism, Quercus metabolism, Quercus physiology, Soil chemistry, Tilia metabolism, Terpenes metabolism, Secondary Metabolism, Temperature, Alkaloids metabolism, Phenols metabolism, Herbivory physiology, Plant Leaves metabolism, Urbanization, Insecta physiology
- Abstract
Urbanization impacts plant-herbivore interactions, which are crucial for ecosystem functions such as carbon sequestration and nutrient cycling. While some studies have reported reductions in insect herbivory in urban areas (relative to rural or natural forests), this trend is not consistent and the underlying causes for such variation remain unclear. We conducted a continental-scale study on insect herbivory along urbanization gradients for three European tree species: Quercus robur, Tilia cordata, and Fraxinus excelsior, and further investigated their biotic and abiotic correlates to get at mechanisms. To this end, we quantified insect leaf herbivory and foliar secondary metabolites (phenolics, terpenoids, alkaloids) for 176 trees across eight European cities. Additionally, we collected data on microclimate (air temperature) and soil characteristics (pH, carbon, nutrients) to test for abiotic correlates of urbanization effects directly or indirectly (through changes in plant secondary chemistry) linked to herbivory. Our results showed that urbanization was negatively associated with herbivory for Q. robur and F. excelsior, but not for T. cordata. In addition, urbanization was positively associated with secondary metabolite concentrations, but only for Q. robur. Urbanization was positively associated with air temperature for Q. robur and F. excelsior, and negatively with soil nutrients (magnesium) in the case of F. excelsior, but these abiotic variables were not associated with herbivory. Contrary to expectations, we found no evidence for indirect effects of abiotic factors via plant defences on herbivory for either Q. robur or F. excelsior. Additional biotic or abiotic drivers must therefore be accounted for to explain observed urbanization gradients in herbivory and their interspecific variation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
11. Trade-offs in biodiversity and ecosystem services between edges and interiors in European forests.
- Author
-
Vanneste T, Depauw L, De Lombaerde E, Meeussen C, Govaert S, De Pauw K, Sanczuk P, Bollmann K, Brunet J, Calders K, Cousins SAO, Diekmann M, Gasperini C, Graae BJ, Hedwall PO, Iacopetti G, Lenoir J, Lindmo S, Orczewska A, Ponette Q, Plue J, Selvi F, Spicher F, Verbeeck H, Zellweger F, Verheyen K, Vangansbeke P, and De Frenne P
- Subjects
- Europe, Conservation of Natural Resources, Trees, Phylogeny, Biodiversity, Forests
- Abstract
Forest biodiversity and ecosystem services are hitherto predominantly quantified in forest interiors, well away from edges. However, these edges also represent a substantial proportion of the global forest cover. Here we quantified plant biodiversity and ecosystem service indicators in 225 plots along forest edge-to-interior transects across Europe. We found strong trade-offs: phylogenetic diversity (evolutionary measure of biodiversity), proportion of forest specialists, decomposition and heatwave buffering increased towards the interior, whereas species richness, nectar production potential, stemwood biomass and tree regeneration decreased. These trade-offs were mainly driven by edge-to-interior structural differences. As fragmentation continues, recognizing the role of forest edges is crucial for integrating biodiversity and ecosystem service considerations into sustainable forest management and policy., (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2024
- Full Text
- View/download PDF
12. Limited effects of population age on the genetic structure of spatially isolated forest herb populations in temperate Europe.
- Author
-
Huang S, Feigs JT, Holzhauer SIJ, Kramp K, Brunet J, Decocq G, De Frenne P, Diekmann M, Liira J, Spicher F, Vangansbeke P, Vanneste T, Verheyen K, and Naaf T
- Abstract
Due to multiple land-cover changes, forest herb populations residing in forest patches embedded in agricultural landscapes display different ages and, thus, experience differences in genetic exchange, mutation accumulation and genetic drift. The extent of divergence in present-day population genetic structure among these populations of different ages remains unclear, considering their diverse breeding systems and associated pollinators. Answering this question is essential to understand these species' persistence, maintenance of evolutionary potential and adaptability to changing environments. We applied a multi-landscape setup to compare the genetic structure of forest herb populations across forest patches of different ages (18-338 years). We studied the impact on three common slow-colonizer herb species with distinct breeding systems and associated pollinators: Polygonatum multiflorum (outcrossing, long-distance pollinators), Anemone nemorosa (outcrossing, short-distance pollinators) and Oxalis acetosella (mixed breeding). We aimed to assess if in general older populations displayed higher genetic diversity and lower differentiation than younger ones. We also anticipated that P. multiflorum would show the smallest while O. acetosella the largest difference, between old and young populations. We found that older populations had a higher observed heterozygosity ( H
o ) but a similar level of allelic richness ( Ar ) and expected heterozygosity ( He ) as younger populations, except for A. nemorosa , which exhibited higher Ar and He in younger populations. As populations aged, their pairwise genetic differentiation measured by DPS decreased independent of species identity while the other two genetic differentiation measures showed either comparable levels between old and young populations ( G"ST ) or inconsistency among three species ( cGD ). The age difference of the two populations did not explain their genetic differentiation. Synthesis: We found restricted evidence that forest herb populations with different ages differ in their genetic structure, indicating that populations of different ages can reach a similar genetic structure within decades and thus persist in the long term after habitat disturbance. Despite their distinct breeding systems and associated pollinators, the three studied species exhibited partly similar genetic patterns, suggesting that their common characteristics, such as being slow colonizers or their ability to propagate vegetatively, are important in determining their long-term response to land-cover change., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (© 2024 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
13. Using warming tolerances to predict understory plant responses to climate change.
- Author
-
Wei L, Sanczuk P, De Pauw K, Caron MM, Selvi F, Hedwall PO, Brunet J, Cousins SAO, Plue J, Spicher F, Gasperini C, Iacopetti G, Orczewska A, Uria-Diez J, Lenoir J, Vangansbeke P, and De Frenne P
- Subjects
- Ecosystem, Europe, Flowers, Temperature, Plants, Climate Change, Forests
- Abstract
Climate change is pushing species towards and potentially beyond their critical thermal limits. The extent to which species can cope with temperatures exceeding their critical thermal limits is still uncertain. To better assess species' responses to warming, we compute the warming tolerance (ΔT
niche ) as a thermal vulnerability index, using species' upper thermal limits (the temperature at the warm limit of their distribution range) minus the local habitat temperature actually experienced at a given location. This metric is useful to predict how much more warming species can tolerate before negative impacts are expected to occur. Here we set up a cross-continental transplant experiment involving five regions distributed along a latitudinal gradient across Europe (43° N-61° N). Transplant sites were located in dense and open forests stands, and at forest edges and in interiors. We estimated the warming tolerance for 12 understory plant species common in European temperate forests. During 3 years, we examined the effects of the warming tolerance of each species across all transplanted locations on local plant performance, in terms of survival, height, ground cover, flowering probabilities and flower number. We found that the warming tolerance (ΔTniche ) of the 12 studied understory species was significantly different across Europe and varied by up to 8°C. In general, ΔTniche were smaller (less positive) towards the forest edge and in open stands. Plant performance (growth and reproduction) increased with increasing ΔTniche across all 12 species. Our study demonstrated that ΔTniche of understory plant species varied with macroclimatic differences among regions across Europe, as well as in response to forest microclimates, albeit to a lesser extent. Our findings support the hypothesis that plant performance across species decreases in terms of growth and reproduction as local temperature conditions reach or exceed the warm limit of the focal species., (© 2023 John Wiley & Sons Ltd.)- Published
- 2024
- Full Text
- View/download PDF
14. ForestClim-Bioclimatic variables for microclimate temperatures of European forests.
- Author
-
Haesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Descombes P, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Merinero S, Minerbi S, Montagnani L, Muffler L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Zellweger F, and Van Meerbeek K
- Subjects
- Temperature, Forests, Ecosystem, Microclimate, Trees
- Abstract
Microclimate research gained renewed interest over the last decade and its importance for many ecological processes is increasingly being recognized. Consequently, the call for high-resolution microclimatic temperature grids across broad spatial extents is becoming more pressing to improve ecological models. Here, we provide a new set of open-access bioclimatic variables for microclimate temperatures of European forests at 25 × 25 m
2 resolution., (© 2023 John Wiley & Sons Ltd.)- Published
- 2023
- Full Text
- View/download PDF
15. Soil seed bank responses to edge effects in temperate European forests.
- Author
-
Gasperini C, Bollmann K, Brunet J, Cousins SAO, Decocq G, De Pauw K, Diekmann M, Govaert S, Graae BJ, Hedwall PO, Iacopetti G, Lenoir J, Lindmo S, Meeussen C, Orczewska A, Ponette Q, Plue J, Sanczuk P, Spicher F, Vanneste T, Vangansbeke P, Zellweger F, Selvi F, and Frenne P
- Abstract
Aim: The amount of forest edges is increasing globally due to forest fragmentation and land-use changes. However, edge effects on the soil seed bank of temperate forests are still poorly understood. Here, we assessed edge effects at contrasting spatial scales across Europe and quantified the extent to which edges can preserve the seeds of forest specialist plants., Location: Temperate European deciduous forests along a 2,300-km latitudinal gradient., Time Period: 2018-2021., Major Taxa Studied: Vascular plants., Methods: Through a greenhouse germination experiment, we studied how edge effects alter the density, diversity, composition and functionality of forest soil seed banks in 90 plots along different latitudes, elevations and forest management types. We also assessed which environmental conditions drive the seed bank responses at the forest edge versus interior and looked at the relationship between the seed bank and the herb layer species richness., Results: Overall, 10,108 seedlings of 250 species emerged from the soil seed bank. Seed density and species richness of generalists (species not only associated with forests) were higher at edges compared to interiors, with a negative influence of C : N ratio and litter quality. Conversely, forest specialist species richness did not decline from the interior to the edge. Also, edges were compositionally, but not functionally, different from interiors. The correlation between the seed bank and the herb layer species richness was positive and affected by microclimate., Main Conclusions: Our results underpin how edge effects shape species diversity and composition of soil seed banks in ancient forests, especially increasing the proportion of generalist species and thus potentially favouring a shift in community composition. However, the presence of many forest specialists suggests that soil seed banks still play a key role in understorey species persistence and could support the resilience of our fragmented forests., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2022 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.)
- Published
- 2022
- Full Text
- View/download PDF
16. Multi-scale approach to biodiversity proxies of biological control service in European farmlands.
- Author
-
Tougeron K, Couthouis E, Marrec R, Barascou L, Baudry J, Boussard H, Burel F, Couty A, Doury G, Francis C, Hecq F, Le Roux V, Pétillon J, Spicher F, Hance T, and van Baaren J
- Subjects
- Agriculture, Animals, Biodiversity, Crops, Agricultural physiology, Farms, Pest Control, Biological methods, Ecosystem, Spiders
- Abstract
Intensive agriculture has profoundly altered biodiversity and trophic relationships in agricultural landscapes, leading to the deterioration of many ecosystem services such as pollination or biological control. Information on which spatio-temporal factors are simultaneously affecting crop pests and their natural enemies is required to improve conservation biological control practices. We conducted a study in 80 winter wheat crop fields distributed in three regions of North-western Europe (Brittany, Hauts-de-France and Wallonia), along intra-regional gradients of landscape complexity. Five taxa of major crop pests (aphids and slugs) and natural enemies (spiders, carabids, and parasitoids) were sampled three times a year, for two consecutive years. We analysed the influence of regional (meteorology), landscape (structure in both the years n and n-1) and local factors (hedge or grass strip field boundaries, and distance to boundary) on the abundance and species richness of crop-dwelling organisms, as proxies of the service/disservice they provide. Firstly, there was higher biocontrol potential in areas with mild winter climatic conditions. Secondly, natural enemy communities were less diverse and had lower abundances in landscapes with high crop and wooded continuities (sum of interconnected crop or wood surfaces), contrary to slugs and aphids. Finally, field boundaries with grass strips were more favourable to spiders and carabids than boundaries formed by hedges, while the opposite was found for crop pests, with the latter being less abundant towards the centre of the fields. We also revealed temporal modulation-and sometimes reversion-of the impact of local elements on crop biodiversity. To some extent, these results cause controversy because they show that hedgerows and woodlots should not be the unique cornerstones of agro-ecological landscape design strategies. We point out that combining woody and grassy habitats to take full advantage of the features and ecosystem services they both provide (biological pest control, windbreak effect, soil stabilization) may promote sustainable agricultural ecosystems. It may be possible to both reduce pest pressure and promote natural enemies by accounting for taxa-specific antagonistic responses to multi-scale environmental characteristics., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier B.V. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
17. Global maps of soil temperature.
- Author
-
Lembrechts JJ, van den Hoogen J, Aalto J, Ashcroft MB, De Frenne P, Kemppinen J, Kopecký M, Luoto M, Maclean IMD, Crowther TW, Bailey JJ, Haesen S, Klinges DH, Niittynen P, Scheffers BR, Van Meerbeek K, Aartsma P, Abdalaze O, Abedi M, Aerts R, Ahmadian N, Ahrends A, Alatalo JM, Alexander JM, Allonsius CN, Altman J, Ammann C, Andres C, Andrews C, Ardö J, Arriga N, Arzac A, Aschero V, Assis RL, Assmann JJ, Bader MY, Bahalkeh K, Barančok P, Barrio IC, Barros A, Barthel M, Basham EW, Bauters M, Bazzichetto M, Marchesini LB, Bell MC, Benavides JC, Benito Alonso JL, Berauer BJ, Bjerke JW, Björk RG, Björkman MP, Björnsdóttir K, Blonder B, Boeckx P, Boike J, Bokhorst S, Brum BNS, Brůna J, Buchmann N, Buysse P, Camargo JL, Campoe OC, Candan O, Canessa R, Cannone N, Carbognani M, Carnicer J, Casanova-Katny A, Cesarz S, Chojnicki B, Choler P, Chown SL, Cifuentes EF, Čiliak M, Contador T, Convey P, Cooper EJ, Cremonese E, Curasi SR, Curtis R, Cutini M, Dahlberg CJ, Daskalova GN, de Pablo MA, Della Chiesa S, Dengler J, Deronde B, Descombes P, Di Cecco V, Di Musciano M, Dick J, Dimarco RD, Dolezal J, Dorrepaal E, Dušek J, Eisenhauer N, Eklundh L, Erickson TE, Erschbamer B, Eugster W, Ewers RM, Exton DA, Fanin N, Fazlioglu F, Feigenwinter I, Fenu G, Ferlian O, Fernández Calzado MR, Fernández-Pascual E, Finckh M, Higgens RF, Forte TGW, Freeman EC, Frei ER, Fuentes-Lillo E, García RA, García MB, Géron C, Gharun M, Ghosn D, Gigauri K, Gobin A, Goded I, Goeckede M, Gottschall F, Goulding K, Govaert S, Graae BJ, Greenwood S, Greiser C, Grelle A, Guénard B, Guglielmin M, Guillemot J, Haase P, Haider S, Halbritter AH, Hamid M, Hammerle A, Hampe A, Haugum SV, Hederová L, Heinesch B, Helfter C, Hepenstrick D, Herberich M, Herbst M, Hermanutz L, Hik DS, Hoffrén R, Homeier J, Hörtnagl L, Høye TT, Hrbacek F, Hylander K, Iwata H, Jackowicz-Korczynski MA, Jactel H, Järveoja J, Jastrzębowski S, Jentsch A, Jiménez JJ, Jónsdóttir IS, Jucker T, Jump AS, Juszczak R, Kanka R, Kašpar V, Kazakis G, Kelly J, Khuroo AA, Klemedtsson L, Klisz M, Kljun N, Knohl A, Kobler J, Kollár J, Kotowska MM, Kovács B, Kreyling J, Lamprecht A, Lang SI, Larson C, Larson K, Laska K, le Maire G, Leihy RI, Lens L, Liljebladh B, Lohila A, Lorite J, Loubet B, Lynn J, Macek M, Mackenzie R, Magliulo E, Maier R, Malfasi F, Máliš F, Man M, Manca G, Manco A, Manise T, Manolaki P, Marciniak F, Matula R, Mazzolari AC, Medinets S, Medinets V, Meeussen C, Merinero S, Mesquita RCG, Meusburger K, Meysman FJR, Michaletz ST, Milbau A, Moiseev D, Moiseev P, Mondoni A, Monfries R, Montagnani L, Moriana-Armendariz M, Morra di Cella U, Mörsdorf M, Mosedale JR, Muffler L, Muñoz-Rojas M, Myers JA, Myers-Smith IH, Nagy L, Nardino M, Naujokaitis-Lewis I, Newling E, Nicklas L, Niedrist G, Niessner A, Nilsson MB, Normand S, Nosetto MD, Nouvellon Y, Nuñez MA, Ogaya R, Ogée J, Okello J, Olejnik J, Olesen JE, Opedal ØH, Orsenigo S, Palaj A, Pampuch T, Panov AV, Pärtel M, Pastor A, Pauchard A, Pauli H, Pavelka M, Pearse WD, Peichl M, Pellissier L, Penczykowski RM, Penuelas J, Petit Bon M, Petraglia A, Phartyal SS, Phoenix GK, Pio C, Pitacco A, Pitteloud C, Plichta R, Porro F, Portillo-Estrada M, Poulenard J, Poyatos R, Prokushkin AS, Puchalka R, Pușcaș M, Radujković D, Randall K, Ratier Backes A, Remmele S, Remmers W, Renault D, Risch AC, Rixen C, Robinson SA, Robroek BJM, Rocha AV, Rossi C, Rossi G, Roupsard O, Rubtsov AV, Saccone P, Sagot C, Sallo Bravo J, Santos CC, Sarneel JM, Scharnweber T, Schmeddes J, Schmidt M, Scholten T, Schuchardt M, Schwartz N, Scott T, Seeber J, Segalin de Andrade AC, Seipel T, Semenchuk P, Senior RA, Serra-Diaz JM, Sewerniak P, Shekhar A, Sidenko NV, Siebicke L, Siegwart Collier L, Simpson E, Siqueira DP, Sitková Z, Six J, Smiljanic M, Smith SW, Smith-Tripp S, Somers B, Sørensen MV, Souza JJLL, Souza BI, Souza Dias A, Spasojevic MJ, Speed JDM, Spicher F, Stanisci A, Steinbauer K, Steinbrecher R, Steinwandter M, Stemkovski M, Stephan JG, Stiegler C, Stoll S, Svátek M, Svoboda M, Tagesson T, Tanentzap AJ, Tanneberger F, Theurillat JP, Thomas HJD, Thomas AD, Tielbörger K, Tomaselli M, Treier UA, Trouillier M, Turtureanu PD, Tutton R, Tyystjärvi VA, Ueyama M, Ujházy K, Ujházyová M, Uogintas D, Urban AV, Urban J, Urbaniak M, Ursu TM, Vaccari FP, Van de Vondel S, van den Brink L, Van Geel M, Vandvik V, Vangansbeke P, Varlagin A, Veen GF, Veenendaal E, Venn SE, Verbeeck H, Verbrugggen E, Verheijen FGA, Villar L, Vitale L, Vittoz P, Vives-Ingla M, von Oppen J, Walz J, Wang R, Wang Y, Way RG, Wedegärtner REM, Weigel R, Wild J, Wilkinson M, Wilmking M, Wingate L, Winkler M, Wipf S, Wohlfahrt G, Xenakis G, Yang Y, Yu Z, Yu K, Zellweger F, Zhang J, Zhang Z, Zhao P, Ziemblińska K, Zimmermann R, Zong S, Zyryanov VI, Nijs I, and Lenoir J
- Subjects
- Climate Change, Microclimate, Temperature, Ecosystem, Soil
- Abstract
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km
2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications., (© 2022 The Authors. Global Change Biology published by John Wiley & Sons Ltd.)- Published
- 2022
- Full Text
- View/download PDF
18. Forest understorey communities respond strongly to light in interaction with forest structure, but not to microclimate warming.
- Author
-
De Pauw K, Sanczuk P, Meeussen C, Depauw L, De Lombaerde E, Govaert S, Vanneste T, Brunet J, Cousins SAO, Gasperini C, Hedwall PO, Iacopetti G, Lenoir J, Plue J, Selvi F, Spicher F, Uria-Diez J, Verheyen K, Vangansbeke P, and De Frenne P
- Subjects
- Climate Change, Plants, Temperature, Trees, Forests, Microclimate
- Abstract
Forests harbour large spatiotemporal heterogeneity in canopy structure. This variation drives the microclimate and light availability at the forest floor. So far, we do not know how light availability and sub-canopy temperature interactively mediate the impact of macroclimate warming on understorey communities. We therefore assessed the functional response of understorey plant communities to warming and light addition in a full factorial experiment installed in temperate deciduous forests across Europe along natural microclimate, light and macroclimate gradients. Furthermore, we related these functional responses to the species' life-history syndromes and thermal niches. We found no significant community responses to the warming treatment. The light treatment, however, had a stronger impact on communities, mainly due to responses by fast-colonizing generalists and not by slow-colonizing forest specialists. The forest structure strongly mediated the response to light addition and also had a clear impact on functional traits and total plant cover. The effects of short-term experimental warming were small and suggest a time-lag in the response of understorey species to climate change. Canopy disturbance, for instance due to drought, pests or logging, has a strong and immediate impact and particularly favours generalists in the understorey in structurally complex forests., (© 2021 The Authors. New Phytologist © 2021 New Phytologist Foundation.)
- Published
- 2022
- Full Text
- View/download PDF
19. ForestTemp - Sub-canopy microclimate temperatures of European forests.
- Author
-
Haesen S, Lembrechts JJ, De Frenne P, Lenoir J, Aalto J, Ashcroft MB, Kopecký M, Luoto M, Maclean I, Nijs I, Niittynen P, van den Hoogen J, Arriga N, Brůna J, Buchmann N, Čiliak M, Collalti A, De Lombaerde E, Descombes P, Gharun M, Goded I, Govaert S, Greiser C, Grelle A, Gruening C, Hederová L, Hylander K, Kreyling J, Kruijt B, Macek M, Máliš F, Man M, Manca G, Matula R, Meeussen C, Merinero S, Minerbi S, Montagnani L, Muffler L, Ogaya R, Penuelas J, Plichta R, Portillo-Estrada M, Schmeddes J, Shekhar A, Spicher F, Ujházyová M, Vangansbeke P, Weigel R, Wild J, Zellweger F, and Van Meerbeek K
- Subjects
- Climate Change, Temperature, Trees, Forests, Microclimate
- Abstract
Ecological research heavily relies on coarse-gridded climate data based on standardized temperature measurements recorded at 2 m height in open landscapes. However, many organisms experience environmental conditions that differ substantially from those captured by these macroclimatic (i.e. free air) temperature grids. In forests, the tree canopy functions as a thermal insulator and buffers sub-canopy microclimatic conditions, thereby affecting biological and ecological processes. To improve the assessment of climatic conditions and climate-change-related impacts on forest-floor biodiversity and functioning, high-resolution temperature grids reflecting forest microclimates are thus urgently needed. Combining more than 1200 time series of in situ near-surface forest temperature with topographical, biological and macroclimatic variables in a machine learning model, we predicted the mean monthly offset between sub-canopy temperature at 15 cm above the surface and free-air temperature over the period 2000-2020 at a spatial resolution of 25 m across Europe. This offset was used to evaluate the difference between microclimate and macroclimate across space and seasons and finally enabled us to calculate mean annual and monthly temperatures for European forest understories. We found that sub-canopy air temperatures differ substantially from free-air temperatures, being on average 2.1°C (standard deviation ± 1.6°C) lower in summer and 2.0°C higher (±0.7°C) in winter across Europe. Additionally, our high-resolution maps expose considerable microclimatic variation within landscapes, not captured by the gridded macroclimatic products. The provided forest sub-canopy temperature maps will enable future research to model below-canopy biological processes and patterns, as well as species distributions more accurately., (© 2021 John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
20. Estimating crop parameters using Sentinel-1 and 2 datasets and geospatial field data.
- Author
-
Mercier A, Betbeder J, Denize J, Roger JL, Spicher F, Lacoux J, Roger D, Baudry J, and Hubert-Moy L
- Abstract
Crop monitoring is essential for ensuring food security in a global context of population growth and climate change. Satellite images are commonly used to estimate crop parameters over large areas, and the freely available Synthetic Aperture Radar (SAR) Sentinel-1 (S-1) and optical Sentinel-2 (S-2) images are relevant for that purpose combining high temporal resolution and high spatial resolution. For this data article, field surveys were conducted from January to July 2017 in France to sample wheat and rapeseed crop parameters during the entire crops cycle. Phenological stages were identified in 83 wheat fields and 32 rapeseed fields in Brittany and Picardy regions. Moreover, Leaf Area Index (LAI), wet biomass, dry biomass and water content were sampled in three wheat fields and three rapeseed fields in Brittany. We assigned to each field sample 10 spectral bands and 12 vegetation indices from S-2 images and two backscattering coefficients, one backscattering ratio and four polarimetric indicators from S-1 images. This dataset can be used for crop monitoring in other regions, as well as for modelling development., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article., (© 2021 The Authors. Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
21. Drivers of carbon stocks in forest edges across Europe.
- Author
-
Meeussen C, Govaert S, Vanneste T, Haesen S, Van Meerbeek K, Bollmann K, Brunet J, Calders K, Cousins SAO, Diekmann M, Graae BJ, Iacopetti G, Lenoir J, Orczewska A, Ponette Q, Plue J, Selvi F, Spicher F, Sørensen MV, Verbeeck H, Vermeir P, Verheyen K, Vangansbeke P, and De Frenne P
- Abstract
Forests play a key role in global carbon cycling and sequestration. However, the potential for carbon drawdown is affected by forest fragmentation and resulting changes in microclimate, nutrient inputs, disturbance and productivity near edges. Up to 20% of the global forested area lies within 100 m of an edge and, even in temperate forests, knowledge on how edge conditions affect carbon stocks and how far this influence penetrates into forest interiors is scarce. Here we studied carbon stocks in the aboveground biomass, forest floor and the mineral topsoil in 225 plots in deciduous forest edges across Europe and tested the impact of macroclimate, nitrogen deposition and smaller-grained drivers (e.g. microclimate) on these stocks. Total carbon and carbon in the aboveground biomass stock were on average 39% and 95% higher at the forest edge than 100 m into the interior. The increase in the aboveground biomass stock close to the edge was mainly related to enhanced nitrogen deposition. No edge influence was found for stocks in the mineral topsoil. Edge-to-interior gradients in forest floor carbon changed across latitude: carbon stocks in the forest floor were higher near the edge in southern Europe. Forest floor carbon decreased with increasing litter quality (i.e. high decomposition rate) and decreasing plant area index, whereas higher soil temperatures negatively affected the mineral topsoil carbon. Based on high-resolution forest fragmentation maps, we estimate that the additional carbon stored in deciduous forest edges across Europe amounts to not less than 183 Tg carbon, which is equivalent to the storage capacity of 1 million ha of additional forest. This study underpins the importance of including edge influences when quantifying the carbon stocks in temperate forests and stresses the importance of preserving natural forest edges and small forest patches with a high edge-to-interior surface area., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
22. Seasonal drivers of understorey temperature buffering in temperate deciduous forests across Europe.
- Author
-
Zellweger F, Coomes D, Lenoir J, Depauw L, Maes SL, Wulf M, Kirby KJ, Brunet J, Kopecký M, Máliš F, Schmidt W, Heinrichs S, den Ouden J, Jaroszewicz B, Buyse G, Spicher F, Verheyen K, and De Frenne P
- Abstract
Aim: Forest understorey microclimates are often buffered against extreme heat or cold, with important implications for the organisms living in these environments. We quantified seasonal effects of understorey microclimate predictors describing canopy structure, canopy composition and topography (i.e., local factors) and the forest patch size and distance to the coast (i.e., landscape factors)., Location: Temperate forests in Europe., Time Period: 2017-2018., Major Taxa Studied: Woody plants., Methods: We combined data from a microclimate sensor network with weather-station records to calculate the difference, or offset, between temperatures measured inside and outside forests. We used regression analysis to study the effects of local and landscape factors on the seasonal offset of minimum, mean and maximum temperatures., Results: The maximum temperature during the summer was on average cooler by 2.1 °C inside than outside forests, and the minimum temperatures during the winter and spring were 0.4 and 0.9 °C warmer. The local canopy cover was a strong nonlinear driver of the maximum temperature offset during summer, and we found increased cooling beneath tree species that cast the deepest shade. Seasonal offsets of minimum temperature were mainly regulated by landscape and topographic features, such as the distance to the coast and topographic position., Main Conclusions: Forest organisms experience less severe temperature extremes than suggested by currently available macroclimate data; therefore, climate-species relationships and the responses of species to anthropogenic global warming cannot be modelled accurately in forests using macroclimate data alone. Changes in canopy cover and composition will strongly modulate the warming of maximum temperatures in forest understories, with important implications for understanding the responses of forest biodiversity and functioning to the combined threats of land-use change and climate change. Our predictive models are generally applicable across lowland temperate deciduous forests, providing ecologically important microclimate data for forest understories., (© 2019 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.)
- Published
- 2019
- Full Text
- View/download PDF
23. Response of bacterial communities to Pb smelter pollution in contrasting soils.
- Author
-
Schneider AR, Gommeaux M, Duclercq J, Fanin N, Conreux A, Alahmad A, Lacoux J, Roger D, Spicher F, Ponthieu M, Cancès B, Morvan X, and Marin B
- Subjects
- Bacteria drug effects, France, Soil, Bacteria classification, Lead analysis, Metallurgy, Soil Microbiology, Soil Pollutants analysis
- Abstract
Anthropogenic inputs of trace elements (TE) into soils constitute a major public and environmental health problem. Bioavailability of TE is strongly related to the soil physicochemical parameters and thus to the ecosystem type. In order to test whether soil parameters influence the response of the bacterial community to TE pollution, we collected soil samples across contrasting ecosystems (hardwood, coniferous and hydromorphic soils), which have been contaminated in TE and especially lead (Pb) over several decades due to nearby industrial smelting activities. Bacterial community composition was analysed using high throughput amplicon sequencing and compared to the soil physicochemical parameters. Multivariate analyses of the pedological and biological data revealed that the bacterial community composition was affected by ecosystem type in the first place. An influence of the contamination level was also evidenced within each ecosystem. Despite the important variability in bacterial community structure, we found that specific bacterial groups such as γ-Proteobacteria, Verrucomicrobia and Chlamydiae showed a consistent response to Pb content across contrasting ecosystems. Verrucomicrobia were less abundant at high contamination level whereas Chlamydiae and γ-Proteobacteria were more abundant. We conclude that such groups and ratio's thereof can be considered as relevant bioindicators of Pb contamination., (Copyright © 2017 Elsevier B.V. All rights reserved.)
- Published
- 2017
- Full Text
- View/download PDF
24. Does nitrogen fertilization history affects short-term microbial responses and chemical properties of soils submitted to different glyphosate concentrations?
- Author
-
Nivelle E, Verzeaux J, Chabot A, Roger D, Spicher F, Lacoux J, Nava-Saucedo JE, Catterou M, and Tétu T
- Subjects
- Glycine administration & dosage, Glycine analysis, Glyphosate, Fertilizers, Glycine analogs & derivatives, Nitrogen analysis, Soil Microbiology
- Abstract
The use of nitrogen (N) fertilizer and glyphosate-based herbicides is increasing worldwide, with agriculture holding the largest market share. The agronomic and socioeconomic utilities of glyphosate are well established; however, our knowledge of the potential effects of glyphosate applied in the presence or absence of long-term N fertilization on microbial functional activities and the availability of soil nutrients remains limited. Using an ex situ approach with soils that did (N+) or did not (N0) receive synthetic N fertilization for 6 years, we assessed the impact of different rates (no glyphosate, CK; field rate, FR; 100 × field rate, 100FR) of glyphosate application on biological and chemical parameters. We observed that, after immediate application (1 day), the highest dose of glyphosate (100FR) negatively affected the alkaline phosphatase (AlP) activity in soils without N fertilization history and decreased the cation exchange capacity (CEC) in N0 compared to CK and FR treatments with N+. Conversely, the 100FR application increased nitrate (NO3-) and available phosphorus (PO43-) regardless of N fertilization history. Then, after 8 and 15 days, the N+\100FR and N+\FR treatments exhibited the lowest values for dehydrogenase (DH) and AlP activities, respectively, while urease (URE) activity was mainly affected by N fertilization. After 15 days and irrespective of N fertilization history, the FR glyphosate application negatively affected the degradation of carbon substrates by microbial communities (expressed as the average well color development, AWCD). By contrast, the 100FR treatment positively affected AWCD, increasing PO43- by 5 and 16% and NO3- by 126 and 119% in the N+ and N0 treatments, respectively. In addition, the 100FR treatment resulted in an increase in the average net nitrification rate. Principal component analysis revealed that the 100FR glyphosate treatment selected microbial communities that were able to metabolize amine substrates. Overall, the lack of N fertilization in the 6 past years combined with the highest glyphosate application rate (100FR) induced the highest values of AWCD, functional diversity, NO3-, PO43- and nitrification. We concluded that the intensive use of N fertilization for 6 years may change the non-target effects of glyphosate application on enzyme activities. The functional activities, nitrification and nutrient contents were increased by glyphosate only when applied at 100 times the field application rate.
- Published
- 2017
- Full Text
- View/download PDF
25. Effects of ozone on stomatal responses to environmental parameters (blue light, red light, CO2 and vapour pressure deficit) in three Populus deltoides × Populus nigra genotypes.
- Author
-
Dumont J, Spicher F, Montpied P, Dizengremel P, Jolivet Y, and Le Thiec D
- Subjects
- Genotype, Light, Plant Stomata physiology, Populus drug effects, Populus genetics, Vapor Pressure, Air Pollutants toxicity, Carbon Dioxide metabolism, Ozone toxicity, Plant Stomata drug effects, Populus physiology
- Abstract
The effect of ozone (O(3)) on stomatal regulation was studied in three Euramerican poplar genotypes (Populus deltoides × Populus nigra: Carpaccio, Cima and Robusta). The impact of O(3) on stomatal conductance responses to variations in blue light, red light, CO(2) concentration and vapour pressure deficit (VPD) was studied. Upon O(3) exposure, a sluggish response of stomatal movements was observed, characterized by slower reactions to increases in blue light intensity, CO(2) concentration and VPD, and lower amplitude of the response to variations in light intensity. That sluggish response should be taken into account in stomatal conductance models for phytotoxic ozone dose (POD(Y)) calculations. The speed of the response to variations in environmental parameters appears as a determining factor of genotype-related sensitivity., (Copyright © 2012 Elsevier Ltd. All rights reserved.)
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.