1. Synthesis and in vitro antitumor activity of novel acylspermidine derivative N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide (AAHD) against HepG2 cells.
- Author
-
Al-Malki AL, Razvi SS, Mohammed FA, Zamzami MA, Choudhry H, Kumosani TA, Balamash KS, Alshubaily FA, ALGhamdi SA, Abualnaja KO, Abdulaal WH, Zeyadi MA, Al-Zahrani MH, Alhosin M, Asami T, and Moselhy SS
- Subjects
- Animals, Antineoplastic Agents chemical synthesis, Antineoplastic Agents chemistry, Butylamines chemical synthesis, Butylamines chemistry, Cell Proliferation drug effects, Cell Survival drug effects, Cells, Cultured, Cricetinae, Dose-Response Relationship, Drug, Drug Screening Assays, Antitumor, Hep G2 Cells, Humans, Molecular Structure, Spermidine chemical synthesis, Spermidine chemistry, Structure-Activity Relationship, Wound Healing drug effects, Antineoplastic Agents pharmacology, Butylamines pharmacology, Spermidine pharmacology
- Abstract
Naturally occurring polyamines like Putrescine, Spermidine, and Spermine are polycations which bind to the DNA, hence stabilizing it and promoting the essential cellular processes. Many synthetic polyamine analogues have been synthesized in the past few years, which have shown cytotoxic effects on different tumours. In the present study, we evaluated the antiproliferative effect of a novel, acylspermidine derivative, (N-(4-aminobutyl)-N-(3-aminopropyl)-8-hydroxy-dodecanamide) (AAHD) on HepG2 cells. Fluorescence staining was performed with nuclear stain (Hoechst 33342) and acridine orange/ethidium bromide double staining. Dose and the time-dependent antiproliferative effect were observed by WST-1 assays, and radical scavenging activity was measured by ROS. Morphological changes such as cell shrinkage & blebbing were analyzed by fluorescent microscopy. It was found that AAHD markedly suppressed the growth of HepG2 cells in a dose- and time-dependent manner. It was also noted that the modulation of ROS levels confirmed the radical scavenging activity. In the near future, AAHD can be a promising drug candidate in chalking out a neoplastic strategy to control the proliferation of tumour cells. This study indicated that AAHD induced anti-proliferative and pro-apoptotic activities on HCC. Since AAHD was active at micromolar concentrations without any adverse effects on the healthy cells (Fibroblasts), it is worthy of further clinical investigations., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF