1. Modellförsök avseende bergspänningars betydelse för spännvidd av valv
- Author
-
Larsson, Minna, Skoog, Klara, Larsson, Minna, and Skoog, Klara
- Abstract
Tunnels and anthropogenic underground cavities are a very natural part of our everyday modern life. Especially in larger cities such as Stockholm where the infrastructure reaches far above ground level as well as deep below the surface. Metro, commuter train, cars along with many other ways of transportation have been moved below the surface the last century. Before then there were neither the technology nor the knowledge of how tunnels and underground cavities should be constructed so that the safety is not neglected. Several different forces are present in the bedrock below us, such as the weight of the overlying rock/strata and stresses due to tectonic, thermal, or hydrostatic forces among other. Knowledge of these forces and stresses are essential so that you will not get a piece of rock falling on your head on your way home from work with the metro. In most of the cases the roof of tunnels or underground cavities are shaped like an arch, and the stability of these arches depends on several aspects. At excavation of rock, there are natural arches in the bedrock. However, the stability of these arches depends on stresses, amount of overlying rock and the presence of rock joints and fractures (amount, directions and the characteristics of rock joints and fractures are important). These among other aspects determine the stability and the size of the arch. The natural arch in a manmade underground cavity or tunnel is seldom sufficient for it to be safe enough for humans to be in. There is a need for reinforcement of different kinds, where rock bolting is one of the most common. This bachelor’s thesis used a model to simulate arches in tunnels and cavities. The model which simulated an arch was an uplifted box (820x820x250 mm) with railroad macadam, pressure gauges and systematically placed bolts (threaded rods with nuts and washers at each end). The bottom part of the uplifted box could be removed. With a torque wrench the macadam was subjected to different torques, Tunnlar och bergrum är i modern tid så vanliga att många knappt märker att en befinner sig i ett bergrum i sin vardag. Inte minst i större städer såsom Stockholm där infrastrukturen sträcker sig högt över markytan såväl som långt ner i berggrunden. Tunnelbana, biltrafik, tågtrafik är några transportsätt som ofta har förflyttats under jord det senaste århundradet. Innan dess fanns varken tekniken eller kunskapen om hur tunnlar och bergrum ska konstrueras för att säkerheten ska vara tillräckligt hög. I berget under oss finns det flera krafter som verkar, däribland vikten från ovanliggande berg, spänningar av tektoniska, termala eller hydrostatiska ursprung. Kunskap om dessa spänningar är väsentliga för att du inte ska få ett bergblock i huvudet när åker hem från jobbet med tunnelbanan. I de allra flesta fall har bergrummet eller tunneln ett tak format som ett valv, och stabiliteten av dessa valv beror på flera aspekter. När berguttag sker finns det en naturlig valvverkan som existerar i berget. Höga spänningar, mängden överliggande berg och förekomsten av sprickor (mängd, riktningar och egenskaper hos sprickorna) är några faktorer som påverkar stabiliteten av valvet och hur stort valvet kan vara. Den naturliga valvverkan i en antropogen tunnel är sällan tillräcklig för att valvet ska hålla och vara säkert för människor ska vistas i. Det krävs bergförstärkning av olika typer, där bultförstärkning är vanligt förekommande. Arbetet gick ut på att simulera valv i berg med hjälp av en modell. Modellen efterliknar ett tunneltak och består av en upphöjd låda (820x820x250mm) med järnvägsmakadam, systematiskt placerade bultar (stänger med bricka och mutter i varje ände) och tryckmätare. Lådan har en avtagbar botten. Experimentet gick ut på att spänna upp makadammet med olika vridmoment, och se vid vilka moment det håller när bultarna succesivt tas bort i en viss ordning. Syftet med arbetet var att ta fram en förfinad metodik för bultmodell så att kontrollerade försök kan genom
- Published
- 2020